tikim
commited on
Commit
·
645fa57
1
Parent(s):
dea46fb
Add train and test codes
Browse files- test.py +46 -0
- test_eval.ipynb +183 -0
- training.ipynb +261 -0
test.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import(
|
| 2 |
+
EncoderDecoderModel,
|
| 3 |
+
PreTrainedTokenizerFast,
|
| 4 |
+
# XLMRobertaTokenizerFast,
|
| 5 |
+
BertJapaneseTokenizer,
|
| 6 |
+
BertTokenizerFast,
|
| 7 |
+
)
|
| 8 |
+
|
| 9 |
+
import pandas as pd
|
| 10 |
+
csv_test = pd.read_csv('./output/ffac_full.csv')
|
| 11 |
+
# csv_test = pd.read_csv('ffac_test.csv')
|
| 12 |
+
|
| 13 |
+
import csv
|
| 14 |
+
|
| 15 |
+
encoder_model_name = "cl-tohoku/bert-base-japanese-v2"
|
| 16 |
+
decoder_model_name = "skt/kogpt2-base-v2"
|
| 17 |
+
|
| 18 |
+
src_tokenizer = BertJapaneseTokenizer.from_pretrained(encoder_model_name)
|
| 19 |
+
trg_tokenizer = PreTrainedTokenizerFast.from_pretrained(decoder_model_name)
|
| 20 |
+
model = EncoderDecoderModel.from_pretrained("./dump/best_model")
|
| 21 |
+
|
| 22 |
+
def main():
|
| 23 |
+
data_test = []
|
| 24 |
+
data_test_label = []
|
| 25 |
+
data_test_infer = []
|
| 26 |
+
for row in csv_test.itertuples():
|
| 27 |
+
data_test.append(row[1])
|
| 28 |
+
data_test_label.append(row[2])
|
| 29 |
+
|
| 30 |
+
for text in data_test:
|
| 31 |
+
embeddings = src_tokenizer(text, return_attention_mask=False, return_token_type_ids=False, return_tensors='pt')
|
| 32 |
+
embeddings = {k: v for k, v in embeddings.items()}
|
| 33 |
+
output = model.generate(**embeddings)[0, 1:-1]
|
| 34 |
+
result = trg_tokenizer.decode(output.cpu())
|
| 35 |
+
# print(result)
|
| 36 |
+
data_test_infer.append(result)
|
| 37 |
+
|
| 38 |
+
rows = zip(data_test, data_test_infer, data_test_label)
|
| 39 |
+
with open('test_result.csv', 'w') as f:
|
| 40 |
+
writer = csv.writer(f)
|
| 41 |
+
writer.writerow(['text', 'inference', 'answer'])
|
| 42 |
+
for row in rows:
|
| 43 |
+
writer.writerow(row)
|
| 44 |
+
|
| 45 |
+
if __name__ == "__main__":
|
| 46 |
+
main()
|
test_eval.ipynb
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"attachments": {},
|
| 5 |
+
"cell_type": "markdown",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# Inference"
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "code",
|
| 13 |
+
"execution_count": 6,
|
| 14 |
+
"metadata": {},
|
| 15 |
+
"outputs": [],
|
| 16 |
+
"source": [
|
| 17 |
+
"from transformers import(\n",
|
| 18 |
+
" EncoderDecoderModel,\n",
|
| 19 |
+
" PreTrainedTokenizerFast,\n",
|
| 20 |
+
" # XLMRobertaTokenizerFast,\n",
|
| 21 |
+
" BertJapaneseTokenizer,\n",
|
| 22 |
+
" BertTokenizerFast,\n",
|
| 23 |
+
")\n",
|
| 24 |
+
"\n",
|
| 25 |
+
"import torch\n",
|
| 26 |
+
"import csv"
|
| 27 |
+
]
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"cell_type": "code",
|
| 31 |
+
"execution_count": 7,
|
| 32 |
+
"metadata": {},
|
| 33 |
+
"outputs": [
|
| 34 |
+
{
|
| 35 |
+
"name": "stderr",
|
| 36 |
+
