Spaces:
Runtime error
Runtime error
Duplicate from TensoraCO/Car_parts_damage_detection
Browse filesCo-authored-by: Tensora Consulting <TensoraCO@users.noreply.huggingface.co>
- .gitattributes +34 -0
- 01_NOR_Kratzer_4sp-720x340.jpg +0 -0
- README.md +14 -0
- app.py +213 -0
- damage/model_final.pth +3 -0
- parts/model_final.pth +3 -0
- requirements.txt +4 -0
- scratch/model_final.pth +3 -0
.gitattributes
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
01_NOR_Kratzer_4sp-720x340.jpg
ADDED
|
README.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Car Parts Damage Detection
|
| 3 |
+
emoji: 😻
|
| 4 |
+
colorFrom: gray
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.11.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
duplicated_from: TensoraCO/Car_parts_damage_detection
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
try:
|
| 2 |
+
import detectron2
|
| 3 |
+
except:
|
| 4 |
+
import os
|
| 5 |
+
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
|
| 6 |
+
|
| 7 |
+
from matplotlib.pyplot import axis
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import requests
|
| 10 |
+
import numpy as np
|
| 11 |
+
from torch import nn
|
| 12 |
+
import requests
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
import detectron2
|
| 16 |
+
from detectron2 import model_zoo
|
| 17 |
+
from detectron2.engine import DefaultPredictor
|
| 18 |
+
from detectron2.config import get_cfg
|
| 19 |
+
from detectron2.utils.visualizer import Visualizer
|
| 20 |
+
from detectron2.data import MetadataCatalog
|
| 21 |
+
from detectron2.utils.visualizer import ColorMode
|
| 22 |
+
|
| 23 |
+
damage_model_path = 'damage/model_final.pth'
|
| 24 |
+
scratch_model_path = 'scratch/model_final.pth'
|
| 25 |
+
parts_model_path = 'parts/model_final.pth'
|
| 26 |
+
|
| 27 |
+
if torch.cuda.is_available():
|
| 28 |
+
device = 'cuda'
|
| 29 |
+
else:
|
| 30 |
+
device = 'cpu'
|
| 31 |
+
|
| 32 |
+
cfg_scratches = get_cfg()
|
| 33 |
+
cfg_scratches.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
|
| 34 |
+
cfg_scratches.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.8
|
| 35 |
+
cfg_scratches.MODEL.ROI_HEADS.NUM_CLASSES = 1
|
| 36 |
+
cfg_scratches.MODEL.WEIGHTS = scratch_model_path
|
| 37 |
+
cfg_scratches.MODEL.DEVICE = device
|
| 38 |
+
|
| 39 |
+
predictor_scratches = DefaultPredictor(cfg_scratches)
|
| 40 |
+
|
| 41 |
+
metadata_scratch = MetadataCatalog.get("car_dataset_val")
|
| 42 |
+
metadata_scratch.thing_classes = ["scratch"]
|
| 43 |
+
|
| 44 |
+
cfg_damage = get_cfg()
|
| 45 |
+
cfg_damage.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
|
| 46 |
+
cfg_damage.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7
|
| 47 |
+
cfg_damage.MODEL.ROI_HEADS.NUM_CLASSES = 1
|
| 48 |
+
cfg_damage.MODEL.WEIGHTS = damage_model_path
|
| 49 |
+
cfg_damage.MODEL.DEVICE = device
|
| 50 |
+
|
| 51 |
+
predictor_damage = DefaultPredictor(cfg_damage)
|
| 52 |
+
|
| 53 |
+
metadata_damage = MetadataCatalog.get("car_damage_dataset_val")
|
| 54 |
+
metadata_damage.thing_classes = ["damage"]
|
| 55 |
+
|
| 56 |
+
cfg_parts = get_cfg()
|
| 57 |
+
cfg_parts.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
|
| 58 |
+
cfg_parts.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.75
|
| 59 |
+
cfg_parts.MODEL.ROI_HEADS.NUM_CLASSES = 19
|
| 60 |
+
cfg_parts.MODEL.WEIGHTS = parts_model_path
|
| 61 |
+
cfg_parts.MODEL.DEVICE = device
|
| 62 |
+
|
| 63 |
+
