9 Getting the Ball Rolling: Learning a Dexterous Policy for a Biomimetic Tendon-Driven Hand with Rolling Contact Joints Biomimetic, dexterous robotic hands have the potential to replicate much of the tasks that a human can do, and to achieve status as a general manipulation platform. Recent advances in reinforcement learning (RL) frameworks have achieved remarkable performance in quadrupedal locomotion and dexterous manipulation tasks. Combined with GPU-based highly parallelized simulations capable of simulating thousands of robots in parallel, RL-based controllers have become more scalable and approachable. However, in order to bring RL-trained policies to the real world, we require training frameworks that output policies that can work with physical actuators and sensors as well as a hardware platform that can be manufactured with accessible materials yet is robust enough to run interactive policies. This work introduces the biomimetic tendon-driven Faive Hand and its system architecture, which uses tendon-driven rolling contact joints to achieve a 3D printable, robust high-DoF hand design. We model each element of the hand and integrate it into a GPU simulation environment to train a policy with RL, and achieve zero-shot transfer of a dexterous in-hand sphere rotation skill to the physical robot hand. 7 authors · Aug 4, 2023
- Safe & Accurate at Speed with Tendons: A Robot Arm for Exploring Dynamic Motion Operating robots precisely and at high speeds has been a long-standing goal of robotics research. Balancing these competing demands is key to enabling the seamless collaboration of robots and humans and increasing task performance. However, traditional motor-driven systems often fall short in this balancing act. Due to their rigid and often heavy design exacerbated by positioning the motors into the joints, faster motions of such robots transfer high forces at impact. To enable precise and safe dynamic motions, we introduce a four degree-of-freedom~(DoF) tendon-driven robot arm. Tendons allow placing the actuation at the base to reduce the robot's inertia, which we show significantly reduces peak collision forces compared to conventional robots with motors placed near the joints. Pairing our robot with pneumatic muscles allows generating high forces and highly accelerated motions, while benefiting from impact resilience through passive compliance. Since tendons are subject to additional friction and hence prone to wear and tear, we validate the reliability of our robotic arm on various experiments, including long-term dynamic motions. We also demonstrate its ease of control by quantifying the nonlinearities of the system and the performance on a challenging dynamic table tennis task learned from scratch using reinforcement learning. We open-source the entire hardware design, which can be largely 3D printed, the control software, and a proprioceptive dataset of 25 days of diverse robot motions at webdav.tuebingen.mpg.de/pamy2. 12 authors · Jul 5, 2023
- Programmable Locking Cells (PLC) for Modular Robots with High Stiffness Tunability and Morphological Adaptability Robotic systems operating in unstructured environments require the ability to switch between compliant and rigid states to perform diverse tasks such as adaptive grasping, high-force manipulation, shape holding, and navigation in constrained spaces, among others. However, many existing variable stiffness solutions rely on complex actuation schemes, continuous input power, or monolithic designs, limiting their modularity and scalability. This paper presents the Programmable Locking Cell (PLC)-a modular, tendon-driven unit that achieves discrete stiffness modulation through mechanically interlocked joints actuated by cable tension. Each unit transitions between compliant and firm states via structural engagement, and the assembled system exhibits high stiffness variation-up to 950% per unit-without susceptibility to damage under high payload in the firm state. Multiple PLC units can be assembled into reconfigurable robotic structures with spatially programmable stiffness. We validate the design through two functional prototypes: (1) a variable-stiffness gripper capable of adaptive grasping, firm holding, and in-hand manipulation; and (2) a pipe-traversing robot composed of serial PLC units that achieves shape adaptability and stiffness control in confined environments. These results demonstrate the PLC as a scalable, structure-centric mechanism for programmable stiffness and motion, enabling robotic systems with reconfigurable morphology and task-adaptive interaction. 6 authors · Sep 9
1 Smooth Exploration for Robotic Reinforcement Learning Reinforcement learning (RL) enables robots to learn skills from interactions with the real world. In practice, the unstructured step-based exploration used in Deep RL -- often very successful in simulation -- leads to jerky motion patterns on real robots. Consequences of the resulting shaky behavior are poor exploration, or even damage to the robot. We address these issues by adapting state-dependent exploration (SDE) to current Deep RL algorithms. To enable this adaptation, we propose two extensions to the original SDE, using more general features and re-sampling the noise periodically, which leads to a new exploration method generalized state-dependent exploration (gSDE). We evaluate gSDE both in simulation, on PyBullet continuous control tasks, and directly on three different real robots: a tendon-driven elastic robot, a quadruped and an RC car. The noise sampling interval of gSDE permits to have a compromise between performance and smoothness, which allows training directly on the real robots without loss of performance. The code is available at https://github.com/DLR-RM/stable-baselines3. 3 authors · May 12, 2020 1