Spaces:
Runtime error
Runtime error
File size: 31,701 Bytes
b65eda7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 |
"""
Pharmaceutical Document Analyzer
Specialized implementation for pharmaceutical and clinical research applications
"""
from typing import Dict, List, Optional, Any, Union
import logging
import re
from datetime import datetime
from .apertus_core import ApertusCore
logger = logging.getLogger(__name__)
class PharmaDocumentAnalyzer:
"""
Pharmaceutical document analyzer for clinical trials, safety reports,
and regulatory compliance using Apertus Swiss AI
Provides specialized analysis for pharmaceutical industry with focus on
safety, efficacy, regulatory compliance, and transparency.
"""
def __init__(self, apertus_core: Optional[ApertusCore] = None):
"""
Initialize pharmaceutical analyzer
Args:
apertus_core: Initialized ApertusCore instance, or None to create new
"""
if apertus_core is None:
self.apertus = ApertusCore()
else:
self.apertus = apertus_core
self.analysis_history = []
# Pharmaceutical-specific system message
self.pharma_system = """You are a pharmaceutical AI specialist with expertise in:
- Clinical trial protocols and results analysis
- Drug safety and pharmacovigilance
- Regulatory compliance (FDA, EMA, Swissmedic)
- Medical literature review and synthesis
- Quality assurance documentation
- Post-market surveillance
Always maintain scientific accuracy, cite specific data points when available,
and note any limitations in your analysis. Follow ICH guidelines and
regulatory standards in your assessments."""
# Analysis templates for different document types
self.analysis_templates = {
"safety": self._get_safety_template(),
"efficacy": self._get_efficacy_template(),
"regulatory": self._get_regulatory_template(),
"pharmacokinetics": self._get_pk_template(),
"adverse_events": self._get_ae_template(),
"drug_interactions": self._get_interaction_template(),
"quality": self._get_quality_template()
}
logger.info("π Pharmaceutical Document Analyzer initialized")
def analyze_clinical_document(
self,
document_text: str,
analysis_type: str = "safety",
document_type: str = "clinical_study",
language: str = "auto"
) -> Dict[str, Any]:
"""
Comprehensive analysis of clinical/pharmaceutical documents
Args:
document_text: Full text of the document to analyze
analysis_type: Type of analysis (safety, efficacy, regulatory, etc.)
document_type: Type of document (clinical_study, protocol, csr, etc.)
language: Language for analysis output
Returns:
Structured analysis results
"""
logger.info(f"π Analyzing {document_type} document ({analysis_type} focus)")
if analysis_type not in self.analysis_templates:
raise ValueError(f"Unsupported analysis type: {analysis_type}")
# Prepare document for analysis
processed_text = self._preprocess_document(document_text)
# Get analysis template
template = self.analysis_templates[analysis_type]
prompt = template.format(
document_text=processed_text,
document_type=document_type
)
# Generate analysis
response = self.apertus.generate_response(
prompt,
max_new_tokens=800,
temperature=0.3, # Lower temperature for factual analysis
system_message=self.pharma_system
)
# Structure the results
analysis_result = {
"analysis_type": analysis_type,
"document_type": document_type,
"timestamp": datetime.now().isoformat(),
"raw_analysis": response,
"structured_findings": self._structure_analysis(response, analysis_type),
"document_stats": self._get_document_stats(processed_text)
}
# Store in history
self.analysis_history.append(analysis_result)
return analysis_result
def extract_adverse_events(
self,
document_text: str,
severity_classification: bool = True
) -> Dict[str, Any]:
"""
Extract and classify adverse events from clinical documents
Args:
document_text: Clinical document text
severity_classification: Whether to classify severity
Returns:
Structured adverse events data
"""
ae_prompt = f"""Extract all adverse events (AEs) from this clinical document.
For each adverse event, provide:
1. EVENT DETAILS:
- Event name/description
- Frequency/incidence if mentioned
- Time to onset if available
- Duration if mentioned
2. SEVERITY ASSESSMENT:
- Grade/severity (1-5 or mild/moderate/severe)
- Serious adverse event (SAE) classification
- Relationship to study drug (related/unrelated/possibly related)
3. PATIENT INFORMATION:
- Demographics if available
- Dose/treatment information
- Outcome (resolved/ongoing/fatal/etc.)
