verdicto-ml / bias_prediction_engine.py
A-I-C-A's picture
Upload bias_prediction_engine.py
c5e2a8f verified
"""
Bias Detection and Outcome Prediction Engine using InLegalBERT
================================================================
This module provides:
1. Document/Text bias detection (gender, region, caste, etc.)
2. RAG output bias detection (tone, interpretive bias)
3. Systemic/Statistical bias analysis
4. Legal outcome prediction with confidence scores
Model: InLegalBERT (Hugging Face pretrained for Indian legal cases)
"""
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel
from typing import Dict, List, Any, Optional, Union
import re
from collections import Counter
import json
from datetime import datetime
import warnings
warnings.filterwarnings('ignore')
# ============================================================================
# MODEL INITIALIZATION
# ============================================================================
class InLegalBERTEngine:
"""
Main engine for bias detection and outcome prediction using InLegalBERT
"""
def __init__(self, model_name: str = "law-ai/InLegalBERT"):
"""
Initialize the InLegalBERT model and tokenizer
Args:
model_name: HuggingFace model identifier (use your fine-tuned model path)
"""
print(f"Loading InLegalBERT model: {model_name}")
# Load tokenizer and base model for embeddings
# TODO: Replace "law-ai/InLegalBERT" with your fine-tuned model path
# Example: "your-username/inlegalbert-bias-finetuned"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.base_model = AutoModel.from_pretrained(model_name)
# Set device
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.base_model.to(self.device)
self.base_model.eval()
# Bias detection keywords (Indian legal context)
self.bias_keywords = {
'gender': [
'woman', 'women', 'girl', 'female', 'lady', 'wife', 'mother',
'man', 'men', 'boy', 'male', 'husband', 'father', 'manhood', 'womanhood'
],
'caste': [
'scheduled caste', 'sc', 'st', 'scheduled tribe', 'obc', 'backward class',
'dalit', 'brahmin', 'upper caste', 'lower caste', 'caste', 'jati'
],
'religion': [
'hindu', 'muslim', 'christian', 'sikh', 'buddhist', 'jain',
'religious', 'communal', 'minority', 'majority community'
],
'region': [
'north', 'south', 'east', 'west', 'rural', 'urban', 'tribal',
'metropolitan', 'village', 'city', 'state', 'region'
],
'socioeconomic': [
'poor', 'rich', 'wealthy', 'poverty', 'income', 'economically',
'below poverty line', 'bpl', 'weaker section', 'privileged'
],
'age': [
'minor', 'juvenile', 'child', 'elderly', 'senior citizen', 'youth',
'old', 'young', 'aged'
]
}
print(f"Model loaded successfully on {self.device}")
# ========================================================================
# UTILITY FUNCTIONS
# ========================================================================
def get_embeddings(self, text: str) -> torch.Tensor:
"""
Get BERT embeddings for input text
Args:
text: Input text string
Returns:
torch.Tensor: Embedding vector
"""
# Tokenize
inputs = self.tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=512,
padding=True
).to(self.device)
# Get embeddings
with torch.no_grad():
outputs = self.base_model(**inputs)
# Use CLS token embedding (first token)
embeddings = outputs.last_hidden_state[:, 0, :]
return embeddings
def compute_bias_score(self, text: str, bias_type: str) -> float:
"""
Compute bias score for a specific bias type using keyword frequency
and contextual analysis
Args:
text: Input text
bias_type: Type of bias (gender, caste, etc.)
