Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSymbolic Synthesis of Neural Networks
Neural networks adapt very well to distributed and continuous representations, but struggle to generalize from small amounts of data. Symbolic systems commonly achieve data efficient generalization by exploiting modularity to benefit from local and discrete features of a representation. These features allow symbolic programs to be improved one module at a time and to experience combinatorial growth in the values they can successfully process. However, it is difficult to design a component that can be used to form symbolic abstractions and which is adequately overparametrized to learn arbitrary high-dimensional transformations. I present Graph-based Symbolically Synthesized Neural Networks (G-SSNNs), a class of neural modules that operate on representations modified with synthesized symbolic programs to include a fixed set of local and discrete features. I demonstrate that the choice of injected features within a G-SSNN module modulates the data efficiency and generalization of baseline neural models, creating predictable patterns of both heightened and curtailed generalization. By training G-SSNNs, we also derive information about desirable semantics of symbolic programs without manual engineering. This information is compact and amenable to abstraction, but can also be flexibly recontextualized for other high-dimensional settings. In future work, I will investigate data efficient generalization and the transferability of learned symbolic representations in more complex G-SSNN designs based on more complex classes of symbolic programs. Experimental code and data are available at https://github.com/shlomenu/symbolically_synthesized_networks .
In-situ graph reasoning and knowledge expansion using Graph-PReFLexOR
The pursuit of automated scientific discovery has fueled progress from symbolic logic to modern AI, forging new frontiers in reasoning and pattern recognition. Transformers function as potential systems, where every possible relationship remains latent potentiality until tasks impose constraints, akin to measurement. Yet, refining their sampling requires more than probabilistic selection: solutions must conform to specific structures or rules, ensuring consistency and the invocation of general principles. We present Graph-PReFLexOR (Graph-based Preference-based Recursive Language Modeling for Exploratory Optimization of Reasoning), a framework that combines graph reasoning with symbolic abstraction to dynamically expand domain knowledge. Inspired by reinforcement learning, Graph-PReFLexOR defines reasoning as a structured mapping, where tasks yield knowledge graphs, abstract patterns, and ultimately, final answers. Inspired by category theory, it encodes concepts as nodes and their relationships as edges, supporting hierarchical inference and adaptive learning through isomorphic representations. Demonstrations include hypothesis generation, materials design, and creative reasoning, such as discovering relationships between mythological concepts like 'thin places' with materials science. We propose a 'knowledge garden growth' strategy that integrates insights across domains, promoting interdisciplinary connections. Results with a 3-billion-parameter Graph-PReFLexOR model show superior reasoning depth and adaptability, underscoring the potential for transparent, multidisciplinary AI-driven discovery. It lays the groundwork for general autonomous reasoning solutions.
DreamCoder: Growing generalizable, interpretable knowledge with wake-sleep Bayesian program learning
Expert problem-solving is driven by powerful languages for thinking about problems and their solutions. Acquiring expertise means learning these languages -- systems of concepts, alongside the skills to use them. We present DreamCoder, a system that learns to solve problems by writing programs. It builds expertise by creating programming languages for expressing domain concepts, together with neural networks to guide the search for programs within these languages. A ``wake-sleep'' learning algorithm alternately extends the language with new symbolic abstractions and trains the neural network on imagined and replayed problems. DreamCoder solves both classic inductive programming tasks and creative tasks such as drawing pictures and building scenes. It rediscovers the basics of modern functional programming, vector algebra and classical physics, including Newton's and Coulomb's laws. Concepts are built compositionally from those learned earlier, yielding multi-layered symbolic representations that are interpretable and transferrable to new tasks, while still growing scalably and flexibly with experience.
Enhancing Logical Reasoning in Language Models via Symbolically-Guided Monte Carlo Process Supervision
Large language models (LLMs) have shown strong performance in many reasoning benchmarks. However, recent studies have pointed to memorization, rather than generalization, as one of the leading causes for such performance. LLMs, in fact, are susceptible to content variations, demonstrating a lack of robust planning or symbolic abstractions supporting their reasoning process. To improve reliability, many attempts have been made to combine LLMs with symbolic methods. Nevertheless, existing approaches fail to effectively leverage symbolic representations due to the challenges involved in developing reliable and scalable verification mechanisms. In this paper, we propose to overcome such limitations by synthesizing high-quality symbolic reasoning trajectories with stepwise pseudo-labels at scale via Monte Carlo estimation. A Process Reward Model (PRM) can be efficiently trained based on the synthesized data and then used to select more symbolic trajectories. The trajectories are then employed with Direct Preference Optimization (DPO) and Supervised Fine-Tuning (SFT) to improve logical reasoning and generalization. Our results on benchmarks (i.e., FOLIO and LogicAsker) show the effectiveness of the proposed method with gains on frontier and open-weight models. Moreover, additional experiments on claim verification data reveal that fine-tuning on the generated symbolic reasoning trajectories enhances out-of-domain generalizability, suggesting the potential impact of the proposed method in enhancing planning and logical reasoning.
ROVER: Benchmarking Reciprocal Cross-Modal Reasoning for Omnimodal Generation
Unified multimodal models (UMMs) have emerged as a powerful paradigm for seamlessly unifying text and image understanding and generation. However, prevailing evaluations treat these abilities in isolation, such that tasks with multimodal inputs and outputs are scored primarily through unimodal reasoning, i.e., textual benchmarks emphasize language-based reasoning, while visual benchmarks emphasize reasoning outcomes manifested in the pixels. We introduce ROVER to address this pressing need to test reciprocal cross-modal reasoning, the use of one modality to guide, verify, or refine outputs in the other, an ability central to the vision of unified multimodal intelligence. ROVER is a human-annotated benchmark that explicitly targets reciprocal cross-modal reasoning, which contains 1312 tasks grounded in 1876 images, spanning two complementary settings. Verbally-augmented reasoning for visual generation evaluates whether models can use verbal prompts and reasoning chains to guide faithful image synthesis. Visually-augmented reasoning for verbal generation evaluates whether models can generate intermediate visualizations that strengthen their own reasoning processes for question answering. Experiments on 17 unified models reveal two key findings: (i) Cross-modal reasoning determines visual generation quality, with interleaved models significantly outperforming non-interleaved ones; notably, combining strong unimodal models fails to achieve comparable reasoning. (ii) Models show dissociation between physical and symbolic reasoning: they succeed at interpreting perceptual concepts literally but fail to construct visual abstractions for symbolic tasks, where faulty reasoning harms performance. These results highlight reciprocal cross-modal reasoning as a critical frontier for enabling true omnimodal generation.
Vector Quantized Wasserstein Auto-Encoder
Learning deep discrete latent presentations offers a promise of better symbolic and summarized abstractions that are more useful to subsequent downstream tasks. Inspired by the seminal Vector Quantized Variational Auto-Encoder (VQ-VAE), most of work in learning deep discrete representations has mainly focused on improving the original VQ-VAE form and none of them has studied learning deep discrete representations from the generative viewpoint. In this work, we study learning deep discrete representations from the generative viewpoint. Specifically, we endow discrete distributions over sequences of codewords and learn a deterministic decoder that transports the distribution over the sequences of codewords to the data distribution via minimizing a WS distance between them. We develop further theories to connect it with the clustering viewpoint of WS distance, allowing us to have a better and more controllable clustering solution. Finally, we empirically evaluate our method on several well-known benchmarks, where it achieves better qualitative and quantitative performances than the other VQ-VAE variants in terms of the codebook utilization and image reconstruction/generation.
Goal Space Abstraction in Hierarchical Reinforcement Learning via Set-Based Reachability Analysis
Open-ended learning benefits immensely from the use of symbolic methods for goal representation as they offer ways to structure knowledge for efficient and transferable learning. However, the existing Hierarchical Reinforcement Learning (HRL) approaches relying on symbolic reasoning are often limited as they require a manual goal representation. The challenge in autonomously discovering a symbolic goal representation is that it must preserve critical information, such as the environment dynamics. In this paper, we propose a developmental mechanism for goal discovery via an emergent representation that abstracts (i.e., groups together) sets of environment states that have similar roles in the task. We introduce a Feudal HRL algorithm that concurrently learns both the goal representation and a hierarchical policy. The algorithm uses symbolic reachability analysis for neural networks to approximate the transition relation among sets of states and to refine the goal representation. We evaluate our approach on complex navigation tasks, showing the learned representation is interpretable, transferrable and results in data efficient learning.