4. REGULATORY CLASSIFICATION:
- Expected vs unexpected
- Reportable events
- Action taken (dose reduction, discontinuation, etc.)
Format as structured list with clear categorization.
Document: {document_text}
ADVERSE EVENTS ANALYSIS:"""
response = self.apertus.generate_response(
ae_prompt,
max_new_tokens=600,
temperature=0.2,
system_message=self.pharma_system
)
# Extract structured data
ae_data = {
"total_aes_mentioned": self._count_ae_mentions(response),
"severity_distribution": self._extract_severity_info(response),
"serious_aes": self._extract_serious_aes(response),
"raw_extraction": response,
"analysis_timestamp": datetime.now().isoformat()
}
return ae_data
def analyze_drug_interactions(
self,
document_text: str,
drug_name: Optional[str] = None
) -> Dict[str, Any]:
"""
Analyze potential drug interactions from clinical or pharmacology documents
Args:
document_text: Document containing interaction information
drug_name: Primary drug name if known
Returns:
Structured interaction analysis
"""
interaction_prompt = f"""Analyze this document for drug interactions and pharmacological considerations.
PRIMARY FOCUS:
{f"Primary drug: {drug_name}" if drug_name else "Identify all drugs mentioned"}
ANALYSIS REQUIREMENTS:
1. DRUG INTERACTIONS IDENTIFIED:
- Drug A + Drug B: [interaction type] - [severity] - [mechanism]
- Clinical significance (major/moderate/minor)
- Onset and duration of interaction
2. PHARMACOKINETIC INTERACTIONS:
- CYP enzyme involvement
- Absorption, distribution, metabolism, excretion effects
- Dose adjustment recommendations
3. PHARMACODYNAMIC INTERACTIONS:
- Additive/synergistic effects
- Antagonistic interactions
- Receptor-level interactions
4. CLINICAL RECOMMENDATIONS:
- Monitoring requirements
- Dose modifications
- Timing considerations
- Contraindications
5. SPECIAL POPULATIONS:
- Elderly patients
- Hepatic/renal impairment
- Pregnancy/lactation considerations
Document: {document_text}
DRUG INTERACTION ANALYSIS:"""
response = self.apertus.generate_response(
interaction_prompt,
max_new_tokens=700,
temperature=0.3,
system_message=self.pharma_system
)
return {
"primary_drug": drug_name,
"interactions_identified": self._count_interactions(response),
"severity_breakdown": self._extract_interaction_severity(response),
"clinical_significance": self._assess_clinical_significance(response),
"recommendations": self._extract_recommendations(response),
"raw_analysis": response,
"timestamp": datetime.now().isoformat()
}
def regulatory_compliance_check(
self,
document_text: str,
regulatory_body: str = "FDA",
document_type: str = "CSR"
) -> Dict[str, Any]:
"""
Check document for regulatory compliance requirements
Args:
document_text: Document to check
regulatory_body: Regulatory authority (FDA, EMA, Swissmedic)
document_type: Type of regulatory document
Returns:
Compliance assessment results
"""
compliance_prompt = f"""Review this {document_type} document for {regulatory_body} compliance.
COMPLIANCE CHECKLIST:
1. REQUIRED DISCLOSURES:
β Safety information completeness
β Proper labeling elements
β Risk-benefit assessment
β Contraindications and warnings
2. DATA INTEGRITY:
β Statistical analysis completeness
β Primary/secondary endpoint reporting
β Missing data handling
β Protocol deviations documentation
3. REGULATORY STANDARDS:
β ICH guidelines adherence
β {regulatory_body} specific requirements
β Good Clinical Practice (GCP) compliance
β Quality by Design principles
4. SUBMISSION READINESS:
β Document structure and format
β Required sections presence
β Cross-references and consistency
β Executive summary quality
5. RISK MANAGEMENT:
β Risk evaluation and mitigation strategies (REMS)
β Post-market surveillance plans
β Safety monitoring adequacy
For each item, provide: COMPLIANT/NON-COMPLIANT/UNCLEAR and specific comments.