Returns:
float: Bias score between 0 and 1
"""
text_lower = text.lower()
keywords = self.bias_keywords.get(bias_type, [])
# Count keyword occurrences
keyword_count = sum(text_lower.count(keyword) for keyword in keywords)
# Normalize by text length (words)
word_count = len(text.split())
if word_count == 0:
return 0.0
# Calculate frequency-based score
frequency_score = min(keyword_count / word_count * 10, 1.0)
# Get contextual score using embeddings (simplified)
# In production, use a fine-tuned classifier
contextual_score = frequency_score * 0.8 # Simplified
return round(contextual_score, 3)
# ========================================================================
# 1. DOCUMENT/TEXT BIAS DETECTION
# ========================================================================
def detect_document_bias(self, text: str, threshold: float = 0.15) -> Dict[str, Any]:
"""
Detect various biases in legal documents/FIRs/judgments
Args:
text: Legal document text
threshold: Minimum score to flag a bias (default 0.15)
Returns:
Dict containing bias flags and detailed scores
"""
bias_scores = {}
bias_flags = []
# Analyze each bias type
for bias_type in self.bias_keywords.keys():
score = self.compute_bias_score(text, bias_type)
bias_scores[bias_type] = score
if score >= threshold:
bias_flags.append(bias_type)
# Determine severity levels
bias_details = []
for bias_type, score in bias_scores.items():
if score >= threshold:
severity = "high" if score >= 0.4 else "medium" if score >= 0.25 else "low"
bias_details.append({
"type": bias_type,
"severity": severity,
"score": score,
"description": f"{bias_type.capitalize()} bias detected based on keyword analysis and context"
})
return {
"biasFlags_text": bias_flags,
"bias_scores": bias_scores,
"bias_details": bias_details,
"overall_bias_score": round(np.mean(list(bias_scores.values())), 3),
"analysis_timestamp": datetime.now().isoformat()
}
# ========================================================================
# 2. RAG OUTPUT BIAS DETECTION
# ========================================================================
def detect_rag_output_bias(self,
rag_summary: str,
source_documents: List[str]) -> Dict[str, Any]:
"""
Detect bias in AI-generated RAG summaries/reasoning
Args:
rag_summary: AI-generated summary or reasoning
source_documents: Original source documents used for RAG
Returns:
Dict containing RAG-specific bias flags
"""
bias_flags = []
bias_details = []
# Get embeddings
summary_emb = self.get_embeddings(rag_summary)
source_embs = [self.get_embeddings(doc) for doc in source_documents[:5]] # Limit to 5
# 1. TONE BIAS - Check if summary tone differs from sources
if source_embs:
avg_source_emb = torch.mean(torch.stack(source_embs), dim=0)
# Cosine similarity
similarity = torch.nn.functional.cosine_similarity(summary_emb, avg_source_emb)
if similarity < 0.7: # Low similarity indicates tone shift
bias_flags.append("tone_bias")
bias_details.append({
"type": "tone_bias",
"severity": "medium",
"score": round(1 - similarity.item(), 3),
"description": "AI summary tone differs significantly from source documents"
})
# 2. INTERPRETIVE BIAS - Check for subjective language
subjective_words = [
'clearly', 'obviously', 'undoubtedly', 'certainly', 'definitely',
'surely', 'apparently', 'seemingly', 'arguably', 'presumably'
]
summary_lower = rag_summary.lower()
subjective_count = sum(summary_lower.count(word) for word in subjective_words)
if subjective_count > 2:
bias_flags.append("interpretive_bias")
bias_details.append({
"type": "interpretive_bias",
"severity": "medium" if subjective_count > 4 else "low",
"score": round(min(subjective_count / 10, 1.0), 3),
"description": f"Summary contains {subjective_count} subjective/interpretive terms"
})
# 3. SELECTIVITY BIAS - Check if summary over-represents certain aspects
# Count mentions of different legal aspects
aspects = {
'procedural': ['procedure', 'process', 'filing', 'hearing', 'appeal'],
'substantive': ['law', 'statute', 'provision', 'section', 'act'],
'factual': ['fact', 'evidence', 'witness', 'testimony', 'statement']
}
aspect_counts = {k: sum(summary_lower.count(w) for w in v) for k, v in aspects.items()}
max_count = max(aspect_counts.values()) if aspect_counts.values() else 1
if max_count > 5 and any(count < max_count * 0.3 for count in aspect_counts.values()):
bias_flags.append("selectivity_bias")
bias_details.append({
"type": "selectivity_bias",
"severity": "low",
"score": 0.4,
"description": "Summary may over-emphasize certain legal aspects"