predictor_parts = DefaultPredictor(cfg_parts)
|
| 64 |
+
|
| 65 |
+
metadata_parts = MetadataCatalog.get("car_parts_dataset_val")
|
| 66 |
+
metadata_parts.thing_classes = ['_background_',
|
| 67 |
+
'back_bumper',
|
| 68 |
+
'back_glass',
|
| 69 |
+
'back_left_door',
|
| 70 |
+
'back_left_light',
|
| 71 |
+
'back_right_door',
|
| 72 |
+
'back_right_light',
|
| 73 |
+
'front_bumper',
|
| 74 |
+
'front_glass',
|
| 75 |
+
'front_left_door',
|
| 76 |
+
'front_left_light',
|
| 77 |
+
'front_right_door',
|
| 78 |
+
'front_right_light',
|
| 79 |
+
'hood',
|
| 80 |
+
'left_mirror',
|
| 81 |
+
'right_mirror',
|
| 82 |
+
'tailgate',
|
| 83 |
+
'trunk',
|
| 84 |
+
'wheel']
|
| 85 |
+
|
| 86 |
+
def merge_segment(pred_segm):
|
| 87 |
+
merge_dict = {}
|
| 88 |
+
for i in range(len(pred_segm)):
|
| 89 |
+
merge_dict[i] = []
|
| 90 |
+
for j in range(i+1,len(pred_segm)):
|
| 91 |
+
if torch.sum(pred_segm[i]*pred_segm[j])>0:
|
| 92 |
+
merge_dict[i].append(j)
|
| 93 |
+
|
| 94 |
+
to_delete = []
|
| 95 |
+
for key in merge_dict:
|
| 96 |
+
for element in merge_dict[key]:
|
| 97 |
+
to_delete.append(element)
|
| 98 |
+
|
| 99 |
+
for element in to_delete:
|
| 100 |
+
merge_dict.pop(element,None)
|
| 101 |
+
|
| 102 |
+
empty_delete = []
|
| 103 |
+
for key in merge_dict:
|
| 104 |
+
if merge_dict[key] == []:
|
| 105 |
+
empty_delete.append(key)
|
| 106 |
+
|
| 107 |
+
for element in empty_delete:
|
| 108 |
+
merge_dict.pop(element,None)
|
| 109 |
+
|
| 110 |
+
for key in merge_dict:
|
| 111 |
+
for element in merge_dict[key]:
|
| 112 |
+
pred_segm[key]+=pred_segm[element]
|
| 113 |
+
|
| 114 |
+
except_elem = list(set(to_delete))
|
| 115 |
+
|
| 116 |
+
new_indexes = list(range(len(pred_segm)))
|
| 117 |
+
for elem in except_elem:
|
| 118 |
+
new_indexes.remove(elem)
|
| 119 |
+
|
| 120 |
+
return pred_segm[new_indexes]
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def inference(image):
|
| 124 |
+
img = np.array(image)
|
| 125 |
+
outputs_damage = predictor_damage(img)
|
| 126 |
+
outputs_parts = predictor_parts(img)
|
| 127 |
+
outputs_scratch = predictor_scratches(img)
|
| 128 |
+
out_dict = outputs_damage["instances"].to("cpu").get_fields()
|
| 129 |
+
merged_damage_masks = merge_segment(out_dict['pred_masks'])
|
| 130 |
+
scratch_data = outputs_scratch["instances"].get_fields()
|
| 131 |
+
scratch_masks = scratch_data['pred_masks']
|
| 132 |
+
damage_data = outputs_damage["instances"].get_fields()
|
| 133 |
+
damage_masks = damage_data['pred_masks']
|
| 134 |
+
parts_data = outputs_parts["instances"].get_fields()
|
| 135 |
+
parts_masks = parts_data['pred_masks']
|
| 136 |
+
parts_classes = parts_data['pred_classes']
|
| 137 |
+
new_inst = detectron2.structures.Instances((1024,1024))
|
| 138 |
+
new_inst.set('pred_masks',merge_segment(out_dict['pred_masks']))
|
| 139 |
+
|
| 140 |
+
parts_damage_dict = {}
|
| 141 |
+
parts_list_damages = []
|
| 142 |
+
for part in parts_classes:
|
| 143 |
+
parts_damage_dict[metadata_parts.thing_classes[part]] = []
|
| 144 |
+
for mask in scratch_masks:
|
| 145 |
+
for i in range(len(parts_masks)):
|
| 146 |
+
if torch.sum(parts_masks[i]*mask)>0:
|
| 147 |
+
parts_damage_dict[metadata_parts.thing_classes[parts_classes[i]]].append('scratch')
|
| 148 |
+
parts_list_damages.append(f'{metadata_parts.thing_classes[parts_classes[i]]} has scratch')
|
| 149 |
+
print(f'{metadata_parts.thing_classes[parts_classes[i]]} has scratch')
|