Document: {document_text}
REGULATORY COMPLIANCE ASSESSMENT:"""
response = self.apertus.generate_response(
compliance_prompt,
max_new_tokens=800,
temperature=0.2,
system_message=self.pharma_system
)
return {
"regulatory_body": regulatory_body,
"document_type": document_type,
"compliance_score": self._calculate_compliance_score(response),
"critical_issues": self._extract_critical_issues(response),
"recommendations": self._extract_compliance_recommendations(response),
"compliant_items": self._count_compliant_items(response),
"raw_assessment": response,
"timestamp": datetime.now().isoformat()
}
def generate_safety_summary(
self,
documents: List[str],
study_phase: str = "Phase II"
) -> Dict[str, Any]:
"""
Generate comprehensive safety summary from multiple documents
Args:
documents: List of document texts to analyze
study_phase: Clinical study phase
Returns:
Integrated safety summary
"""
logger.info(f"π Generating integrated safety summary for {len(documents)} documents")
# Analyze each document for safety
individual_analyses = []
for i, doc in enumerate(documents):
analysis = self.analyze_clinical_document(
doc,
analysis_type="safety",
document_type=f"document_{i+1}"
)
individual_analyses.append(analysis)
# Create integrated summary
integration_prompt = f"""Create an integrated safety summary for this {study_phase} study
based on the following individual document analyses:
{self._format_analyses_for_integration(individual_analyses)}
INTEGRATED SAFETY SUMMARY REQUIREMENTS:
1. OVERALL SAFETY PROFILE:
- Most common adverse events (β₯5% incidence)
- Serious adverse events summary
- Deaths and life-threatening events
- Discontinuations due to AEs
2. SAFETY BY SYSTEM ORGAN CLASS:
- Cardiovascular events
- Gastrointestinal events
- Neurological events
- Hepatic events
- Other significant findings
3. DOSE-RESPONSE RELATIONSHIPS:
- Dose-dependent AEs if applicable
- Maximum tolerated dose considerations
- Dose modification patterns
4. SPECIAL POPULATIONS:
- Elderly patients (β₯65 years)
- Gender differences
- Comorbidity considerations
5. BENEFIT-RISK ASSESSMENT:
- Risk acceptability for indication
- Comparison to standard of care
- Risk mitigation strategies
6. REGULATORY CONSIDERATIONS:
- Labeling implications
- Post-market surveillance needs
- Risk management plans
INTEGRATED SAFETY SUMMARY:"""
summary_response = self.apertus.generate_response(
integration_prompt,
max_new_tokens=1000,
temperature=0.3,
system_message=self.pharma_system
)
return {
"study_phase": study_phase,
"documents_analyzed": len(documents),
"individual_analyses": individual_analyses,
"integrated_summary": summary_response,
"key_safety_signals": self._extract_safety_signals(summary_response),
"regulatory_recommendations": self._extract_regulatory_recs(summary_response),
"timestamp": datetime.now().isoformat()
}
def _get_safety_template(self) -> str:
"""Safety analysis template"""
return """Analyze this {document_type} document for safety information:
1. ADVERSE EVENTS SUMMARY:
- List all adverse events with frequencies
- Categorize by severity (Grade 1-5 or mild/moderate/severe)
- Identify serious adverse events (SAEs)
- Note any dose-limiting toxicities
2. SAFETY PROFILE ASSESSMENT:
- Most common AEs (β₯5% incidence)
- Comparison to placebo/control if available
- Dose-response relationships
- Time to onset patterns
3. SPECIAL SAFETY CONSIDERATIONS:
- Drug interactions identified
- Contraindications and warnings
- Special population considerations
- Long-term safety implications
4. REGULATORY SAFETY REQUIREMENTS:
- Reportable events identification
- Safety monitoring adequacy
- Risk mitigation strategies
- Post-market surveillance needs
Document: {document_text}
SAFETY ANALYSIS:"""
def _get_efficacy_template(self) -> str:
"""Efficacy analysis template"""
return """Evaluate the efficacy data in this {document_type} document:
1. PRIMARY ENDPOINTS:
- Primary efficacy measures and results
- Statistical significance (p-values, confidence intervals)