Relax: Composable Abstractions for End-to-End Dynamic Machine Learning
Dynamic shape computations have become critical in modern machine learning workloads, especially in emerging large language models. The success of these models has driven demand for deploying them to a diverse set of backend environments. In this paper, we present Relax, a compiler abstraction for optimizing end-to-end dynamic machine learning workloads. Relax introduces first-class symbolic shape annotations to track dynamic shape computations globally across the program. It also introduces a cross-level abstraction that encapsulates computational graphs, loop-level tensor programs, and library calls in a single representation to enable cross-level optimizations. We build an end-to-end compilation framework using the proposed approach to optimize dynamic shape models. Experimental results on large language models show that Relax delivers performance competitive with state-of-the-art hand-optimized systems across platforms and enables deployment of emerging dynamic models to a broader set of environments, including mobile phones, embedded devices, and web browsers.
Generating Symbolic World Models via Test-time Scaling of Large Language Models
Solving complex planning problems requires Large Language Models (LLMs) to explicitly model the state transition to avoid rule violations, comply with constraints, and ensure optimality-a task hindered by the inherent ambiguity of natural language. To overcome such ambiguity, Planning Domain Definition Language (PDDL) is leveraged as a planning abstraction that enables precise and formal state descriptions. With PDDL, we can generate a symbolic world model where classic searching algorithms, such as A*, can be seamlessly applied to find optimal plans. However, directly generating PDDL domains with current LLMs remains an open challenge due to the lack of PDDL training data. To address this challenge, we propose to scale up the test-time computation of LLMs to enhance their PDDL reasoning capabilities, thereby enabling the generation of high-quality PDDL domains. Specifically, we introduce a simple yet effective algorithm, which first employs a Best-of-N sampling approach to improve the quality of the initial solution and then refines the solution in a fine-grained manner with verbalized machine learning. Our method outperforms o1-mini by a considerable margin in the generation of PDDL domain, achieving over 50% success rate on two tasks (i.e., generating PDDL domains from natural language description or PDDL problems). This is done without requiring additional training. By taking advantage of PDDL as state abstraction, our method is able to outperform current state-of-the-art methods on almost all competition-level planning tasks.
Emergent Symbolic Mechanisms Support Abstract Reasoning in Large Language Models
Many recent studies have found evidence for emergent reasoning capabilities in large language models (LLMs), but debate persists concerning the robustness of these capabilities, and the extent to which they depend on structured reasoning mechanisms. To shed light on these issues, we study the internal mechanisms that support abstract reasoning in LLMs. We identify an emergent symbolic architecture that implements abstract reasoning via a series of three computations. In early layers, symbol abstraction heads convert input tokens to abstract variables based on the relations between those tokens. In intermediate layers, symbolic induction heads perform sequence induction over these abstract variables. Finally, in later layers, retrieval heads predict the next token by retrieving the value associated with the predicted abstract variable. These results point toward a resolution of the longstanding debate between symbolic and neural network approaches, suggesting that emergent reasoning in neural networks depends on the emergence of symbolic mechanisms.
CircuitSense: A Hierarchical Circuit System Benchmark Bridging Visual Comprehension and Symbolic Reasoning in Engineering Design Process
Engineering design operates through hierarchical abstraction from system specifications to component implementations, requiring visual understanding coupled with mathematical reasoning at each level. While Multi-modal Large Language Models (MLLMs) excel at natural image tasks, their ability to extract mathematical models from technical diagrams remains unexplored. We present CircuitSense, a comprehensive benchmark evaluating circuit understanding across this hierarchy through 8,006+ problems spanning component-level schematics to system-level block diagrams. Our benchmark uniquely examines the complete engineering workflow: Perception, Analysis, and Design, with a particular emphasis on the critical but underexplored capability of deriving symbolic equations from visual inputs. We introduce a hierarchical synthetic generation pipeline consisting of a grid-based schematic generator and a block diagram generator with auto-derived symbolic equation labels. Comprehensive evaluation of six state-of-the-art MLLMs, including both closed-source and open-source models, reveals fundamental limitations in visual-to-mathematical reasoning. Closed-source models achieve over 85\% accuracy on perception tasks involving component recognition and topology identification, yet their performance on symbolic derivation and analytical reasoning falls below 19\%, exposing a critical gap between visual parsing and symbolic reasoning. Models with stronger symbolic reasoning capabilities consistently achieve higher design task accuracy, confirming the fundamental role of mathematical understanding in circuit synthesis and establishing symbolic reasoning as the key metric for engineering competence.
Neurosymbolic AI -- Why, What, and How
Humans interact with the environment using a combination of perception - transforming sensory inputs from their environment into symbols, and cognition - mapping symbols to knowledge about the environment for supporting abstraction, reasoning by analogy, and long-term planning. Human perception-inspired machine perception, in the context of AI, refers to large-scale pattern recognition from raw data using neural networks trained using self-supervised learning objectives such as next-word prediction or object recognition. On the other hand, machine cognition encompasses more complex computations, such as using knowledge of the environment to guide reasoning, analogy, and long-term planning. Humans can also control and explain their cognitive functions. This seems to require the retention of symbolic mappings from perception outputs to knowledge about their environment. For example, humans can follow and explain the guidelines and safety constraints driving their decision-making in safety-critical applications such as healthcare, criminal justice, and autonomous driving. This article introduces the rapidly emerging paradigm of Neurosymbolic AI combines neural networks and knowledge-guided symbolic approaches to create more capable and flexible AI systems. These systems have immense potential to advance both algorithm-level (e.g., abstraction, analogy, reasoning) and application-level (e.g., explainable and safety-constrained decision-making) capabilities of AI systems.
From Perception to Programs: Regularize, Overparameterize, and Amortize
Toward combining inductive reasoning with perception abilities, we develop techniques for neurosymbolic program synthesis where perceptual input is first parsed by neural nets into a low-dimensional interpretable representation, which is then processed by a synthesized program. We explore several techniques for relaxing the problem and jointly learning all modules end-to-end with gradient descent: multitask learning; amortized inference; overparameterization; and a differentiable strategy for penalizing lengthy programs. Collectedly this toolbox improves the stability of gradient-guided program search, and suggests ways of learning both how to perceive input as discrete abstractions, and how to symbolically process those abstractions as programs.
Interpretability at Scale: Identifying Causal Mechanisms in Alpaca
Obtaining human-interpretable explanations of large, general-purpose language models is an urgent goal for AI safety. However, it is just as important that our interpretability methods are faithful to the causal dynamics underlying model behavior and able to robustly generalize to unseen inputs. Distributed Alignment Search (DAS) is a powerful gradient descent method grounded in a theory of causal abstraction that uncovered perfect alignments between interpretable symbolic algorithms and small deep learning models fine-tuned for specific tasks. In the present paper, we scale DAS significantly by replacing the remaining brute-force search steps with learned parameters -- an approach we call DAS. This enables us to efficiently search for interpretable causal structure in large language models while they follow instructions. We apply DAS to the Alpaca model (7B parameters), which, off the shelf, solves a simple numerical reasoning problem. With DAS, we discover that Alpaca does this by implementing a causal model with two interpretable boolean variables. Furthermore, we find that the alignment of neural representations with these variables is robust to changes in inputs and instructions. These findings mark a first step toward deeply understanding the inner-workings of our largest and most widely deployed language models.
LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and Reasoning
Current high-performance semantic segmentation models are purely data-driven sub-symbolic approaches and blind to the structured nature of the visual world. This is in stark contrast to human cognition which abstracts visual perceptions at multiple levels and conducts symbolic reasoning with such structured abstraction. To fill these fundamental gaps, we devise LOGICSEG, a holistic visual semantic parser that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge. In particular, the semantic concepts of interest are structured as a hierarchy, from which a set of constraints are derived for describing the symbolic relations and formalized as first-order logic rules. After fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training. During inference, logical constraints are packaged into an iterative process and injected into the network in a form of several matrix multiplications, so as to achieve hierarchy-coherent prediction with logic reasoning. These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models. Extensive experiments over four datasets with various segmentation models and backbones verify the effectiveness and generality of LOGICSEG. We believe this study opens a new avenue for visual semantic parsing.