"output_type": "stream",
|
| 37 |
+
"text": [
|
| 38 |
+
"The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. \n",
|
| 39 |
+
"The tokenizer class you load from this checkpoint is 'GPT2Tokenizer'. \n",
|
| 40 |
+
"The class this function is called from is 'PreTrainedTokenizerFast'.\n"
|
| 41 |
+
]
|
| 42 |
+
}
|
| 43 |
+
],
|
| 44 |
+
"source": [
|
| 45 |
+
"encoder_model_name = \"cl-tohoku/bert-base-japanese-v2\"\n",
|
| 46 |
+
"decoder_model_name = \"skt/kogpt2-base-v2\"\n",
|
| 47 |
+
"\n",
|
| 48 |
+
"src_tokenizer = BertJapaneseTokenizer.from_pretrained(encoder_model_name)\n",
|
| 49 |
+
"trg_tokenizer = PreTrainedTokenizerFast.from_pretrained(decoder_model_name)\n",
|
| 50 |
+
"model = EncoderDecoderModel.from_pretrained(\"./dump/best_model\")"
|
| 51 |
+
]
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"cell_type": "code",
|
| 55 |
+
"execution_count": 12,
|
| 56 |
+
"metadata": {},
|
| 57 |
+
"outputs": [
|
| 58 |
+
{
|
| 59 |
+
"data": {
|
| 60 |
+
"text/plain": [
|
| 61 |
+
"'길가메시 토벌전'"
|
| 62 |
+
]
|
| 63 |
+
},
|
| 64 |
+
"execution_count": 12,
|
| 65 |
+
"metadata": {},
|
| 66 |
+
"output_type": "execute_result"
|
| 67 |
+
}
|
| 68 |
+
],
|
| 69 |
+
"source": [
|
| 70 |
+
"text = \"ギルガメッシュ討伐戦\"\n",
|
| 71 |
+
"# text = \"ギルガメッシュ討伐戦に行ってきます。一緒に行きましょうか?\"\n",
|
| 72 |
+
"\n",
|
| 73 |
+
"def translate(text_src):\n",
|
| 74 |
+
" embeddings = src_tokenizer(text_src, return_attention_mask=False, return_token_type_ids=False, return_tensors='pt')\n",
|
| 75 |
+
" embeddings = {k: v for k, v in embeddings.items()}\n",
|
| 76 |
+
" output = model.generate(**embeddings)[0, 1:-1]\n",
|
| 77 |
+
" text_trg = trg_tokenizer.decode(output.cpu())\n",
|
| 78 |
+
" return text_trg\n",
|
| 79 |
+
"\n",
|
| 80 |
+
"print(translate(text))"
|
| 81 |
+
]
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"attachments": {},
|
| 85 |
+
"cell_type": "markdown",
|
| 86 |
+
"metadata": {},
|
| 87 |
+
"source": [
|
| 88 |
+
"# Evaluation"
|
| 89 |
+
]
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"cell_type": "code",
|
| 93 |
+
"execution_count": 4,
|
| 94 |
+
"metadata": {},
|
| 95 |
+
"outputs": [],
|
| 96 |
+
"source": [
|
| 97 |
+
"from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction\n",
|
| 98 |
+
"smoothie = SmoothingFunction().method4"
|
| 99 |
+
]
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"cell_type": "code",
|
| 103 |
+
"execution_count": 5,
|
| 104 |
+
"metadata": {},
|
| 105 |
+
"outputs": [
|
| 106 |
+
{
|
| 107 |
+
"name": "stderr",
|
| 108 |
+
"output_type": "stream",
|
| 109 |
+
"text": [
|
| 110 |
+
"Testing: 0%| | 0/267 [00:00<?, ?it/s]/home/tikim/.local/lib/python3.8/site-packages/transformers/generation/utils.py:1288: UserWarning: Using `max_length`'s default (20) to control the generation length. This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we recommend using `max_new_tokens` to control the maximum length of the generation.\n",