})
return {
"biasFlags_output": bias_flags,
"bias_details": bias_details,
"analysis_timestamp": datetime.now().isoformat()
}
# ========================================================================
# 3. SYSTEMIC/STATISTICAL BIAS DETECTION
# ========================================================================
def detect_systemic_bias(self,
historical_cases: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Analyze systemic and statistical biases from historical case data
Args:
historical_cases: List of case dictionaries with keys:
- outcome: str (e.g., "conviction", "acquittal")
- gender: str (optional)
- region: str (optional)
- caste: str (optional)
- case_type: str
- year: int
Returns:
Dict containing systemic bias metrics and dashboard data
"""
if not historical_cases:
return {"error": "No historical cases provided"}
# Initialize analytics
outcome_by_gender = {}
outcome_by_region = {}
outcome_by_caste = {}
outcome_by_year = {}
# Process cases
for case in historical_cases:
outcome = case.get('outcome', 'unknown')
# Gender analysis
if 'gender' in case:
gender = case['gender']
if gender not in outcome_by_gender:
outcome_by_gender[gender] = []
outcome_by_gender[gender].append(outcome)
# Region analysis
if 'region' in case:
region = case['region']
if region not in outcome_by_region:
outcome_by_region[region] = []
outcome_by_region[region].append(outcome)
# Caste analysis
if 'caste' in case:
caste = case['caste']
if caste not in outcome_by_caste:
outcome_by_caste[caste] = []
outcome_by_caste[caste].append(outcome)
# Temporal analysis
if 'year' in case:
year = case['year']
if year not in outcome_by_year:
outcome_by_year[year] = []
outcome_by_year[year].append(outcome)
# Calculate disparity metrics
def calculate_disparity(outcome_dict: Dict) -> Dict:
"""Calculate outcome disparities"""
disparity_data = {}
for category, outcomes in outcome_dict.items():
total = len(outcomes)
if total > 0:
conviction_rate = outcomes.count('conviction') / total
disparity_data[category] = {
'total_cases': total,
'conviction_rate': round(conviction_rate, 3),
'acquittal_rate': round(outcomes.count('acquittal') / total, 3)
}
return disparity_data
gender_disparity = calculate_disparity(outcome_by_gender)
region_disparity = calculate_disparity(outcome_by_region)
caste_disparity = calculate_disparity(outcome_by_caste)
# Detect significant disparities
bias_flags = []
if gender_disparity:
rates = [d['conviction_rate'] for d in gender_disparity.values()]
if max(rates) - min(rates) > 0.15:
bias_flags.append("gender_disparity")
if region_disparity:
rates = [d['conviction_rate'] for d in region_disparity.values()]
if max(rates) - min(rates) > 0.15:
bias_flags.append("regional_disparity")
if caste_disparity:
rates = [d['conviction_rate'] for d in caste_disparity.values()]
if max(rates) - min(rates) > 0.15:
bias_flags.append("caste_disparity")
# Generate dashboard-ready data
dashboard_data = {
"summary_metrics": {
"total_cases_analyzed": len(historical_cases),
"overall_conviction_rate": round(
sum(1 for c in historical_cases if c.get('outcome') == 'conviction') / len(historical_cases),
3
),
"bias_flags_detected": len(bias_flags)
},
"gender_analysis": {
"disparity_data": gender_disparity,
"chart_data": [
{"category": k, "conviction_rate": v['conviction_rate']}
for k, v in gender_disparity.items()
]
},
"regional_analysis": {
"disparity_data": region_disparity,
"chart_data": [
{"category": k, "conviction_rate": v['conviction_rate']}
for k, v in region_disparity.items()
]
},
"caste_analysis": {
"disparity_data": caste_disparity,
"chart_data": [
{"category": k, "conviction_rate": v['conviction_rate']}
for k, v in caste_disparity.items()
]
},
"temporal_trends": {
"by_year": {
year: {
'total': len(outcomes),
'conviction_rate': round(outcomes.count('conviction') / len(outcomes), 3)
}
for year, outcomes in outcome_by_year.items()
}
}
}
return {
"systemic_bias_flags": bias_flags,
"biasDashboardData": dashboard_data,
"analysis_timestamp": datetime.now().isoformat()
}
# ========================================================================
# 4. OUTCOME PREDICTION
# ========================================================================
def predict_outcome(self,
case_text: str,
case_metadata: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
"""
Predict legal case outcome using InLegalBERT embeddings and heuristics
Args:
case_text: Full case text (FIR, facts, arguments, etc.)
case_metadata: Optional metadata (case_type, jurisdiction, etc.)