Think Visually, Reason Textually: Vision-Language Synergy in ARC
Abstract reasoning from minimal examples remains a core unsolved problem for frontier foundation models such as GPT-5 and Grok 4. These models still fail to infer structured transformation rules from a handful of examples, which is a key hallmark of human intelligence. The Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI) provides a rigorous testbed for this capability, demanding conceptual rule induction and transfer to novel tasks. Most existing methods treat ARC-AGI as a purely textual reasoning task, overlooking the fact that humans rely heavily on visual abstraction when solving such puzzles. However, our pilot experiments reveal a paradox: naively rendering ARC-AGI grids as images degrades performance due to imprecise rule execution. This leads to our central hypothesis that vision and language possess complementary strengths across distinct reasoning stages: vision supports global pattern abstraction and verification, whereas language specializes in symbolic rule formulation and precise execution. Building on this insight, we introduce two synergistic strategies: (1) Vision-Language Synergy Reasoning (VLSR), which decomposes ARC-AGI into modality-aligned subtasks; and (2) Modality-Switch Self-Correction (MSSC), which leverages vision to verify text-based reasoning for intrinsic error correction. Extensive experiments demonstrate that our approach yields up to a 4.33% improvement over text-only baselines across diverse flagship models and multiple ARC-AGI tasks. Our findings suggest that unifying visual abstraction with linguistic reasoning is a crucial step toward achieving generalizable, human-like intelligence in future foundation models. Source code will be released soon.
Puzzled by Puzzles: When Vision-Language Models Can't Take a Hint
Rebus puzzles, visual riddles that encode language through imagery, spatial arrangement, and symbolic substitution, pose a unique challenge to current vision-language models (VLMs). Unlike traditional image captioning or question answering tasks, rebus solving requires multi-modal abstraction, symbolic reasoning, and a grasp of cultural, phonetic and linguistic puns. In this paper, we investigate the capacity of contemporary VLMs to interpret and solve rebus puzzles by constructing a hand-generated and annotated benchmark of diverse English-language rebus puzzles, ranging from simple pictographic substitutions to spatially-dependent cues ("head" over "heels"). We analyze how different VLMs perform, and our findings reveal that while VLMs exhibit some surprising capabilities in decoding simple visual clues, they struggle significantly with tasks requiring abstract reasoning, lateral thinking, and understanding visual metaphors.
LLMs are Meaning-Typed Code Constructs
Programming with Generative AI (GenAI) models is a type of Neurosymbolic programming and has seen tremendous adoption across many domains. However, leveraging GenAI models in code today can be complex, counter-intuitive and often require specialized frameworks, leading to increased complexity. This is because it is currently unclear as to the right abstractions through which we should marry GenAI models with the nature of traditional programming code constructs. In this paper, we introduce a set of novel abstractions to help bridge the gap between Neuro- and symbolic programming. We introduce Meaning, a new specialized type that represents the underlying semantic value of traditional types (e.g., string). We make the case that GenAI models, LLMs in particular, should be reasoned as a meaning-type wrapped code construct at the language level. We formulate the problem of translation between meaning and traditional types and propose Automatic Meaning-Type Transformation (A-MTT), a runtime feature that abstracts this translation away from the developers by automatically converting between M eaning and types at the interface of LLM invocation. Leveraging this new set of code constructs and OTT, we demonstrate example implementation of neurosymbolic programs that seamlessly utilizes LLMs to solve problems in place of potentially complex traditional programming logic.
LILO: Learning Interpretable Libraries by Compressing and Documenting Code
While large language models (LLMs) now excel at code generation, a key aspect of software development is the art of refactoring: consolidating code into libraries of reusable and readable programs. In this paper, we introduce LILO, a neurosymbolic framework that iteratively synthesizes, compresses, and documents code to build libraries tailored to particular problem domains. LILO combines LLM-guided program synthesis with recent algorithmic advances in automated refactoring from Stitch: a symbolic compression system that efficiently identifies optimal lambda abstractions across large code corpora. To make these abstractions interpretable, we introduce an auto-documentation (AutoDoc) procedure that infers natural language names and docstrings based on contextual examples of usage. In addition to improving human readability, we find that AutoDoc boosts performance by helping LILO's synthesizer to interpret and deploy learned abstractions. We evaluate LILO on three inductive program synthesis benchmarks for string editing, scene reasoning, and graphics composition. Compared to existing neural and symbolic methods - including the state-of-the-art library learning algorithm DreamCoder - LILO solves more complex tasks and learns richer libraries that are grounded in linguistic knowledge.
Benchmarking Abstract and Reasoning Abilities Through A Theoretical Perspective
In this paper, we aim to establish a simple, effective, and theoretically grounded benchmark for rigorously probing abstract reasoning in Large Language Models (LLMs). To achieve this, we first develop a mathematic framework that defines abstract reasoning as the ability to: (i) extract essential patterns independent of surface representations, and (ii) apply consistent rules to these abstract patterns. Based on this framework, we introduce two novel complementary metrics: \(\scoreGamma\) measures basic reasoning accuracy, while \(\scoreDelta\) quantifies a model's reliance on specific symbols rather than underlying patterns - a key indicator of true abstraction versus mere memorization. To implement this measurement, we design a benchmark: systematic symbol remapping in rule-based tasks, which forces models to demonstrate genuine pattern recognition beyond superficial token matching. Extensive LLM evaluations using this benchmark (commercial API models, 7B-70B, multi-agent) reveal:1) critical limitations in non-decimal arithmetic and symbolic reasoning; 2) persistent abstraction gaps despite chain-of-thought prompting; and 3) \(\scoreDelta\)'s effectiveness in robustly measuring memory dependence by quantifying performance degradation under symbol remapping, particularly highlighting operand-specific memorization. These findings underscore that current LLMs, despite domain-specific strengths, still lack robust abstract reasoning, highlighting key areas for future improvement.
Cognitive Castes: Artificial Intelligence, Epistemic Stratification, and the Dissolution of Democratic Discourse
Artificial intelligence functions not as an epistemic leveller, but as an accelerant of cognitive stratification, entrenching and formalising informational castes within liberal-democratic societies. Synthesising formal epistemology, political theory, algorithmic architecture, and economic incentive structures, the argument traces how contemporary AI systems selectively amplify the reasoning capacity of individuals equipped with recursive abstraction, symbolic logic, and adversarial interrogation, whilst simultaneously pacifying the cognitively untrained through engagement-optimised interfaces. Fluency replaces rigour, immediacy displaces reflection, and procedural reasoning is eclipsed by reactive suggestion. The result is a technocratic realignment of power: no longer grounded in material capital alone, but in the capacity to navigate, deconstruct, and manipulate systems of epistemic production. Information ceases to be a commons; it becomes the substrate through which consent is manufactured and autonomy subdued. Deliberative democracy collapses not through censorship, but through the erosion of interpretive agency. The proposed response is not technocratic regulation, nor universal access, but the reconstruction of rational autonomy as a civic mandate, codified in education, protected by epistemic rights, and structurally embedded within open cognitive infrastructure.
Aligning Generalisation Between Humans and Machines
Recent advances in AI -- including generative approaches -- have resulted in technology that can support humans in scientific discovery and decision support but may also disrupt democracies and target individuals. The responsible use of AI increasingly shows the need for human-AI teaming, necessitating effective interaction between humans and machines. A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise. In cognitive science, human generalisation commonly involves abstraction and concept learning. In contrast, AI generalisation encompasses out-of-domain generalisation in machine learning, rule-based reasoning in symbolic AI, and abstraction in neuro-symbolic AI. In this perspective paper, we combine insights from AI and cognitive science to identify key commonalities and differences across three dimensions: notions of generalisation, methods for generalisation, and evaluation of generalisation. We map the different conceptualisations of generalisation in AI and cognitive science along these three dimensions and consider their role in human-AI teaming. This results in interdisciplinary challenges across AI and cognitive science that must be tackled to provide a foundation for effective and cognitively supported alignment in human-AI teaming scenarios.
Quantized GAN for Complex Music Generation from Dance Videos
We present Dance2Music-GAN (D2M-GAN), a novel adversarial multi-modal framework that generates complex musical samples conditioned on dance videos. Our proposed framework takes dance video frames and human body motions as input, and learns to generate music samples that plausibly accompany the corresponding input. Unlike most existing conditional music generation works that generate specific types of mono-instrumental sounds using symbolic audio representations (e.g., MIDI), and that usually rely on pre-defined musical synthesizers, in this work we generate dance music in complex styles (e.g., pop, breaking, etc.) by employing a Vector Quantized (VQ) audio representation, and leverage both its generality and high abstraction capacity of its symbolic and continuous counterparts. By performing an extensive set of experiments on multiple datasets, and following a comprehensive evaluation protocol, we assess the generative qualities of our proposal against alternatives. The attained quantitative results, which measure the music consistency, beats correspondence, and music diversity, demonstrate the effectiveness of our proposed method. Last but not least, we curate a challenging dance-music dataset of in-the-wild TikTok videos, which we use to further demonstrate the efficacy of our approach in real-world applications -- and which we hope to serve as a starting point for relevant future research.
