Spaces:
Configuration error
Configuration error
| # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
| """ | |
| Transforms and data augmentation for both image + bbox. | |
| """ | |
| import os | |
| import sys | |
| import random | |
| import PIL | |
| import torch | |
| import torchvision.transforms as T | |
| import torchvision.transforms.functional as F | |
| sys.path.append(os.path.dirname(os.path.abspath(__file__))) | |
| from util.box_ops import box_xyxy_to_cxcywh | |
| from util.misc import interpolate | |
| def crop(image, target, region): | |
| cropped_image = F.crop(image, *region) | |
| if target is not None: | |
| target = target.copy() | |
| i, j, h, w = region | |
| id2catname = target["id2catname"] | |
| caption_list = target["caption_list"] | |
| target["size"] = torch.tensor([h, w]) | |
| fields = ["labels", "area", "iscrowd", "positive_map","keypoints"] | |
| if "boxes" in target: | |
| boxes = target["boxes"] | |
| max_size = torch.as_tensor([w, h], dtype=torch.float32) | |
| cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) | |
| cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) | |
| cropped_boxes = cropped_boxes.clamp(min=0) | |
| area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) | |
| target["boxes"] = cropped_boxes.reshape(-1, 4) | |
| target["area"] = area | |
| fields.append("boxes") | |
| if "masks" in target: | |
| # FIXME should we update the area here if there are no boxes? | |
| target['masks'] = target['masks'][:, i:i + h, j:j + w] | |
| fields.append("masks") | |
| # remove elements for which the boxes or masks that have zero area | |
| if "boxes" in target or "masks" in target: | |
| # favor boxes selection when defining which elements to keep | |
| # this is compatible with previous implementation | |
| if "boxes" in target: | |
| cropped_boxes = target['boxes'].reshape(-1, 2, 2) | |
| keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) | |
| else: | |
| keep = target['masks'].flatten(1).any(1) | |
| for field in fields: | |
| if field in target: | |
| target[field] = target[field][keep] | |
| if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO': | |
| # for debug and visualization only. | |
| if 'strings_positive' in target: | |
| target['strings_positive'] = [_i for _i, _j in zip(target['strings_positive'], keep) if _j] | |
| if "keypoints" in target: | |
| max_size = torch.as_tensor([w, h], dtype=torch.float32) | |
| keypoints = target["keypoints"] | |
| cropped_keypoints = keypoints.view(-1, 3)[:,:2] - torch.as_tensor([j, i]) | |
| cropped_keypoints = torch.min(cropped_keypoints, max_size) | |
| cropped_keypoints = cropped_keypoints.clamp(min=0) | |
| cropped_keypoints = torch.cat([cropped_keypoints, keypoints.view(-1, 3)[:,2].unsqueeze(1)], dim=1) | |
| target["keypoints"] = cropped_keypoints.view(target["keypoints"].shape[0], target["keypoints"].shape[1], 3) | |
| target["id2catname"] = id2catname | |
| target["caption_list"] = caption_list | |
| return cropped_image, target | |
| def hflip(image, target): | |
| flipped_image = F.hflip(image) | |
| w, h = image.size | |
| if target is not None: | |
| target = target.copy() | |
| if "boxes" in target: | |
| boxes = target["boxes"] | |
| boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0]) | |
| target["boxes"] = boxes | |
| if "masks" in target: | |
| target['masks'] = target['masks'].flip(-1) | |
| if "keypoints" in target: | |
| dataset_name=target["dataset_name"] | |
| if dataset_name == "coco_person" or dataset_name == "macaque": | |
| flip_pairs = [[1, 2], [3, 4], [5, 6], [7, 8], | |
| [9, 10], [11, 12], [13, 14], [15, 16]] | |
| elif dataset_name=="animalkindom_ak_P1_animal": | |
| flip_pairs = [[1, 2], [4, 5],[7,8],[9,10],[11,12],[14,15],[16,17],[18,19]] | |
| elif dataset_name=="animalweb_animal": | |
| flip_pairs = [[0, 3], [1, 2], [5, 6]] | |
| elif dataset_name=="face": | |
| flip_pairs = [ | |
| [0, 16], [1, 15], [2, 14], [3, 13], [4, 12], [5, 11], [6, 10], [7, 9], | |
| [17, 26], [18, 25], [19, 24], [20, 23], [21, 22], | |
| [31, 35], [32, 34], | |
| [36, 45], [37, 44], [38, 43], [39, 42], [40, 47], [41, 46], | |
| [48, 54], [49, 53], [50, 52], | |
| [55, 59], [56, 58], | |
| [60, 64], [61, 63], | |
| [65, 67] | |
| ] | |
| elif dataset_name=="hand": | |