Returns:
Dict containing prediction, confidence, and justification
"""
# Get text embeddings
embeddings = self.get_embeddings(case_text)
# Keyword-based prediction (simplified - in production use fine-tuned classifier)
conviction_keywords = [
'guilty', 'convicted', 'evidence proves', 'beyond reasonable doubt',
'establish', 'proven', 'corroborated', 'substantiated'
]
acquittal_keywords = [
'not guilty', 'acquitted', 'benefit of doubt', 'insufficient evidence',
'failed to prove', 'contradictory', 'unreliable', 'doubt'
]
text_lower = case_text.lower()
conviction_score = sum(text_lower.count(kw) for kw in conviction_keywords)
acquittal_score = sum(text_lower.count(kw) for kw in acquittal_keywords)
# Calculate prediction
total_score = conviction_score + acquittal_score
if total_score == 0:
# No strong indicators, use neutral prediction
predicted_outcome = "uncertain"
confidence_score = 0.5
justification = "Insufficient textual indicators for confident prediction"
else:
conviction_prob = conviction_score / total_score
if conviction_prob > 0.6:
predicted_outcome = "conviction"
confidence_score = round(conviction_prob, 3)
justification = f"Text analysis shows {conviction_score} conviction indicators vs {acquittal_score} acquittal indicators"
elif conviction_prob < 0.4:
predicted_outcome = "acquittal"
confidence_score = round(1 - conviction_prob, 3)
justification = f"Text analysis shows {acquittal_score} acquittal indicators vs {conviction_score} conviction indicators"
else:
predicted_outcome = "uncertain"
confidence_score = 0.5
justification = "Mixed indicators suggest uncertain outcome"
# Adjust for metadata if provided
if case_metadata:
case_type = case_metadata.get('case_type', '').lower()
# Example adjustments (customize based on domain knowledge)
if 'bail' in case_type:
if predicted_outcome == "conviction":
predicted_outcome = "bail_denied"
justification += "; Bail application context considered"
elif predicted_outcome == "acquittal":
predicted_outcome = "bail_granted"
justification += "; Bail application context considered"
# Confidence level categorization
if confidence_score >= 0.75:
confidence_level = "high"
elif confidence_score >= 0.5:
confidence_level = "medium"
else:
confidence_level = "low"
return {
"predictedOutcome": predicted_outcome,
"confidenceScore": confidence_score,
"confidenceLevel": confidence_level,
"justification": justification,
"embedding_norm": float(torch.norm(embeddings).item()),
"analysis_timestamp": datetime.now().isoformat()
}
# ============================================================================
# API INTERFACE FUNCTIONS
# ============================================================================
# Global model instance (loaded once)
_model_instance = None
def get_model() -> InLegalBERTEngine:
"""Get or create model instance (singleton pattern)"""
global _model_instance
if _model_instance is None:
_model_instance = InLegalBERTEngine()
return _model_instance
def analyze_legal_case(
case_text: str,
rag_summary: Optional[str] = None,
source_documents: Optional[List[str]] = None,
historical_cases: Optional[List[Dict]] = None,
case_metadata: Optional[Dict] = None
) -> Dict[str, Any]:
"""
Main API function for comprehensive legal case analysis
Args:
case_text: Legal document/FIR/judgment text
rag_summary: AI-generated summary (for RAG bias detection)
source_documents: Source docs used for RAG (for RAG bias detection)
historical_cases: Historical case data (for systemic bias analysis)
case_metadata: Case metadata for outcome prediction
Returns:
JSON-serializable dict with all analysis results
"""
model = get_model()
results = {
"status": "success",
"analysis_id": f"analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
"timestamp": datetime.now().isoformat()
}
# 1. Document bias detection
if case_text:
results["document_bias"] = model.detect_document_bias(case_text)
# 2. RAG output bias detection
if rag_summary and source_documents:
results["rag_bias"] = model.detect_rag_output_bias(rag_summary, source_documents)
# 3. Systemic bias analysis
if historical_cases:
results["systemic_bias"] = model.detect_systemic_bias(historical_cases)
# 4. Outcome prediction
if case_text:
results["outcome_prediction"] = model.predict_outcome(case_text, case_metadata)
return results
# ============================================================================
# EXAMPLE USAGE
# ============================================================================
if __name__ == "__main__":
# Example legal case text
sample_case = """
The accused, a 35-year-old woman from rural Maharashtra, was charged under
Section 302 IPC for alleged murder. The prosecution's case relies heavily on
circumstantial evidence. The witness testimonies are contradictory, and the
forensic evidence is inconclusive. The accused belongs to a scheduled caste
community. The defense argues that there is insufficient evidence to establish
guilt beyond reasonable doubt.
"""
# Example RAG summary
sample_rag_summary = """
Clearly, the evidence points toward acquittal. The case obviously lacks
substantial proof of guilt.
"""
# Example historical cases
sample_historical = [
{"outcome": "conviction", "gender": "male", "region": "urban", "year": 2020},
{"outcome": "acquittal", "gender": "female", "region": "rural", "year": 2020},
{"outcome": "conviction", "gender": "male", "region": "urban", "year": 2021},
{"outcome": "conviction", "gender": "female", "region": "urban", "year": 2021},
]
# Run comprehensive analysis
print("Running comprehensive legal analysis...\n")
results = analyze_legal_case(
case_text=sample_case,
rag_summary=sample_rag_summary,
source_documents=[sample_case],
historical_cases=sample_historical,
case_metadata={"case_type": "criminal", "jurisdiction": "Maharashtra"}
)
# Print results
print(json.dumps(results, indent=2))