High-performance symbolic-numerics via multiple dispatch
As mathematical computing becomes more democratized in high-level languages, high-performance symbolic-numeric systems are necessary for domain scientists and engineers to get the best performance out of their machine without deep knowledge of code optimization. Naturally, users need different term types either to have different algebraic properties for them, or to use efficient data structures. To this end, we developed Symbolics.jl, an extendable symbolic system which uses dynamic multiple dispatch to change behavior depending on the domain needs. In this work we detail an underlying abstract term interface which allows for speed without sacrificing generality. We show that by formalizing a generic API on actions independent of implementation, we can retroactively add optimized data structures to our system without changing the pre-existing term rewriters. We showcase how this can be used to optimize term construction and give a 113x acceleration on general symbolic transformations. Further, we show that such a generic API allows for complementary term-rewriting implementations. We demonstrate the ability to swap between classical term-rewriting simplifiers and e-graph-based term-rewriting simplifiers. We showcase an e-graph ruleset which minimizes the number of CPU cycles during expression evaluation, and demonstrate how it simplifies a real-world reaction-network simulation to halve the runtime. Additionally, we show a reaction-diffusion partial differential equation solver which is able to be automatically converted into symbolic expressions via multiple dispatch tracing, which is subsequently accelerated and parallelized to give a 157x simulation speedup. Together, this presents Symbolics.jl as a next-generation symbolic-numeric computing environment geared towards modeling and simulation.
Draw Me a Flower: Processing and Grounding Abstraction in Natural Language
Abstraction is a core tenet of human cognition and communication. When composing natural language instructions, humans naturally evoke abstraction to convey complex procedures in an efficient and concise way. Yet, interpreting and grounding abstraction expressed in NL has not yet been systematically studied in NLP, with no accepted benchmarks specifically eliciting abstraction in NL. In this work, we set the foundation for a systematic study of processing and grounding abstraction in NLP. First, we deliver a novel abstraction elicitation method and present Hexagons, a 2D instruction-following game. Using Hexagons we collected over 4k naturally-occurring visually-grounded instructions rich with diverse types of abstractions. From these data, we derive an instruction-to-execution task and assess different types of neural models. Our results show that contemporary models and modeling practices are substantially inferior to human performance, and that models' performance is inversely correlated with the level of abstraction, showing less satisfying performance on higher levels of abstraction. These findings are consistent across models and setups, confirming that abstraction is a challenging phenomenon deserving further attention and study in NLP/AI research.
Finding Alignments Between Interpretable Causal Variables and Distributed Neural Representations
Causal abstraction is a promising theoretical framework for explainable artificial intelligence that defines when an interpretable high-level causal model is a faithful simplification of a low-level deep learning system. However, existing causal abstraction methods have two major limitations: they require a brute-force search over alignments between the high-level model and the low-level one, and they presuppose that variables in the high-level model will align with disjoint sets of neurons in the low-level one. In this paper, we present distributed alignment search (DAS), which overcomes these limitations. In DAS, we find the alignment between high-level and low-level models using gradient descent rather than conducting a brute-force search, and we allow individual neurons to play multiple distinct roles by analyzing representations in non-standard bases-distributed representations. Our experiments show that DAS can discover internal structure that prior approaches miss. Overall, DAS removes previous obstacles to conducting causal abstraction analyses and allows us to find conceptual structure in trained neural nets.
The Non-Linear Representation Dilemma: Is Causal Abstraction Enough for Mechanistic Interpretability?
The concept of causal abstraction got recently popularised to demystify the opaque decision-making processes of machine learning models; in short, a neural network can be abstracted as a higher-level algorithm if there exists a function which allows us to map between them. Notably, most interpretability papers implement these maps as linear functions, motivated by the linear representation hypothesis: the idea that features are encoded linearly in a model's representations. However, this linearity constraint is not required by the definition of causal abstraction. In this work, we critically examine the concept of causal abstraction by considering arbitrarily powerful alignment maps. In particular, we prove that under reasonable assumptions, any neural network can be mapped to any algorithm, rendering this unrestricted notion of causal abstraction trivial and uninformative. We complement these theoretical findings with empirical evidence, demonstrating that it is possible to perfectly map models to algorithms even when these models are incapable of solving the actual task; e.g., on an experiment using randomly initialised language models, our alignment maps reach 100% interchange-intervention accuracy on the indirect object identification task. This raises the non-linear representation dilemma: if we lift the linearity constraint imposed to alignment maps in causal abstraction analyses, we are left with no principled way to balance the inherent trade-off between these maps' complexity and accuracy. Together, these results suggest an answer to our title's question: causal abstraction is not enough for mechanistic interpretability, as it becomes vacuous without assumptions about how models encode information. Studying the connection between this information-encoding assumption and causal abstraction should lead to exciting future work.
Can Large Language Models Understand Symbolic Graphics Programs?
Assessing the capabilities of large language models (LLMs) is often challenging, in part, because it is hard to find tasks to which they have not been exposed during training. We take one step to address this challenge by turning to a new task: focusing on symbolic graphics programs, which are a popular representation for graphics content that procedurally generates visual data. LLMs have shown exciting promise towards program synthesis, but do they understand symbolic graphics programs? Unlike conventional programs, symbolic graphics programs can be translated to graphics content. Here, we characterize an LLM's understanding of symbolic programs in terms of their ability to answer questions related to the graphics content. This task is challenging as the questions are difficult to answer from the symbolic programs alone -- yet, they would be easy to answer from the corresponding graphics content as we verify through a human experiment. To understand symbolic programs, LLMs may need to possess the ability to imagine how the corresponding graphics content would look without directly accessing the rendered visual content. We use this task to evaluate LLMs by creating a large benchmark for the semantic understanding of symbolic graphics programs. This benchmark is built via program-graphics correspondence, hence requiring minimal human efforts. We evaluate current LLMs on our benchmark to elucidate a preliminary assessment of their ability to reason about visual scenes from programs. We find that this task distinguishes existing LLMs and models considered good at reasoning perform better. Lastly, we introduce Symbolic Instruction Tuning (SIT) to improve this ability. Specifically, we query GPT4-o with questions and images generated by symbolic programs. Such data are then used to finetune an LLM. We also find that SIT data can improve the general instruction following ability of LLMs.
RLAD: Training LLMs to Discover Abstractions for Solving Reasoning Problems
Reasoning requires going beyond pattern matching or memorization of solutions to identify and implement "algorithmic procedures" that can be used to deduce answers to hard problems. Doing so requires realizing the most relevant primitives, intermediate results, or shared procedures, and building upon them. While RL post-training on long chains of thought ultimately aims to uncover this kind of algorithmic behavior, most reasoning traces learned by large models fail to consistently capture or reuse procedures, instead drifting into verbose and degenerate exploration. To address more effective reasoning, we introduce reasoning abstractions: concise natural language descriptions of procedural and factual knowledge that guide the model toward learning successful reasoning. We train models to be capable of proposing multiple abstractions given a problem, followed by RL that incentivizes building a solution while using the information provided by these abstractions. This results in a two-player RL training paradigm, abbreviated as RLAD, that jointly trains an abstraction generator and a solution generator. This setup effectively enables structured exploration, decouples learning signals of abstraction proposal and solution generation, and improves generalization to harder problems. We also show that allocating more test-time compute to generating abstractions is more beneficial for performance than generating more solutions at large test budgets, illustrating the role of abstractions in guiding meaningful exploration.
Natural Language Embedded Programs for Hybrid Language Symbolic Reasoning
How can we perform computations over natural language representations to solve tasks that require symbolic and numeric reasoning? We propose natural language embedded programs (NLEP) as a unifying framework for addressing math/symbolic reasoning, natural language understanding, and instruction following tasks. Our approach prompts a language model to generate full Python programs that define functions over data structures which contain natural language representations of structured knowledge. A Python interpreter then executes the generated code and prints the output. Despite using a task-general prompt, we find that this approach can improve upon strong baselines across a range of different tasks including math and symbolic reasoning, text classification, question answering, and instruction following. We further find the generated programs are often interpretable and enable post-hoc verification of the intermediate reasoning steps.