| flip_pairs = [] | |
| elif dataset_name=="foot": | |
| flip_pairs = [] | |
| elif dataset_name=="locust": | |
| flip_pairs = [[5, 20], [6, 21], [7, 22], [8, 23], [9, 24], [10, 25], [11, 26], [12, 27], [13, 28], [14, 29], [15, 30], [16, 31], [17, 32], [18, 33], [19, 34]] | |
| elif dataset_name=="fly": | |
| flip_pairs = [[1, 2], [6, 18], [7, 19], [8, 20], [9, 21], [10, 22], [11, 23], [12, 24], [13, 25], [14, 26], [15, 27], [16, 28], [17, 29], [30, 31]] | |
| elif dataset_name == "ap_36k_animal" or dataset_name == "ap_10k_animal": | |
| flip_pairs = [[0, 1],[5, 8], [6, 9], [7, 10], [11, 14], [12, 15], [13, 16]] | |
| keypoints = target["keypoints"] | |
| keypoints[:,:,0] = w - keypoints[:,:, 0]-1 | |
| for pair in flip_pairs: | |
| keypoints[:,pair[0], :], keypoints[:,pair[1], :] = keypoints[:,pair[1], :], keypoints[:,pair[0], :].clone() | |
| target["keypoints"] = keypoints | |
| return flipped_image, target | |
| def resize(image, target, size, max_size=None): | |
| # size can be min_size (scalar) or (w, h) tuple | |
| def get_size_with_aspect_ratio(image_size, size, max_size=None): | |
| w, h = image_size | |
| if max_size is not None: | |
| min_original_size = float(min((w, h))) | |
| max_original_size = float(max((w, h))) | |
| if max_original_size / min_original_size * size > max_size: | |
| size = int(round(max_size * min_original_size / max_original_size)) | |
| if (w <= h and w == size) or (h <= w and h == size): | |
| return (h, w) | |
| if w < h: | |
| ow = size | |
| oh = int(size * h / w) | |
| else: | |
| oh = size | |
| ow = int(size * w / h) | |
| return (oh, ow) | |
| def get_size(image_size, size, max_size=None): | |
| if isinstance(size, (list, tuple)): | |
| return size[::-1] | |
| else: | |
| return get_size_with_aspect_ratio(image_size, size, max_size) | |
| size = get_size(image.size, size, max_size) | |
| rescaled_image = F.resize(image, size) | |
| if target is None: | |
| return rescaled_image, None | |
| ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size)) | |
| ratio_width, ratio_height = ratios | |
| target = target.copy() | |
| if "boxes" in target: | |
| boxes = target["boxes"] | |
| scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height]) | |
| target["boxes"] = scaled_boxes | |
| if "area" in target: | |
| area = target["area"] | |
| scaled_area = area * (ratio_width * ratio_height) | |
| target["area"] = scaled_area | |
| if "keypoints" in target: | |
| keypoints = target["keypoints"] | |
| scaled_keypoints = keypoints * torch.as_tensor([ratio_width, ratio_height, 1]) | |
| target["keypoints"] = scaled_keypoints | |
| h, w = size | |
| target["size"] = torch.tensor([h, w]) | |
| if "masks" in target: | |
| target['masks'] = interpolate( | |
| target['masks'][:, None].float(), size, mode="nearest")[:, 0] > 0.5 | |
| return rescaled_image, target | |
| def pad(image, target, padding): | |
| # assumes that we only pad on the bottom right corners | |
| padded_image = F.pad(image, (0, 0, padding[0], padding[1])) | |
| if target is None: | |
| return padded_image, None | |
| target = target.copy() | |
| # should we do something wrt the original size? | |
| target["size"] = torch.tensor(padded_image.size[::-1]) | |
| if "masks" in target: | |
| target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[0], 0, padding[1])) | |
| return padded_image, target | |
| class ResizeDebug(object): | |
| def __init__(self, size): | |
| self.size = size | |
| def __call__(self, img, target): | |
| return resize(img, target, self.size) | |
| class RandomCrop(object): | |
| def __init__(self, size): | |
| self.size = size | |
| def __call__(self, img, target): | |
| region = T.RandomCrop.get_params(img, self.size) | |
| return crop(img, target, region) | |
| class RandomSizeCrop(object): | |
| def __init__(self, min_size: int, max_size: int, respect_boxes: bool = False): | |
| # respect_boxes: True to keep all boxes | |
| # False to tolerence box filter | |
| self.min_size = min_size | |
| self.max_size = max_size | |
| self.respect_boxes = respect_boxes | |
| def __call__(self, img: PIL.Image.Image, target: dict): | |
| init_boxes = len(target["boxes"]) if (target is not None and "boxes" in target) else 0 | |
| max_patience = 10 | |
| for i in range(max_patience): | |