|
| 111 |
+
" warnings.warn(\n",
|
| 112 |
+
"Testing: 100%|██████████| 267/267 [01:01<00:00, 4.34it/s]"
|
| 113 |
+
]
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"name": "stdout",
|
| 117 |
+
"output_type": "stream",
|
| 118 |
+
"text": [
|
| 119 |
+
"Bleu score: 0.9619225967540574\n"
|
| 120 |
+
]
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"name": "stderr",
|
| 124 |
+
"output_type": "stream",
|
| 125 |
+
"text": [
|
| 126 |
+
"\n"
|
| 127 |
+
]
|
| 128 |
+
}
|
| 129 |
+
],
|
| 130 |
+
"source": [
|
| 131 |
+
"from tqdm import tqdm\n",
|
| 132 |
+
"from statistics import mean\n",
|
| 133 |
+
"\n",
|
| 134 |
+
"bleu = []\n",
|
| 135 |
+
"f1 = []\n",
|
| 136 |
+
"\n",
|
| 137 |
+
"DATA_ROOT = './output'\n",
|
| 138 |
+
"FILE_JP_KO_TEST = 'ja_ko_test.csv'\n",
|
| 139 |
+
"FILE_FFAC_TEST = 'ffac_test.csv'\n",
|
| 140 |
+
"\n",
|
| 141 |
+
"with torch.no_grad(), open(f'{DATA_ROOT}/{FILE_FFAC_TEST}', 'r') as fd:\n",
|
| 142 |
+
"# with torch.no_grad(), open(f'{DATA_ROOT}/{FILE_JP_KO_TEST}', 'r') as fd:\n",
|
| 143 |
+
" reader = csv.reader(fd)\n",
|
| 144 |
+
" next(reader)\n",
|
| 145 |
+
" datas = [row for row in reader] \n",
|
| 146 |
+
"\n",
|
| 147 |
+
" for data in tqdm(datas, \"Testing\"):\n",
|
| 148 |
+
" input, label = data\n",
|
| 149 |
+
" embeddings = src_tokenizer(input, return_attention_mask=False, return_token_type_ids=False, return_tensors='pt')\n",
|
| 150 |
+
" embeddings = {k: v for k, v in embeddings.items()}\n",
|
| 151 |
+
" with torch.no_grad():\n",
|
| 152 |
+
" output = model.generate(**embeddings)[0, 1:-1]\n",
|
| 153 |
+
" preds = trg_tokenizer.decode(output.cpu())\n",
|
| 154 |
+
"\n",
|
| 155 |
+
" bleu.append(sentence_bleu([label.split()], preds.split(), weights=[1,0,0,0], smoothing_function=smoothie))\n",
|
| 156 |
+
"\n",
|
| 157 |
+
"print(f\"Bleu score: {mean(bleu)}\")"
|
| 158 |
+
]
|
| 159 |
+
}
|
| 160 |
+
],
|
| 161 |
+
"metadata": {
|
| 162 |
+
"kernelspec": {
|
| 163 |
+
"display_name": "Python 3",
|
| 164 |
+
"language": "python",
|
| 165 |
+
"name": "python3"
|
| 166 |
+
},
|
| 167 |
+
"language_info": {
|
| 168 |
+
"codemirror_mode": {
|
| 169 |
+
"name": "ipython",
|
| 170 |
+
"version": 3
|
| 171 |
+
},
|
| 172 |
+
"file_extension": ".py",
|
| 173 |
+
"mimetype": "text/x-python",
|
| 174 |
+
"name": "python",
|
| 175 |
+
"nbconvert_exporter": "python",
|
| 176 |
+
"pygments_lexer": "ipython3",
|
| 177 |
+
"version": "3.8.10"
|
| 178 |
+
},
|
| 179 |
+
"orig_nbformat": 4
|
| 180 |
+
},
|
| 181 |
+
"nbformat": 4,
|
| 182 |
+
"nbformat_minor": 2
|
| 183 |
+
}
|
training.ipynb
ADDED
|
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"attachments": {},
|
| 5 |
+
"cell_type": "markdown",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"The primary codes below are based on [akpe12/JP-KR-ocr-translator-for-travel](https://github.com/akpe12/JP-KR-ocr-translator-for-travel)."