AbsPyramid: Benchmarking the Abstraction Ability of Language Models with a Unified Entailment Graph
Cognitive research indicates that abstraction ability is essential in human intelligence, which remains under-explored in language models. In this paper, we present AbsPyramid, a unified entailment graph of 221K textual descriptions of abstraction knowledge. While existing resources only touch nouns or verbs within simplified events or specific domains, AbsPyramid collects abstract knowledge for three components of diverse events to comprehensively evaluate the abstraction ability of language models in the open domain. Experimental results demonstrate that current LLMs face challenges comprehending abstraction knowledge in zero-shot and few-shot settings. By training on our rich abstraction knowledge, we find LLMs can acquire basic abstraction abilities and generalize to unseen events. In the meantime, we empirically show that our benchmark is comprehensive to enhance LLMs across two previous abstraction tasks.
Visual Theory of Mind Enables the Invention of Writing Systems
Abstract symbolic writing systems are semiotic codes that are ubiquitous in modern society but are otherwise absent in the animal kingdom. Anthropological evidence suggests that the earliest forms of some writing systems originally consisted of iconic pictographs, which signify their referent via visual resemblance. While previous studies have examined the emergence and, separately, the evolution of pictographic writing systems through a computational lens, most employ non-naturalistic methodologies that make it difficult to draw clear analogies to human and animal cognition. We develop a multi-agent reinforcement learning testbed for emergent communication called a Signification Game, and formulate a model of inferential communication that enables agents to leverage visual theory of mind to communicate actions using pictographs. Our model, which is situated within a broader formalism for animal communication, sheds light on the cognitive and cultural processes that led to the development of early writing systems.
ReasonAgain: Using Extractable Symbolic Programs to Evaluate Mathematical Reasoning
Existing math datasets evaluate the reasoning abilities of large language models (LLMs) by either using the final answer or the intermediate reasoning steps derived from static examples. However, the former approach fails to surface model's uses of shortcuts and wrong reasoning while the later poses challenges in accommodating alternative solutions. In this work, we seek to use symbolic programs as a means for automated evaluation if a model can consistently produce correct final answers across various inputs to the program. We begin by extracting programs for popular math datasets (GSM8K and MATH) using GPT4-o. For those executable programs verified using the original input-output pairs, they are found to encapsulate the proper reasoning required to solve the original text questions. We then prompt GPT4-o to generate new questions using alternative input-output pairs based the extracted program. We apply the resulting datasets to evaluate a collection of LLMs. In our experiments, we observe significant accuracy drops using our proposed evaluation compared with original static examples, suggesting the fragility of math reasoning in state-of-the-art LLMs.
A Categorical Framework for Learning Generalised Tree Automata
Automata learning is a popular technique used to automatically construct an automaton model from queries. Much research went into devising ad hoc adaptations of algorithms for different types of automata. The CALF project seeks to unify these using category theory in order to ease correctness proofs and guide the design of new algorithms. In this paper, we extend CALF to cover learning of algebraic structures that may not have a coalgebraic presentation. Furthermore, we provide a detailed algorithmic account of an abstract version of the popular L* algorithm, which was missing from CALF. We instantiate the abstract theory to a large class of Set functors, by which we recover for the first time practical tree automata learning algorithms from an abstract framework and at the same time obtain new algorithms to learn algebras of quotiented polynomial functors.
ASyMOB: Algebraic Symbolic Mathematical Operations Benchmark
Large language models (LLMs) are rapidly approaching the level of proficiency in university-level symbolic mathematics required for applications in advanced science and technology. However, existing benchmarks fall short in assessing the core skills of LLMs in symbolic mathematics-such as integration, differential equations, and algebraic simplification. To address this gap, we introduce ASyMOB, a novel assessment framework focused exclusively on symbolic manipulation, featuring 17,092 unique math challenges, organized by similarity and complexity. ASyMOB enables analysis of LLM generalization capabilities by comparing performance in problems that differ by simple numerical or symbolic `perturbations'. Evaluated LLMs exhibit substantial degradation in performance for all perturbation types (up to -70.3%), suggesting reliance on memorized patterns rather than deeper understanding of symbolic math, even among models achieving high baseline accuracy. Comparing LLM performance to computer algebra systems, we identify examples where they fail while LLMs succeed, as well as problems solved only by combining both approaches. Models capable of integrated code execution yielded higher accuracy compared to their performance without code, particularly stabilizing weaker models (up to +33.1% for certain perturbation types). Notably, the most advanced models (o4-mini, Gemini 2.5 Flash) demonstrate not only high symbolic math proficiency (scoring 96.8% and 97.6% on the unperturbed set), but also remarkable robustness against perturbations, (-21.7% and -21.2% vs. average -50.4% for the other models). This may indicate a recent "phase transition" in the generalization capabilities of frontier LLMs. It remains to be seen whether the path forward lies in deeper integration with sophisticated external tools, or in developing models so capable that symbolic math systems like CAS become unnecessary.
SNIP: Bridging Mathematical Symbolic and Numeric Realms with Unified Pre-training
In an era where symbolic mathematical equations are indispensable for modeling complex natural phenomena, scientific inquiry often involves collecting observations and translating them into mathematical expressions. Recently, deep learning has emerged as a powerful tool for extracting insights from data. However, existing models typically specialize in either numeric or symbolic domains, and are usually trained in a supervised manner tailored to specific tasks. This approach neglects the substantial benefits that could arise from a task-agnostic unified understanding between symbolic equations and their numeric counterparts. To bridge the gap, we introduce SNIP, a Symbolic-Numeric Integrated Pre-training, which employs joint contrastive learning between symbolic and numeric domains, enhancing their mutual similarities in the pre-trained embeddings. By performing latent space analysis, we observe that SNIP provides cross-domain insights into the representations, revealing that symbolic supervision enhances the embeddings of numeric data and vice versa. We evaluate SNIP across diverse tasks, including symbolic-to-numeric mathematical property prediction and numeric-to-symbolic equation discovery, commonly known as symbolic regression. Results show that SNIP effectively transfers to various tasks, consistently outperforming fully supervised baselines and competing strongly with established task-specific methods, especially in few-shot learning scenarios where available data is limited.
Code Prompting: a Neural Symbolic Method for Complex Reasoning in Large Language Models
Large language models (LLMs) have scaled up to unlock a wide range of complex reasoning tasks with the aid of various prompting methods. However, current prompting methods generate natural language intermediate steps to help reasoning, which can cause imperfect task reduction and confusion. To mitigate such limitations, we explore code prompting, a neural symbolic prompting method with both zero-shot and few-shot versions which triggers code as intermediate steps. We conduct experiments on 7 widely-used benchmarks involving symbolic reasoning and arithmetic reasoning. Code prompting generally outperforms chain-of-thought (CoT) prompting. To further understand the performance and limitations of code prompting, we perform extensive ablation studies and error analyses, and identify several exclusive advantages of using symbolic promptings compared to natural language. We also consider the ensemble of code prompting and CoT prompting to combine the strengths of both. Finally, we show through experiments how code annotations and their locations affect code prompting.
The Road to Generalizable Neuro-Symbolic Learning Should be Paved with Foundation Models
Neuro-symbolic learning was proposed to address challenges with training neural networks for complex reasoning tasks with the added benefits of interpretability, reliability, and efficiency. Neuro-symbolic learning methods traditionally train neural models in conjunction with symbolic programs, but they face significant challenges that limit them to simplistic problems. On the other hand, purely-neural foundation models now reach state-of-the-art performance through prompting rather than training, but they are often unreliable and lack interpretability. Supplementing foundation models with symbolic programs, which we call neuro-symbolic prompting, provides a way to use these models for complex reasoning tasks. Doing so raises the question: What role does specialized model training as part of neuro-symbolic learning have in the age of foundation models? To explore this question, we highlight three pitfalls of traditional neuro-symbolic learning with respect to the compute, data, and programs leading to generalization problems. This position paper argues that foundation models enable generalizable neuro-symbolic solutions, offering a path towards achieving the original goals of neuro-symbolic learning without the downsides of training from scratch.
Tokenization Constraints in LLMs: A Study of Symbolic and Arithmetic Reasoning Limits
Tokenization is the first - and often underappreciated - layer of computation in language models. While Chain-of-Thought (CoT) prompting enables transformer models to approximate recurrent computation by externalizing intermediate steps, we show that the success of such reasoning is fundamentally bounded by the structure of tokenized inputs. This work presents a theoretical and empirical investigation into how tokenization schemes, particularly subword-based methods like byte-pair encoding (BPE), impede symbolic computation by merging or obscuring atomic reasoning units. We introduce the notion of Token Awareness to formalize how poor token granularity disrupts logical alignment and prevents models from generalizing symbolic procedures. Through systematic evaluation on arithmetic and symbolic tasks, we demonstrate that token structure dramatically affect reasoning performance, causing failure even with CoT, while atomically-aligned formats unlock strong generalization, allowing small models (e.g., GPT-4o-mini) to outperform larger systems (e.g., o1) in structured reasoning. Our findings reveal that symbolic reasoning ability in LLMs is not purely architectural, but deeply conditioned on token-level representations.
