Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,241 Bytes
58fd2d0 453ed2e 58fd2d0 6914f7a 453ed2e 00f6a78 453ed2e 58fd2d0 4984c7e 58fd2d0 be85eb8 58fd2d0 453ed2e 58fd2d0 96e351a c000f9c 96e351a 453ed2e 58fd2d0 00f6a78 58fd2d0 766763f 58fd2d0 766763f 58fd2d0 9ad92f4 00f6a78 453ed2e 00f6a78 58fd2d0 7391723 58fd2d0 7391723 58fd2d0 7391723 58fd2d0 a29e3ba 58fd2d0 453ed2e 58fd2d0 453ed2e 58fd2d0 9ad92f4 58fd2d0 9ad92f4 4984c7e 58fd2d0 4984c7e 58fd2d0 4984c7e 86d5e88 58fd2d0 b31f6c0 49ad6a5 58fd2d0 18274c1 453ed2e 811e3ea 453ed2e 01e1199 58fd2d0 4984c7e 453ed2e 58fd2d0 c000f9c 453ed2e b31f6c0 a29e3ba 58fd2d0 7391723 a29e3ba 58fd2d0 a29e3ba 453ed2e 4984c7e 9ad92f4 453ed2e 4984c7e 58fd2d0 4984c7e 58fd2d0 4984c7e 58fd2d0 4984c7e 58fd2d0 4984c7e 58fd2d0 4984c7e 58fd2d0 4984c7e c000f9c 58fd2d0 c000f9c 58fd2d0 c000f9c 49ad6a5 58fd2d0 c000f9c 453ed2e e07df8b 58fd2d0 e07df8b 453ed2e b770306 49ad6a5 58fd2d0 453ed2e 96e351a 4984c7e 58fd2d0 453ed2e 58fd2d0 453ed2e 4984c7e 96e351a dc7aed1 58fd2d0 fc70300 86d5e88 b31f6c0 ad4d288 1a833ba a86f74c 58fd2d0 453ed2e 86d5e88 b31f6c0 ad4d288 453ed2e a86f74c 58fd2d0 18274c1 c000f9c 58fd2d0 453ed2e e266395 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import os
import time
import random
import tempfile
import torch
import gradio as gr
from PIL import Image
import spaces
from gradio import processing_utils, utils
from diffusers import (
AutoencoderKL,
ControlNetModel,
StableDiffusionControlNetPipeline,
StableDiffusionControlNetImg2ImgPipeline,
StableDiffusionLatentUpscalePipeline,
DPMSolverMultistepScheduler,
EulerDiscreteScheduler,
)
from share_btn import community_icon_html, loading_icon_html, share_js
import user_history
from illusion_style import css
# -----------------------------
# Device & dtype (GPU/CPU auto)
# -----------------------------
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
# -----------------------------
# Base / ControlNet models
# -----------------------------
BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
VAE_ID = "stabilityai/sd-vae-ft-mse"
CONTROLNET_ID = "monster-labs/control_v1p_sd15_qrcode_monster"
# -----------------------------
# Load components
# -----------------------------
vae = AutoencoderKL.from_pretrained(VAE_ID, torch_dtype=dtype)
controlnet = ControlNetModel.from_pretrained(CONTROLNET_ID, torch_dtype=dtype)
# โ ๏ธ safety checker & clip feature extractor removed
main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
BASE_MODEL,
controlnet=controlnet,
vae=vae,
safety_checker=None, # <= important
feature_extractor=None, # <= important
torch_dtype=dtype,
)
main_pipe = main_pipe.to(device)
# Img2Img pipe reusing components
image_pipe = StableDiffusionControlNetImg2ImgPipeline(**main_pipe.components)
image_pipe = image_pipe.to(device)
# -----------------------------
# Sampler map
# -----------------------------
SAMPLER_MAP = {
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(
config, use_karras=True, algorithm_type="sde-dpmsolver++"
),
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
}
# -----------------------------
# Helpers
# -----------------------------
def center_crop_resize(img: Image.Image, output_size=(512, 512)):
width, height = img.size
new_dim = min(width, height)
left = (width - new_dim) / 2
top = (height - new_dim) / 2
right = (width + new_dim) / 2
bottom = (height + new_dim) / 2
img = img.crop((left, top, right, bottom))
img = img.resize(output_size)
return img
def common_upscale(samples, width, height, upscale_method, crop=False):
if crop == "center":
old_w = samples.shape[3]
old_h = samples.shape[2]
old_aspect = old_w / old_h
new_aspect = width / height
x = 0
y = 0
if old_aspect > new_aspect:
x = round((old_w - old_w * (new_aspect / old_aspect)) / 2)
elif old_aspect < new_aspect:
y = round((old_h - old_h * (old_aspect / new_aspect)) / 2)
s = samples[:, :, y : old_h - y, x : old_w - x]
else:
s = samples
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
def upscale(samples, upscale_method, scale_by):
width = round(samples["images"].shape[3] * scale_by)
height = round(samples["images"].shape[2] * scale_by)
s = common_upscale(samples["images"], width, height, upscale_method, "disabled")
return s
def check_inputs(prompt: str, control_image: Image.Image):
if control_image is None:
raise gr.Error("Please select or upload an Input Illusion")
if not prompt:
raise gr.Error("Prompt is required")
# -----------------------------
# Inference
# -----------------------------
@spaces.GPU
def inference(
control_image: Image.Image,
prompt: str,
negative_prompt: str,
guidance_scale: float = 8.0,
controlnet_conditioning_scale: float = 1.0,
control_guidance_start: float = 1.0,
control_guidance_end: float = 1.0,