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "markdown",
|
| 13 |
+
"metadata": {
|
| 14 |
+
"id": "TrHlPFqwFAgj"
|
| 15 |
+
},
|
| 16 |
+
"source": [
|
| 17 |
+
"## Import"
|
| 18 |
+
]
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
"cell_type": "code",
|
| 22 |
+
"execution_count": null,
|
| 23 |
+
"metadata": {
|
| 24 |
+
"id": "t-jXeSJKE1WM"
|
| 25 |
+
},
|
| 26 |
+
"outputs": [],
|
| 27 |
+
"source": [
|
| 28 |
+
"\n",
|
| 29 |
+
"from typing import Dict, List\n",
|
| 30 |
+
"import csv\n",
|
| 31 |
+
"import torch\n",
|
| 32 |
+
"from transformers import (\n",
|
| 33 |
+
" EncoderDecoderModel,\n",
|
| 34 |
+
" GPT2Tokenizer as BaseGPT2Tokenizer,\n",
|
| 35 |
+
" PreTrainedTokenizer, BertTokenizerFast,\n",
|
| 36 |
+
" PreTrainedTokenizerFast,\n",
|
| 37 |
+
" DataCollatorForSeq2Seq,\n",
|
| 38 |
+
" Seq2SeqTrainingArguments,\n",
|
| 39 |
+
" AutoTokenizer,\n",
|
| 40 |
+
" XLMRobertaTokenizerFast,\n",
|
| 41 |
+
" BertJapaneseTokenizer,\n",
|
| 42 |
+
" Trainer\n",
|
| 43 |
+
")\n",
|
| 44 |
+
"from torch.utils.data import DataLoader\n",
|
| 45 |
+
"from transformers.models.encoder_decoder.modeling_encoder_decoder import EncoderDecoderModel\n",
|
| 46 |
+
"\n",
|
| 47 |
+
"# encoder_model_name = \"xlm-roberta-base\"\n",
|
| 48 |
+
"encoder_model_name = \"cl-tohoku/bert-base-japanese-v2\"\n",
|
| 49 |
+
"decoder_model_name = \"skt/kogpt2-base-v2\""
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"cell_type": "code",
|
| 54 |
+
"execution_count": null,
|
| 55 |
+
"metadata": {
|
| 56 |
+
"id": "nEW5trBtbykK"
|
| 57 |
+
},
|
| 58 |
+
"outputs": [],
|
| 59 |
+
"source": [
|
| 60 |
+
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
|
| 61 |
+
"# device = torch.device(\"cpu\")\n",
|
| 62 |
+
"device, torch.cuda.device_count()"
|
| 63 |
+
]
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"cell_type": "code",
|
| 67 |
+
"execution_count": null,
|
| 68 |
+
"metadata": {
|
| 69 |
+
"id": "5ic7pUUBFU_v"
|
| 70 |
+
},
|
| 71 |
+
"outputs": [],
|
| 72 |
+
"source": [
|
| 73 |
+
"class GPT2Tokenizer(PreTrainedTokenizerFast):\n",
|
| 74 |
+
" def build_inputs_with_special_tokens(self, token_ids: List[int]) -> List[int]:\n",
|
| 75 |
+
" return token_ids + [self.eos_token_id] \n",
|
| 76 |
+
"\n",
|
| 77 |
+
"src_tokenizer = BertJapaneseTokenizer.from_pretrained(encoder_model_name)\n",
|
| 78 |
+
"trg_tokenizer = GPT2Tokenizer.from_pretrained(decoder_model_name, bos_token='</s>', eos_token='</s>', unk_token='<unk>',\n",
|
| 79 |
+
" pad_token='<pad>', mask_token='<mask>')"
|
| 80 |
+
]
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"cell_type": "markdown",
|
| 84 |
+
"metadata": {
|
| 85 |
+
"id": "DTf4U1fmFQFh"
|
| 86 |
+
},
|
| 87 |
+
"source": [
|
| 88 |
+
"## Data"
|
| 89 |
+
]
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"cell_type": "code",
|
| 93 |
+
"execution_count": null,
|
| 94 |
+
"metadata": {
|
| 95 |
+
"id": "65L4O1c5FLKt"
|
| 96 |
+
},
|
| 97 |
+