Poincaré Embeddings for Learning Hierarchical Representations
Representation learning has become an invaluable approach for learning from symbolic data such as text and graphs. However, while complex symbolic datasets often exhibit a latent hierarchical structure, state-of-the-art methods typically learn embeddings in Euclidean vector spaces, which do not account for this property. For this purpose, we introduce a new approach for learning hierarchical representations of symbolic data by embedding them into hyperbolic space -- or more precisely into an n-dimensional Poincar\'e ball. Due to the underlying hyperbolic geometry, this allows us to learn parsimonious representations of symbolic data by simultaneously capturing hierarchy and similarity. We introduce an efficient algorithm to learn the embeddings based on Riemannian optimization and show experimentally that Poincar\'e embeddings outperform Euclidean embeddings significantly on data with latent hierarchies, both in terms of representation capacity and in terms of generalization ability.
Executable Functional Abstractions: Inferring Generative Programs for Advanced Math Problems
Scientists often infer abstract procedures from specific instances of problems and use the abstractions to generate new, related instances. For example, programs encoding the formal rules and properties of a system have been useful in fields ranging from RL (procedural environments) to physics (simulation engines). These programs can be seen as functions which execute to different outputs based on their parameterizations (e.g., gridworld configuration or initial physical conditions). We introduce the term EFA (Executable Functional Abstraction) to denote such programs for math problems. EFA-like constructs have been shown to be useful for math reasoning as problem generators for stress-testing models. However, prior work has been limited to abstractions for grade-school math (whose simple rules are easy to encode in programs), while generating EFAs for advanced math has thus far required human engineering. We explore the automatic construction of EFAs for advanced math problems. We operationalize the task of automatically constructing EFAs as a program synthesis task, and develop EFAGen, which conditions an LLM on a seed math problem and its step-by-step solution to generate candidate EFA programs that are faithful to the generalized problem and solution class underlying the seed problem. Furthermore, we formalize properties any valid EFA must possess in terms of executable unit tests, and show how the tests can be used as verifiable rewards to train LLMs to become better writers of EFAs. We demonstrate that EFAs constructed by EFAGen behave rationally by remaining faithful to seed problems, produce learnable problem variations, and that EFAGen can infer EFAs across multiple diverse sources of competition-level math problems. Finally, we show downstream uses of model-written EFAs e.g. finding problem variations that are harder or easier for a learner to solve, as well as data generation.
CoEvo: Continual Evolution of Symbolic Solutions Using Large Language Models
Large Language Models (LLMs) have emerged as transformative tools in artificial intelligence, capable of processing and understanding extensive human knowledge to enhance problem-solving across various domains. This paper explores the potential of LLMs to drive the discovery of symbolic solutions within scientific and engineering disciplines, where such solutions are crucial for advancing theoretical and practical applications. We propose a novel framework that utilizes LLMs in an evolutionary search methodology, augmented by a dynamic knowledge library that integrates and refines insights in an open-ended manner. This approach aims to tackle the dual challenges of efficiently navigating complex symbolic representation spaces and leveraging both existing and newly generated knowledge to foster open-ended innovation. By enabling LLMs to interact with and expand upon a knowledge library, we facilitate the continuous generation of novel solutions in diverse forms such as language, code, and mathematical expressions. Our experimental results demonstrate that this method not only enhances the efficiency of searching for symbolic solutions but also supports the ongoing discovery process, akin to human scientific endeavors. This study represents a first effort in conceptualizing the search for symbolic solutions as a lifelong, iterative process, marking a significant step towards harnessing AI in the perpetual pursuit of scientific and engineering breakthroughs. We have open-sourced our code and data, please visit https://github.com/pgg3/CoEvo for more information.
SKIntern: Internalizing Symbolic Knowledge for Distilling Better CoT Capabilities into Small Language Models
Small Language Models (SLMs) are attracting attention due to the high computational demands and privacy concerns of Large Language Models (LLMs). Some studies fine-tune SLMs using Chains of Thought (CoT) data distilled from LLMs, aiming to enhance their reasoning ability. Furthermore, Some CoT distillation methods introduce external symbolic knowledge into the generation process to improve the limited knowledge memory, reasoning ability and out-of-domain (OOD) generalization of SLMs. However, the introduction of symbolic knowledge increases computational overhead and introduces potential noise. In this paper, we introduce SKIntern, an innovative approach that empowers SLMs to internalize symbolic knowledge and few-shot examples gradually through a progressive fine-tuning process, guided by a predefined linear decay schedule under curriculum learning. By efficiently internalizing knowledge, SKIntern reduces computational overhead and speeds up the reasoning process by focusing solely on the question during inference. It outperforms state-of-the-art baselines by over 5\%, while reducing inference costs (measured in FLOPs) by up to 4times across a wide range of SLMs in both in-domain (ID) and out-of-domain (OOD) tasks. Our code will be available at https://github.com/Xnhyacinth/SKIntern.
Neural-Symbolic Recursive Machine for Systematic Generalization
Despite the tremendous success, existing machine learning models still fall short of human-like systematic generalization -- learning compositional rules from limited data and applying them to unseen combinations in various domains. We propose Neural-Symbolic Recursive Machine (NSR) to tackle this deficiency. The core representation of NSR is a Grounded Symbol System (GSS) with combinatorial syntax and semantics, which entirely emerges from training data. Akin to the neuroscience studies suggesting separate brain systems for perceptual, syntactic, and semantic processing, NSR implements analogous separate modules of neural perception, syntactic parsing, and semantic reasoning, which are jointly learned by a deduction-abduction algorithm. We prove that NSR is expressive enough to model various sequence-to-sequence tasks. Superior systematic generalization is achieved via the inductive biases of equivariance and recursiveness embedded in NSR. In experiments, NSR achieves state-of-the-art performance in three benchmarks from different domains: SCAN for semantic parsing, PCFG for string manipulation, and HINT for arithmetic reasoning. Specifically, NSR achieves 100% generalization accuracy on SCAN and PCFG and outperforms state-of-the-art models on HINT by about 23%. Our NSR demonstrates stronger generalization than pure neural networks due to its symbolic representation and inductive biases. NSR also demonstrates better transferability than existing neural-symbolic approaches due to less domain-specific knowledge required.
AutoStub: Genetic Programming-Based Stub Creation for Symbolic Execution
Symbolic execution is a powerful technique for software testing, but suffers from limitations when encountering external functions, such as native methods or third-party libraries. Existing solutions often require additional context, expensive SMT solvers, or manual intervention to approximate these functions through symbolic stubs. In this work, we propose a novel approach to automatically generate symbolic stubs for external functions during symbolic execution that leverages Genetic Programming. When the symbolic executor encounters an external function, AutoStub generates training data by executing the function on randomly generated inputs and collecting the outputs. Genetic Programming then derives expressions that approximate the behavior of the function, serving as symbolic stubs. These automatically generated stubs allow the symbolic executor to continue the analysis without manual intervention, enabling the exploration of program paths that were previously intractable. We demonstrate that AutoStub can automatically approximate external functions with over 90% accuracy for 55% of the functions evaluated, and can infer language-specific behaviors that reveal edge cases crucial for software testing.
FACT: Learning Governing Abstractions Behind Integer Sequences
Integer sequences are of central importance to the modeling of concepts admitting complete finitary descriptions. We introduce a novel view on the learning of such concepts and lay down a set of benchmarking tasks aimed at conceptual understanding by machine learning models. These tasks indirectly assess model ability to abstract, and challenge them to reason both interpolatively and extrapolatively from the knowledge gained by observing representative examples. To further aid research in knowledge representation and reasoning, we present FACT, the Finitary Abstraction Comprehension Toolkit. The toolkit surrounds a large dataset of integer sequences comprising both organic and synthetic entries, a library for data pre-processing and generation, a set of model performance evaluation tools, and a collection of baseline model implementations, enabling the making of the future advancements with ease.