upscaler_strength: float = 0.5,
seed: int = -1,
sampler: str = "DPM++ Karras SDE",
progress = gr.Progress(track_tqdm=True),
profile: gr.OAuthProfile | None = None,
):
start_time = time.time()
control_image_small = center_crop_resize(control_image, (512, 512))
control_image_large = center_crop_resize(control_image, (1024, 1024))
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
my_seed = random.randint(0, 2**32 - 1) if seed == -1 else int(seed)
generator = torch.Generator(device=device).manual_seed(my_seed)
# First pass -> latents
out = main_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=control_image_small,
guidance_scale=float(guidance_scale),
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
generator=generator,
control_guidance_start=float(control_guidance_start),
control_guidance_end=float(control_guidance_end),
num_inference_steps=15,
output_type="latent",
)
# Upscale latents
upscaled_latents = upscale(out, "nearest-exact", 2)
# Second pass -> image
out_image = image_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
control_image=control_image_large,
image=upscaled_latents,
guidance_scale=float(guidance_scale),
generator=generator,
num_inference_steps=20,
strength=float(upscaler_strength),
control_guidance_start=float(control_guidance_start),
control_guidance_end=float(control_guidance_end),
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
)
# Save history
user_history.save_image(
label=prompt,
image=out_image["images"][0],
profile=profile,
metadata={
"prompt": prompt,
"negative_prompt": negative_prompt,
"guidance_scale": guidance_scale,
"controlnet_conditioning_scale": controlnet_conditioning_scale,
"control_guidance_start": control_guidance_start,
"control_guidance_end": control_guidance_end,
"upscaler_strength": upscaler_strength,
"seed": my_seed,
"sampler": sampler,
},
)
return out_image["images"][0], gr.update(visible=True), gr.update(visible=True), my_seed
# -----------------------------
# UI
# -----------------------------
with gr.Blocks() as app:
gr.Markdown(
'''
<div style="text-align: center;">
<h1>Illusion Diffusion HQ ๐</h1>
<p style="font-size:16px;">Generate high-quality illusion artwork with Stable Diffusion + ControlNet</p>
<p>A space by AP with contributions from the community.</p>
<p>This uses <a href="https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster">Monster Labs QR ControlNet</a>.</p>
</div>
'''
)
state_img_input = gr.State()
state_img_output = gr.State()
with gr.Row():
with gr.Column():
control_image = gr.Image(label="Input Illusion", type="pil", elem_id="control_image")
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.8, label="Illusion strength", elem_id="illusion_strength", info="ControlNet conditioning scale")
gr.Examples(
examples=["checkers.png", "checkers_mid.jpg", "pattern.png", "ultra_checkers.png", "spiral.jpeg", "funky.jpeg"],
inputs=control_image
)
prompt = gr.Textbox(label="Prompt", elem_id="prompt", info="Type what you want to generate", placeholder="Medieval village scene with busy streets and a castle in the distance")
negative_prompt = gr.Textbox(label="Negative Prompt", info="What you do NOT want", value="low quality, blurry", elem_id="negative_prompt")
with gr.Accordion(label="Advanced Options", open=False):
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="Euler", label="Sampler")
control_start = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.0, label="Start of ControlNet")
control_end = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="End of ControlNet")
strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Strength of the upscaler")
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=-1, label="Seed", info="-1 = random")
used_seed = gr.Number(label="Last seed used", interactive=False)
run_btn = gr.Button("Run")
with gr.Column():
result_image = gr.Image(label="Illusion Diffusion Output", interactive=False, elem_id="output")
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn")
# Wire up
prompt.submit(
check_inputs,
inputs=[prompt, control_image],
queue=False
).success(
inference,
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
outputs=[result_image, result_image, share_group, used_seed]
)
run_btn.click(
check_inputs,
inputs=[prompt, control_image],
queue=False
).success(
inference,
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
outputs=[result_image, result_image, share_group, used_seed]
)
share_button.click(None, [], [], js=share_js)
with gr.Blocks(css=css) as app_with_history:
with gr.Tab("Demo"):
app.render()
with gr.Tab("Past generations"):
user_history.render()
app_with_history.queue(max_size=20, api_open=False)
if __name__ == "__main__":
app_with_history.launch(max_threads=400) |