"outputs": [],
|
| 98 |
+
"source": [
|
| 99 |
+
"class PairedDataset:\n",
|
| 100 |
+
" def __init__(self, \n",
|
| 101 |
+
" src_tokenizer: PreTrainedTokenizerFast, tgt_tokenizer: PreTrainedTokenizerFast,\n",
|
| 102 |
+
" file_path: str\n",
|
| 103 |
+
" ):\n",
|
| 104 |
+
" self.src_tokenizer = src_tokenizer\n",
|
| 105 |
+
" self.trg_tokenizer = tgt_tokenizer\n",
|
| 106 |
+
" with open(file_path, 'r') as fd:\n",
|
| 107 |
+
" reader = csv.reader(fd)\n",
|
| 108 |
+
" next(reader)\n",
|
| 109 |
+
" self.data = [row for row in reader]\n",
|
| 110 |
+
"\n",
|
| 111 |
+
" def __getitem__(self, index: int) -> Dict[str, torch.Tensor]:\n",
|
| 112 |
+
" src, trg = self.data[index]\n",
|
| 113 |
+
" embeddings = self.src_tokenizer(src, return_attention_mask=False, return_token_type_ids=False)\n",
|
| 114 |
+
" embeddings['labels'] = self.trg_tokenizer.build_inputs_with_special_tokens(self.trg_tokenizer(trg, return_attention_mask=False)['input_ids'])\n",
|
| 115 |
+
"\n",
|
| 116 |
+
" return embeddings\n",
|
| 117 |
+
"\n",
|
| 118 |
+
" def __len__(self):\n",
|
| 119 |
+
" return len(self.data)\n",
|
| 120 |
+
" \n",
|
| 121 |
+
"DATA_ROOT = './output'\n",
|
| 122 |
+
"FILE_FFAC_FULL = 'ffac_full.csv'\n",
|
| 123 |
+
"FILE_FFAC_TEST = 'ffac_test.csv'\n",
|
| 124 |
+
"# FILE_JA_KO_TRAIN = 'ja_ko_train.csv'\n",
|
| 125 |
+
"# FILE_JA_KO_TEST = 'ja_ko_test.csv'\n",
|
| 126 |
+
"\n",
|
| 127 |
+
"train_dataset = PairedDataset(src_tokenizer, trg_tokenizer, f'{DATA_ROOT}/{FILE_FFAC_FULL}')\n",
|
| 128 |
+
"eval_dataset = PairedDataset(src_tokenizer, trg_tokenizer, f'{DATA_ROOT}/{FILE_FFAC_TEST}') \n",
|
| 129 |
+
"# train_dataset = PairedDataset(src_tokenizer, trg_tokenizer, f'{DATA_ROOT}/{FILE_JA_KO_TRAIN}')\n",
|
| 130 |
+
"# eval_dataset = PairedDataset(src_tokenizer, trg_tokenizer, f'{DATA_ROOT}/{FILE_JA_KO_TEST}') "
|
| 131 |
+
]
|
| 132 |
+
},
|
| 133 |
+
{
|
| 134 |
+
"cell_type": "markdown",
|
| 135 |
+
"metadata": {
|
| 136 |
+
"id": "uCBiLouSFiZY"
|
| 137 |
+
},
|
| 138 |
+
"source": [
|
| 139 |
+
"## Model"
|
| 140 |
+
]
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"cell_type": "code",
|
| 144 |
+
"execution_count": null,
|
| 145 |
+
"metadata": {
|
| 146 |
+
"id": "I7uFbFYJFje8"
|
| 147 |
+
},
|
| 148 |
+
"outputs": [],
|
| 149 |
+
"source": [
|
| 150 |
+
"model = EncoderDecoderModel.from_encoder_decoder_pretrained(\n",
|
| 151 |
+
" encoder_model_name,\n",
|
| 152 |
+
" decoder_model_name,\n",
|
| 153 |
+
" pad_token_id=trg_tokenizer.bos_token_id,\n",
|
| 154 |
+
")\n",
|
| 155 |
+
"model.config.decoder_start_token_id = trg_tokenizer.bos_token_id"
|
| 156 |
+
]
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"cell_type": "code",
|
| 160 |
+
"execution_count": null,
|
| 161 |
+
"metadata": {
|
| 162 |
+
"id": "YFq2GyOAUV0W"
|
| 163 |
+
},
|
| 164 |
+
"outputs": [],
|
| 165 |
+
"source": [
|
| 166 |
+
"# for Trainer\n",
|
| 167 |
+
"import wandb\n",
|
| 168 |
+
"\n",
|
| 169 |
+