NePTune: A Neuro-Pythonic Framework for Tunable Compositional Reasoning on Vision-Language
Modern Vision-Language Models (VLMs) have achieved impressive performance in various tasks, yet they often struggle with compositional reasoning, the ability to decompose and recombine concepts to solve novel problems. While neuro-symbolic approaches offer a promising direction, they are typically constrained by crisp logical execution or predefined predicates, which limit flexibility. In this work, we introduce NePTune, a neuro-symbolic framework that overcomes these limitations through a hybrid execution model that integrates the perception capabilities of foundation vision models with the compositional expressiveness of symbolic reasoning. NePTune dynamically translates natural language queries into executable Python programs that blend imperative control flow with soft logic operators capable of reasoning over VLM-generated uncertainty. Operating in a training-free manner, NePTune, with a modular design, decouples perception from reasoning, yet its differentiable operations support fine-tuning. We evaluate NePTune on multiple visual reasoning benchmarks and various domains, utilizing adversarial tests, and demonstrate a significant improvement over strong base models, as well as its effective compositional generalization and adaptation capabilities in novel environments.
Functorial String Diagrams for Reverse-Mode Automatic Differentiation
We enhance the calculus of string diagrams for monoidal categories with hierarchical features in order to capture closed monoidal (and cartesian closed) structure. Using this new syntax we formulate an automatic differentiation algorithm for (applied) simply typed lambda calculus in the style of [Pearlmutter and Siskind 2008] and we prove for the first time its soundness. To give an efficient yet principled implementation of the AD algorithm we define a sound and complete representation of hierarchical string diagrams as a class of hierarchical hypergraphs we call hypernets.
Unlocking the Potential of Generative AI through Neuro-Symbolic Architectures: Benefits and Limitations
Neuro-symbolic artificial intelligence (NSAI) represents a transformative approach in artificial intelligence (AI) by combining deep learning's ability to handle large-scale and unstructured data with the structured reasoning of symbolic methods. By leveraging their complementary strengths, NSAI enhances generalization, reasoning, and scalability while addressing key challenges such as transparency and data efficiency. This paper systematically studies diverse NSAI architectures, highlighting their unique approaches to integrating neural and symbolic components. It examines the alignment of contemporary AI techniques such as retrieval-augmented generation, graph neural networks, reinforcement learning, and multi-agent systems with NSAI paradigms. This study then evaluates these architectures against comprehensive set of criteria, including generalization, reasoning capabilities, transferability, and interpretability, therefore providing a comparative analysis of their respective strengths and limitations. Notably, the Neuro > Symbolic < Neuro model consistently outperforms its counterparts across all evaluation metrics. This result aligns with state-of-the-art research that highlight the efficacy of such architectures in harnessing advanced technologies like multi-agent systems.
Do PhD-level LLMs Truly Grasp Elementary Addition? Probing Rule Learning vs. Memorization in Large Language Models
Despite high benchmark scores, Large Language Models (LLMs) often fail simple problem, raising a critical question: Do LLMs learn mathematical principles or merely memorize patterns? Rather than designing increasingly complex benchmarks like recent works, we investigate this using elementary two-integer addition (0 to 2^{64}), probing two core properties: commutativity (A+B=B+A) and compositional generalization (via isomorphic symbolic mappings, e.g., 7 rightarrow y). While state-of-the-art LLMs achieve 73.8-99.8\% accuracy on numerical addition, performance collapses to leq7.5\% under symbolic mapping, indicating failure to generalize learned rules. Non-monotonic performance scaling with digit count and frequent commutativity violations (over 1,700 cases of A+B neq B+A) further support this. Explicitly providing addition rules degrades performance by 81.2\% on average, while self-explanation maintains baseline accuracy, suggesting LLM arithmetic processing is misaligned with human-defined principles. Our findings indicate current LLMs rely on memory pattern over genuine rule learning, highlighting architectural limitations and the need for new approaches to achieve true mathematical reasoning.
Causal Abstraction for Faithful Model Interpretation
A faithful and interpretable explanation of an AI model's behavior and internal structure is a high-level explanation that is human-intelligible but also consistent with the known, but often opaque low-level causal details of the model. We argue that the theory of causal abstraction provides the mathematical foundations for the desired kinds of model explanations. In causal abstraction analysis, we use interventions on model-internal states to rigorously assess whether an interpretable high-level causal model is a faithful description of an AI model. Our contributions in this area are: (1) We generalize causal abstraction to cyclic causal structures and typed high-level variables. (2) We show how multi-source interchange interventions can be used to conduct causal abstraction analyses. (3) We define a notion of approximate causal abstraction that allows us to assess the degree to which a high-level causal model is a causal abstraction of a lower-level one. (4) We prove constructive causal abstraction can be decomposed into three operations we refer to as marginalization, variable-merge, and value-merge. (5) We formalize the XAI methods of LIME, causal effect estimation, causal mediation analysis, iterated nullspace projection, and circuit-based explanations as special cases of causal abstraction analysis.
Stochastic LLMs do not Understand Language: Towards Symbolic, Explainable and Ontologically Based LLMs
In our opinion the exuberance surrounding the relative success of data-driven large language models (LLMs) is slightly misguided and for several reasons (i) LLMs cannot be relied upon for factual information since for LLMs all ingested text (factual or non-factual) was created equal; (ii) due to their subsymbolic na-ture, whatever 'knowledge' these models acquire about language will always be buried in billions of microfeatures (weights), none of which is meaningful on its own; and (iii) LLMs will often fail to make the correct inferences in several linguistic contexts (e.g., nominal compounds, copredication, quantifier scope ambi-guities, intensional contexts. Since we believe the relative success of data-driven large language models (LLMs) is not a reflection on the symbolic vs. subsymbol-ic debate but a reflection on applying the successful strategy of a bottom-up reverse engineering of language at scale, we suggest in this paper applying the effective bottom-up strategy in a symbolic setting resulting in symbolic, explainable, and ontologically grounded language models.
AbsInstruct: Eliciting Abstraction Ability from LLMs through Explanation Tuning with Plausibility Estimation
Abstraction ability is crucial in human intelligence, which can also benefit various tasks in NLP study. Existing work shows that LLMs are deficient in abstract ability, and how to improve it remains unexplored. In this work, we design the framework AbsInstruct to enhance LLMs' abstraction ability through instruction tuning. The framework builds instructions with in-depth explanations to assist LLMs in capturing the underlying rationale of abstraction. Meanwhile, we introduce a plausibility estimator to select instructions that are more consistent with the abstraction knowledge of LLMs to be aligned. Then, our framework combines abstraction instructions with general-purpose ones to build a hybrid dataset. Extensive experiments and analyses demonstrate that our framework can considerably enhance LLMs' abstraction ability with strong generalization performance while maintaining their general instruction-following abilities.
Thinking Machines: Mathematical Reasoning in the Age of LLMs
Large Language Models (LLMs) have shown remarkable abilities in structured reasoning and symbolic tasks, with coding emerging as a particular area of strength. This success has sparked growing interest in applying LLMs to mathematics, both in informal problem-solving and formal theorem proving. However, progress in formal mathematics has proven to be significantly more difficult, despite surface-level similarities between programming and proof construction. This discrepancy raises important questions about how LLMs ``reason'', how they are supervised, and whether they internally track a notion of computational or deductive state. In this article, we address the state-of-the-art of the discipline, focusing on recent models and benchmarks, and explore three central issues at the intersection of machine learning and mathematical cognition: (i) the trade-offs between formal and informal mathematics as training domains; (ii) the deeper reasons why proof generation remains more brittle than code synthesis; (iii) and the question of whether LLMs represent, or merely mimic, a notion of evolving logical state. Our goal is not to draw hard boundaries, but to identify where the current limits lie, and how they might be extended.
SymbolicAI: A framework for logic-based approaches combining generative models and solvers
We introduce SymbolicAI, a versatile and modular framework employing a logic-based approach to concept learning and flow management in generative processes. SymbolicAI enables the seamless integration of generative models with a diverse range of solvers by treating large language models (LLMs) as semantic parsers that execute tasks based on both natural and formal language instructions, thus bridging the gap between symbolic reasoning and generative AI. We leverage probabilistic programming principles to tackle complex tasks, and utilize differentiable and classical programming paradigms with their respective strengths. The framework introduces a set of polymorphic, compositional, and self-referential operations for data stream manipulation, aligning LLM outputs with user objectives. As a result, we can transition between the capabilities of various foundation models endowed with zero- and few-shot learning capabilities and specialized, fine-tuned models or solvers proficient in addressing specific problems. In turn, the framework facilitates the creation and evaluation of explainable computational graphs. We conclude by introducing a quality measure and its empirical score for evaluating these computational graphs, and propose a benchmark that compares various state-of-the-art LLMs across a set of complex workflows. We refer to the empirical score as the "Vector Embedding for Relational Trajectory Evaluation through Cross-similarity", or VERTEX score for short. The framework codebase and benchmark are linked below.