| 150 |
+
for mask in merged_damage_masks:
|
| 151 |
+
for i in range(len(parts_masks)):
|
| 152 |
+
if torch.sum(parts_masks[i]*mask)>0:
|
| 153 |
+
parts_damage_dict[metadata_parts.thing_classes[parts_classes[i]]].append('damage')
|
| 154 |
+
parts_list_damages.append(f'{metadata_parts.thing_classes[parts_classes[i]]} has damage')
|
| 155 |
+
print(f'{metadata_parts.thing_classes[parts_classes[i]]} has damage')
|
| 156 |
+
|
| 157 |
+
v_d = Visualizer(img[:, :, ::-1],
|
| 158 |
+
metadata=metadata_damage,
|
| 159 |
+
scale=0.5,
|
| 160 |
+
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models
|
| 161 |
+
)
|
| 162 |
+
#v_d = Visualizer(img,scale=1.2)
|
| 163 |
+
#print(outputs["instances"].to('cpu'))
|
| 164 |
+
out_d = v_d.draw_instance_predictions(new_inst)
|
| 165 |
+
img1 = out_d.get_image()[:, :, ::-1]
|
| 166 |
+
|
| 167 |
+
v_s = Visualizer(img[:, :, ::-1],
|
| 168 |
+
metadata=metadata_scratch,
|
| 169 |
+
scale=0.5,
|
| 170 |
+
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models
|
| 171 |
+
)
|
| 172 |
+
#v_s = Visualizer(img,scale=1.2)
|
| 173 |
+
out_s = v_s.draw_instance_predictions(outputs_scratch["instances"])
|
| 174 |
+
img2 = out_s.get_image()[:, :, ::-1]
|
| 175 |
+
|
| 176 |
+
v_p = Visualizer(img[:, :, ::-1],
|
| 177 |
+
metadata=metadata_parts,
|
| 178 |
+
scale=0.5,
|
| 179 |
+
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models
|
| 180 |
+
)
|
| 181 |
+
#v_p = Visualizer(img,scale=1.2)
|
| 182 |
+
out_p = v_p.draw_instance_predictions(outputs_parts["instances"])
|
| 183 |
+
img3 = out_p.get_image()[:, :, ::-1]
|
| 184 |
+
|
| 185 |
+
return img1, img2, img3, parts_list_damages
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
with gr.Blocks() as demo:
|
| 189 |
+
with gr.Row():
|
| 190 |
+
with gr.Column():
|
| 191 |
+
gr.Markdown("## Inputs")
|
| 192 |
+
image = gr.Image(type="pil",label="Input")
|
| 193 |
+
submit_button = gr.Button(value="Submit", label="Submit")
|
| 194 |
+
with gr.Column():
|
| 195 |
+
gr.Markdown("## Outputs")
|
| 196 |
+
with gr.Tab('Image of damages'):
|
| 197 |
+
im1 = gr.Image(type='numpy',label='Image of damages')
|
| 198 |
+
with gr.Tab('Image of scratches'):
|
| 199 |
+
im2 = gr.Image(type='numpy',label='Image of scratches')
|
| 200 |
+
with gr.Tab('Image of parts'):
|
| 201 |
+
im3 = gr.Image(type='numpy',label='Image of car parts')
|
| 202 |
+
with gr.Tab('Information about damaged parts'):
|
| 203 |
+
intersections = gr.Textbox(label='Information about type of damages on each part')
|
| 204 |
+
|
| 205 |
+
#actions
|
| 206 |
+
submit_button.click(
|
| 207 |
+
fn=inference,
|
| 208 |
+
inputs = [image],
|
| 209 |
+
outputs = [im1,im2,im3,intersections]
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
if __name__ == "__main__":
|
| 213 |
+
demo.launch()
|
damage/model_final.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:472733264687731b1deb6658d9f6e9fc1338bb457562d5d08f863b9e70e49974
|
| 3 |
+
size 351011827
|
parts/model_final.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f6e4cbbed694033cd36dfd03bb6f78c16e854ecf23834245099b7c468ecee643
|
| 3 |
+
size 351792243
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
opencv-python-headless
|
| 2 |
+
pyyaml==5.1
|
| 3 |
+
torch
|
| 4 |
+
torchvision
|
scratch/model_final.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b2e63f96d8886754b9cda31302c702efb897484620e71b69cfeafffe6061907c
|
| 3 |
+
size 351011827
|