"collate_fn = DataCollatorForSeq2Seq(src_tokenizer, model)\n",
|
| 170 |
+
"wandb.init(project=\"fftr-poc1\", name='jbert+kogpt2')\n",
|
| 171 |
+
"\n",
|
| 172 |
+
"arguments = Seq2SeqTrainingArguments(\n",
|
| 173 |
+
" output_dir='dump',\n",
|
| 174 |
+
" do_train=True,\n",
|
| 175 |
+
" do_eval=True,\n",
|
| 176 |
+
" evaluation_strategy=\"epoch\",\n",
|
| 177 |
+
" save_strategy=\"epoch\",\n",
|
| 178 |
+
"# num_train_epochs=5,\n",
|
| 179 |
+
" num_train_epochs=25,\n",
|
| 180 |
+
"# per_device_train_batch_size=32,\n",
|
| 181 |
+
" per_device_train_batch_size=64,\n",
|
| 182 |
+
"# per_device_eval_batch_size=32,\n",
|
| 183 |
+
" per_device_eval_batch_size=64,\n",
|
| 184 |
+
" warmup_ratio=0.1,\n",
|
| 185 |
+
" gradient_accumulation_steps=4,\n",
|
| 186 |
+
" save_total_limit=5,\n",
|
| 187 |
+
" dataloader_num_workers=1,\n",
|
| 188 |
+
" fp16=True,\n",
|
| 189 |
+
" load_best_model_at_end=True,\n",
|
| 190 |
+
" report_to='wandb'\n",
|
| 191 |
+
")\n",
|
| 192 |
+
"\n",
|
| 193 |
+
"trainer = Trainer(\n",
|
| 194 |
+
" model,\n",
|
| 195 |
+
" arguments,\n",
|
| 196 |
+
" data_collator=collate_fn,\n",
|
| 197 |
+
" train_dataset=train_dataset,\n",
|
| 198 |
+
" eval_dataset=eval_dataset\n",
|
| 199 |
+
")"
|
| 200 |
+
]
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"cell_type": "markdown",
|
| 204 |
+
"metadata": {
|
| 205 |
+
"id": "pPsjDHO5Vc3y"
|
| 206 |
+
},
|
| 207 |
+
"source": [
|
| 208 |
+
"## Training"
|
| 209 |
+
]
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"cell_type": "code",
|
| 213 |
+
"execution_count": null,
|
| 214 |
+
"metadata": {
|
| 215 |
+
"id": "_T4P4XunmK-C"
|
| 216 |
+
},
|
| 217 |
+
"outputs": [],
|
| 218 |
+
"source": [
|
| 219 |
+
"# model = EncoderDecoderModel.from_encoder_decoder_pretrained(\"xlm-roberta-base\", \"skt/kogpt2-base-v2\")"
|
| 220 |
+
]
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"cell_type": "code",
|
| 224 |
+
"execution_count": null,
|
| 225 |
+
"metadata": {
|
| 226 |
+
"id": "7vTqAgW6Ve3J"
|
| 227 |
+
},
|
| 228 |
+
"outputs": [],
|
| 229 |
+
"source": [
|
| 230 |
+
"trainer.train()\n",
|
| 231 |
+
"\n",
|
| 232 |
+
"model.save_pretrained(\"dump/best_model\")"
|
| 233 |
+
]
|
| 234 |
+
}
|
| 235 |
+
],
|
| 236 |
+
"metadata": {
|
| 237 |
+
"colab": {
|
| 238 |
+
"machine_shape": "hm",
|
| 239 |
+
"provenance": []
|
| 240 |
+
},
|
| 241 |
+
"gpuClass": "premium",
|
| 242 |
+
"kernelspec": {
|
| 243 |
+
"display_name": "Python 3",
|
| 244 |
+
"name": "python3"
|
| 245 |
+
},
|
| 246 |
+
"language_info": {
|
| 247 |
+
"codemirror_mode": {
|
| 248 |
+
"name": "ipython",
|
| 249 |
+
"version": 3
|
| 250 |
+
},
|
| 251 |
+
"file_extension": ".py",
|
| 252 |
+
"mimetype": "text/x-python",
|
| 253 |
+
"name": "python",
|
| 254 |
+
"nbconvert_exporter": "python",
|
| 255 |
+
"pygments_lexer": "ipython3",
|
| 256 |
+
"version": "3.8.10"
|
| 257 |
+
}
|
| 258 |
+
},
|
| 259 |
+
"nbformat": 4,
|
| 260 |
+
"nbformat_minor": 0
|
| 261 |
+
}
|