| w = random.randint(self.min_size, min(img.width, self.max_size)) | |
| h = random.randint(self.min_size, min(img.height, self.max_size)) | |
| region = T.RandomCrop.get_params(img, [h, w]) | |
| result_img, result_target = crop(img, target, region) | |
| if target is not None: | |
| if not self.respect_boxes or len(result_target["boxes"]) == init_boxes or i == max_patience - 1: | |
| return result_img, result_target | |
| return result_img, result_target | |
| class CenterCrop(object): | |
| def __init__(self, size): | |
| self.size = size | |
| def __call__(self, img, target): | |
| image_width, image_height = img.size | |
| crop_height, crop_width = self.size | |
| crop_top = int(round((image_height - crop_height) / 2.)) | |
| crop_left = int(round((image_width - crop_width) / 2.)) | |
| return crop(img, target, (crop_top, crop_left, crop_height, crop_width)) | |
| class RandomHorizontalFlip(object): | |
| def __init__(self, p=0.5): | |
| self.p = p | |
| def __call__(self, img, target): | |
| if random.random() < self.p: | |
| return hflip(img, target) | |
| return img, target | |
| class RandomResize(object): | |
| def __init__(self, sizes, max_size=None): | |
| assert isinstance(sizes, (list, tuple)) | |
| self.sizes = sizes | |
| self.max_size = max_size | |
| def __call__(self, img, target=None): | |
| size = random.choice(self.sizes) | |
| return resize(img, target, size, self.max_size) | |
| class RandomPad(object): | |
| def __init__(self, max_pad): | |
| self.max_pad = max_pad | |
| def __call__(self, img, target): | |
| pad_x = random.randint(0, self.max_pad) | |
| pad_y = random.randint(0, self.max_pad) | |
| return pad(img, target, (pad_x, pad_y)) | |
| class RandomSelect(object): | |
| """ | |
| Randomly selects between transforms1 and transforms2, | |
| with probability p for transforms1 and (1 - p) for transforms2 | |
| """ | |
| def __init__(self, transforms1, transforms2, p=0.5): | |
| self.transforms1 = transforms1 | |
| self.transforms2 = transforms2 | |
| self.p = p | |
| def __call__(self, img, target): | |
| if random.random() < self.p: | |
| return self.transforms1(img, target) | |
| return self.transforms2(img, target) | |
| class ToTensor(object): | |
| def __call__(self, img, target): | |
| return F.to_tensor(img), target | |
| class RandomErasing(object): | |
| def __init__(self, *args, **kwargs): | |
| self.eraser = T.RandomErasing(*args, **kwargs) | |
| def __call__(self, img, target): | |
| return self.eraser(img), target | |
| class Normalize(object): | |
| def __init__(self, mean, std): | |
| self.mean = mean | |
| self.std = std | |
| def __call__(self, image, target=None): | |
| image = F.normalize(image, mean=self.mean, std=self.std) | |
| if target is None: | |
| return image, None | |
| target = target.copy() | |
| h, w = image.shape[-2:] | |
| if "boxes" in target: | |
| boxes = target["boxes"] | |
| boxes = box_xyxy_to_cxcywh(boxes) | |
| boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32) | |
| target["boxes"] = boxes | |
| if "area" in target: | |
| area = target["area"] | |
| area = area / (torch.tensor(w, dtype=torch.float32)*torch.tensor(h, dtype=torch.float32)) | |
| target["area"] = area | |
| if "keypoints" in target: | |
| keypoints = target["keypoints"] | |
| V = keypoints[:, :, 2] | |
| V[V == 2] = 1 | |
| Z=keypoints[:, :, :2] | |
| Z = Z.contiguous().view(-1, 2 * V.shape[-1]) | |
| Z = Z / torch.tensor([w, h] * V.shape[-1], dtype=torch.float32) | |
| target["valid_kpt_num"] = V.shape[1] | |
| Z_pad = torch.zeros(Z.shape[0],68 * 2 - Z.shape[1]) | |
| V_pad = torch.zeros(V.shape[0],68 - V.shape[1]) | |
| V=torch.cat([V, V_pad], dim=1) | |
| Z=torch.cat([Z, Z_pad], dim=1) | |
| all_keypoints = torch.cat([Z, V], dim=1) | |
| target["keypoints"] = all_keypoints | |
| return image, target | |
| class Compose(object): | |
| def __init__(self, transforms): | |
| self.transforms = transforms | |
| def __call__(self, image, target): | |
| for t in self.transforms: | |
| image, target = t(image, target) | |
| return image, target | |
| def __repr__(self): | |
| format_string = self.__class__.__name__ + "(" | |
| for t in self.transforms: | |
| format_string += "\n" | |
| format_string += " {0}".format(t) | |
| format_string += "\n)" | |
| return format_string | |