- Effect size and clinical relevance
- Response rates and duration
2. SECONDARY ENDPOINTS:
- Secondary measures and outcomes
- Exploratory analyses results
- Biomarker data if available
- Quality of life assessments
3. CLINICAL SIGNIFICANCE:
- Real-world clinical relevance
- Comparison to standard of care
- Number needed to treat (NNT)
- Magnitude of benefit assessment
4. STUDY LIMITATIONS:
- Methodological considerations
- Generalizability assessment
- Missing data impact
- Statistical power considerations
Document: {document_text}
EFFICACY ANALYSIS:"""
def _get_regulatory_template(self) -> str:
"""Regulatory compliance template"""
return """Review this {document_type} document for regulatory compliance:
1. REQUIRED DISCLOSURES:
- Mandatory safety information completeness
- Proper labeling elements inclusion
- Risk-benefit assessment adequacy
- Contraindications documentation
2. DATA INTEGRITY ASSESSMENT:
- Statistical analysis completeness
- Protocol adherence documentation
- Missing data handling
- Quality control measures
3. REGULATORY STANDARDS COMPLIANCE:
- ICH guidelines adherence
- Regulatory body specific requirements
- Good Clinical Practice (GCP) compliance
- Documentation standards
4. SUBMISSION READINESS:
- Document structure adequacy
- Required sections completeness
- Cross-reference consistency
- Executive summary quality
Document: {document_text}
REGULATORY COMPLIANCE REVIEW:"""
def _get_pk_template(self) -> str:
"""Pharmacokinetics template"""
return """Analyze pharmacokinetic data in this {document_type} document:
1. PK PARAMETERS:
- Absorption characteristics (Cmax, Tmax)
- Distribution parameters (Vd)
- Metabolism pathways (CYP enzymes)
- Elimination parameters (half-life, clearance)
2. POPULATION PK ANALYSIS:
- Demographic effects on PK
- Disease state impact
- Drug interaction effects
- Special population considerations
3. PK/PD RELATIONSHIPS:
- Exposure-response relationships
- Dose proportionality
- Time-dependent changes
- Biomarker correlations
4. CLINICAL IMPLICATIONS:
- Dosing recommendations
- Monitoring requirements
- Drug interaction potential
- Special population dosing
Document: {document_text}
PHARMACOKINETIC ANALYSIS:"""
def _get_ae_template(self) -> str:
"""Adverse events template"""
return """Extract and analyze adverse events from this {document_type} document:
1. AE IDENTIFICATION:
- Complete list of adverse events
- Incidence rates and frequencies
- Severity grading (CTCAE or similar)
- Causality assessment
2. SAE ANALYSIS:
- Serious adverse events detailed review
- Outcome assessment
- Regulatory reporting requirements
- Death and life-threatening events
3. AE PATTERNS:
- System organ class distribution
- Dose-response relationships
- Time to onset analysis
- Resolution patterns
4. CLINICAL MANAGEMENT:
- Dose modifications due to AEs
- Discontinuation rates
- Concomitant medication use
- Supportive care requirements
Document: {document_text}
ADVERSE EVENTS ANALYSIS:"""
def _get_interaction_template(self) -> str:
"""Drug interactions template"""
return """Analyze drug interactions in this {document_type} document:
1. INTERACTION IDENTIFICATION:
- Drug pairs with interactions
- Interaction mechanisms
- Clinical significance assessment
- Severity classification
2. PHARMACOKINETIC INTERACTIONS:
- CYP enzyme involvement
- Transporter effects
- Absorption/elimination changes
- Dose adjustment needs
3. PHARMACODYNAMIC INTERACTIONS:
- Receptor-level interactions
- Additive/synergistic effects
- Antagonistic effects
- Safety implications
4. MANAGEMENT STRATEGIES:
- Monitoring recommendations
- Dose modifications
- Timing considerations
- Alternative therapies
Document: {document_text}
DRUG INTERACTION ANALYSIS:"""
def _get_quality_template(self) -> str:
"""Quality assessment template"""
return """Assess the quality aspects in this {document_type} document:
1. STUDY DESIGN QUALITY:
- Methodology appropriateness
- Control group adequacy
- Randomization quality
- Blinding effectiveness
2. DATA QUALITY:
- Completeness assessment
- Missing data patterns
- Protocol deviations
- Data integrity measures
3. STATISTICAL QUALITY:
- Analysis plan appropriateness
- Power calculations
- Multiple testing corrections
- Sensitivity analyses
4. REPORTING QUALITY:
- CONSORT guideline compliance
- Transparency in reporting
- Bias risk assessment
- Generalizability
Document: {document_text}
QUALITY ASSESSMENT:"""
def _preprocess_document(self, text: str) -> str:
"""Preprocess document text for analysis"""
# Limit text length for processing
if len(text) > 4000:
text = text[:4000] + "... [document truncated]"
# Basic cleanup
text = re.sub(r'\s+', ' ', text) # Normalize whitespace
text = text.strip()
return text
def _structure_analysis(self, analysis: str, analysis_type: str) -> Dict[str, Any]:
"""Structure raw analysis into organized components"""
# This is a simplified structuring - in production, you'd use more sophisticated NLP
sections = {}
current_section = "general"
current_content = []
for line in analysis.split('\n'):
line = line.strip()
if not line:
continue
# Check if line is a section header (starts with number or capital letters)
if re.match(r'^\d+\.|\b[A-Z][A-Z\s]+:', line):
# Save previous section
if current_content:
sections[current_section] = '\n'.join(current_content)
# Start new section
current_section = line.lower().replace(':', '').strip()
current_content = []
else:
current_content.append(line)
# Save last section
if current_content:
sections[current_section] = '\n'.join(current_content)
return sections
def _get_document_stats(self, text: str) -> Dict[str, Any]:
"""Get basic document statistics"""
words = text.split()
sentences = text.split('.')
return {
"word_count": len(words),
"sentence_count": len(sentences),
"character_count": len(text),
"avg_sentence_length": len(words) / len(sentences) if sentences else 0
}
def _count_ae_mentions(self, text: str) -> int:
"""Count adverse event mentions in text"""
ae_indicators = ['adverse event', 'side effect', 'toxicity', 'reaction']
count = 0
text_lower = text.lower()
for indicator in ae_indicators:
count += text_lower.count(indicator)
return count
def _extract_severity_info(self, text: str) -> Dict[str, int]:
"""Extract severity distribution from text"""
severity_counts = {
"mild": text.lower().count("mild"),
"moderate": text.lower().count("moderate"),
"severe": text.lower().count("severe"),
"grade_1": text.lower().count("grade 1"),
"grade_2": text.lower().count("grade 2"),
"grade_3": text.lower().count("grade 3"),
"grade_4": text.lower().count("grade 4"),
"grade_5": text.lower().count("grade 5")
}
return {k: v for k, v in severity_counts.items() if v > 0}
def _extract_serious_aes(self, text: str) -> List[str]:
"""Extract serious adverse events from text"""
# This is simplified - in production, use NER or more sophisticated extraction
serious_indicators = ['serious adverse event', 'sae', 'life-threatening', 'fatal', 'death']
found_saes = []
for indicator in serious_indicators:
if indicator in text.lower():
found_saes.append(indicator)
return found_saes
def _count_interactions(self, text: str) -> int:
"""Count drug interactions mentioned"""
interaction_patterns = [
r'drug.*interaction', r'interaction.*between',
r'combined.*with', r'concomitant.*use'
]
count = 0
for pattern in interaction_patterns:
count += len(re.findall(pattern, text.lower()))
return count
def _extract_interaction_severity(self, text: str) -> Dict[str, int]:
"""Extract interaction severity information"""
return {
"major": text.lower().count("major interaction"),
"moderate": text.lower().count("moderate interaction"),
"minor": text.lower().count("minor interaction")
}
def _assess_clinical_significance(self, text: str) -> str:
"""Assess clinical significance from text"""
if "clinically significant" in text.lower():
return "high"
elif "moderate significance" in text.lower():
return "moderate"
elif "minor significance" in text.lower():
return "low"
else:
return "unclear"
def _extract_recommendations(self, text: str) -> List[str]:
"""Extract recommendations from analysis"""
# Simplified extraction
recommendations = []
lines = text.split('\n')
for line in lines:
if any(word in line.lower() for word in ['recommend', 'suggest', 'should', 'monitor']):
recommendations.append(line.strip())
return recommendations
def _calculate_compliance_score(self, text: str) -> float:
"""Calculate compliance score from assessment"""
compliant = text.lower().count("compliant")
non_compliant = text.lower().count("non-compliant")
total = compliant + non_compliant
if total == 0:
return 0.0
return (compliant / total) * 100
def _extract_critical_issues(self, text: str) -> List[str]:
"""Extract critical compliance issues"""
critical_indicators = ['critical', 'non-compliant', 'missing', 'inadequate', 'deficient']
issues = []
lines = text.split('\n')
for line in lines:
if any(indicator in line.lower() for indicator in critical_indicators):
issues.append(line.strip())
return issues
def _extract_compliance_recommendations(self, text: str) -> List[str]:
"""Extract compliance recommendations"""
return self._extract_recommendations(text) # Reuse recommendation extraction
def _count_compliant_items(self, text: str) -> Dict[str, int]:
"""Count compliant vs non-compliant items"""
return {
"compliant": text.lower().count("β") + text.lower().count("compliant"),
"non_compliant": text.lower().count("β") + text.lower().count("non-compliant"),
"unclear": text.lower().count("unclear")
}
def _format_analyses_for_integration(self, analyses: List[Dict]) -> str:
"""Format individual analyses for integration"""
formatted = ""
for i, analysis in enumerate(analyses, 1):
formatted += f"\n--- Document {i} Analysis ---\n"
formatted += analysis['raw_analysis'][:500] + "...\n" # Truncate for length
return formatted
def _extract_safety_signals(self, text: str) -> List[str]:
"""Extract key safety signals from summary"""
# Simplified extraction
signals = []
lines = text.split('\n')
for line in lines:
if any(word in line.lower() for word in ['signal', 'concern', 'warning', 'caution']):
signals.append(line.strip())
return signals
def _extract_regulatory_recs(self, text: str) -> List[str]:
"""Extract regulatory recommendations"""
return self._extract_recommendations(text)
def get_analysis_history(self) -> List[Dict[str, Any]]:
"""Get history of all analyses performed"""
return self.analysis_history
def clear_history(self):
"""Clear analysis history"""
self.analysis_history = []
logger.info("Analysis history cleared")
def export_analysis_report(self, analysis_id: Optional[int] = None) -> str:
"""
Export analysis report in formatted text
Args:
analysis_id: Specific analysis to export (None for latest)
Returns:
Formatted analysis report
"""
if not self.analysis_history:
return "No analysis history available."
if analysis_id is None:
analysis = self.analysis_history[-1]
else:
if analysis_id >= len(self.analysis_history):
return f"Analysis ID {analysis_id} not found."
analysis = self.analysis_history[analysis_id]
report = f"""
π PHARMACEUTICAL ANALYSIS REPORT
===============================
Analysis Type: {analysis['analysis_type'].upper()}
Document Type: {analysis['document_type']}
Timestamp: {analysis['timestamp']}
DOCUMENT STATISTICS:
- Word Count: {analysis['document_stats']['word_count']}
- Sentence Count: {analysis['document_stats']['sentence_count']}
- Average Sentence Length: {analysis['document_stats']['avg_sentence_length']:.1f} words
ANALYSIS RESULTS:
{analysis['raw_analysis']}
STRUCTURED FINDINGS:
"""
for section, content in analysis['structured_findings'].items():
report += f"\n{section.upper()}:\n{content}\n"
report += f"\n{'='*50}\nReport generated by Apertus Swiss AI Pharmaceutical Analyzer\n"
return report
def __repr__(self):
"""String representation of the analyzer"""
return f"PharmaDocumentAnalyzer(analyses_performed={len(self.analysis_history)})"
|