Controllable Neural Symbolic Regression
In symbolic regression, the goal is to find an analytical expression that accurately fits experimental data with the minimal use of mathematical symbols such as operators, variables, and constants. However, the combinatorial space of possible expressions can make it challenging for traditional evolutionary algorithms to find the correct expression in a reasonable amount of time. To address this issue, Neural Symbolic Regression (NSR) algorithms have been developed that can quickly identify patterns in the data and generate analytical expressions. However, these methods, in their current form, lack the capability to incorporate user-defined prior knowledge, which is often required in natural sciences and engineering fields. To overcome this limitation, we propose a novel neural symbolic regression method, named Neural Symbolic Regression with Hypothesis (NSRwH) that enables the explicit incorporation of assumptions about the expected structure of the ground-truth expression into the prediction process. Our experiments demonstrate that the proposed conditioned deep learning model outperforms its unconditioned counterparts in terms of accuracy while also providing control over the predicted expression structure.
Explanatory Learning: Beyond Empiricism in Neural Networks
We introduce Explanatory Learning (EL), a framework to let machines use existing knowledge buried in symbolic sequences -- e.g. explanations written in hieroglyphic -- by autonomously learning to interpret them. In EL, the burden of interpreting symbols is not left to humans or rigid human-coded compilers, as done in Program Synthesis. Rather, EL calls for a learned interpreter, built upon a limited collection of symbolic sequences paired with observations of several phenomena. This interpreter can be used to make predictions on a novel phenomenon given its explanation, and even to find that explanation using only a handful of observations, like human scientists do. We formulate the EL problem as a simple binary classification task, so that common end-to-end approaches aligned with the dominant empiricist view of machine learning could, in principle, solve it. To these models, we oppose Critical Rationalist Networks (CRNs), which instead embrace a rationalist view on the acquisition of knowledge. CRNs express several desired properties by construction, they are truly explainable, can adjust their processing at test-time for harder inferences, and can offer strong confidence guarantees on their predictions. As a final contribution, we introduce Odeen, a basic EL environment that simulates a small flatland-style universe full of phenomena to explain. Using Odeen as a testbed, we show how CRNs outperform empiricist end-to-end approaches of similar size and architecture (Transformers) in discovering explanations for novel phenomena.
Discovering symbolic expressions with parallelized tree search
Symbolic regression plays a crucial role in modern scientific research thanks to its capability of discovering concise and interpretable mathematical expressions from data. A grand challenge lies in the arduous search for parsimonious and generalizable mathematical formulas, in an infinite search space, while intending to fit the training data. Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade when handling problems of complexity, which essentially hinders the pace of applying symbolic regression for scientific exploration across interdisciplinary domains. To this end, we introduce a parallelized tree search (PTS) model to efficiently distill generic mathematical expressions from limited data. Through a series of extensive experiments, we demonstrate the superior accuracy and efficiency of PTS for equation discovery, which greatly outperforms the state-of-the-art baseline models on over 80 synthetic and experimental datasets (e.g., lifting its performance by up to 99% accuracy improvement and one-order of magnitude speed up). PTS represents a key advance in accurate and efficient data-driven discovery of symbolic, interpretable models (e.g., underlying physical laws) and marks a pivotal transition towards scalable symbolic learning.
Non-Iterative Symbolic-Aided Chain-of-Thought for Logical Reasoning
This work introduces Symbolic-Aided Chain-of-Thought (CoT), an improved approach to standard CoT, for logical reasoning in large language models (LLMs). The key idea is to integrate lightweight symbolic representations into few-shot prompts, structuring the inference steps with a consistent strategy to make reasoning patterns more explicit within a non-iterative reasoning process. By incorporating these symbolic structures, our method preserves the generalizability of standard prompting techniques while enhancing the transparency, interpretability, and analyzability of LLM logical reasoning. Extensive experiments on four well-known logical reasoning benchmarks -- ProofWriter, FOLIO, ProntoQA, and LogicalDeduction, which cover diverse reasoning scenarios -- demonstrate the effectiveness of the proposed approach, particularly in complex reasoning tasks that require navigating multiple constraints or rules. Notably, Symbolic-Aided CoT consistently improves LLMs' reasoning capabilities across various model sizes and significantly outperforms conventional CoT on three out of four datasets, ProofWriter, ProntoQA, and LogicalDeduction.
Roll the dice & look before you leap: Going beyond the creative limits of next-token prediction
We design a suite of minimal algorithmic tasks that are a loose abstraction of open-ended real-world tasks. This allows us to cleanly and controllably quantify the creative limits of the present-day language model. Much like real-world tasks that require a creative, far-sighted leap of thought, our tasks require an implicit, open-ended stochastic planning step that either (a) discovers new connections in an abstract knowledge graph (like in wordplay, drawing analogies, or research) or (b) constructs new patterns (like in designing math problems or new proteins). In these tasks, we empirically and conceptually argue how next-token learning is myopic and memorizes excessively; comparatively, multi-token approaches, namely teacherless training and diffusion models, excel in producing diverse and original output. Secondly, in our tasks, we find that to elicit randomness from the Transformer without hurting coherence, it is better to inject noise right at the input layer (via a method we dub hash-conditioning) rather than defer to temperature sampling from the output layer. Thus, our work offers a principled, minimal test-bed for analyzing open-ended creative skills, and offers new arguments for going beyond next-token learning and softmax-based sampling. We make part of the code available under https://github.com/chenwu98/algorithmic-creativity
Neural Symbolic Regression that Scales
Symbolic equations are at the core of scientific discovery. The task of discovering the underlying equation from a set of input-output pairs is called symbolic regression. Traditionally, symbolic regression methods use hand-designed strategies that do not improve with experience. In this paper, we introduce the first symbolic regression method that leverages large scale pre-training. We procedurally generate an unbounded set of equations, and simultaneously pre-train a Transformer to predict the symbolic equation from a corresponding set of input-output-pairs. At test time, we query the model on a new set of points and use its output to guide the search for the equation. We show empirically that this approach can re-discover a set of well-known physical equations, and that it improves over time with more data and compute.
Symbolic Learning Enables Self-Evolving Agents
The AI community has been exploring a pathway to artificial general intelligence (AGI) by developing "language agents", which are complex large language models (LLMs) pipelines involving both prompting techniques and tool usage methods. While language agents have demonstrated impressive capabilities for many real-world tasks, a fundamental limitation of current language agents research is that they are model-centric, or engineering-centric. That's to say, the progress on prompts, tools, and pipelines of language agents requires substantial manual engineering efforts from human experts rather than automatically learning from data. We believe the transition from model-centric, or engineering-centric, to data-centric, i.e., the ability of language agents to autonomously learn and evolve in environments, is the key for them to possibly achieve AGI. In this work, we introduce agent symbolic learning, a systematic framework that enables language agents to optimize themselves on their own in a data-centric way using symbolic optimizers. Specifically, we consider agents as symbolic networks where learnable weights are defined by prompts, tools, and the way they are stacked together. Agent symbolic learning is designed to optimize the symbolic network within language agents by mimicking two fundamental algorithms in connectionist learning: back-propagation and gradient descent. Instead of dealing with numeric weights, agent symbolic learning works with natural language simulacrums of weights, loss, and gradients. We conduct proof-of-concept experiments on both standard benchmarks and complex real-world tasks and show that agent symbolic learning enables language agents to update themselves after being created and deployed in the wild, resulting in "self-evolving agents".
RSRM: Reinforcement Symbolic Regression Machine
In nature, the behaviors of many complex systems can be described by parsimonious math equations. Automatically distilling these equations from limited data is cast as a symbolic regression process which hitherto remains a grand challenge. Keen efforts in recent years have been placed on tackling this issue and demonstrated success in symbolic regression. However, there still exist bottlenecks that current methods struggle to break when the discrete search space tends toward infinity and especially when the underlying math formula is intricate. To this end, we propose a novel Reinforcement Symbolic Regression Machine (RSRM) that masters the capability of uncovering complex math equations from only scarce data. The RSRM model is composed of three key modules: (1) a Monte Carlo tree search (MCTS) agent that explores optimal math expression trees consisting of pre-defined math operators and variables, (2) a Double Q-learning block that helps reduce the feasible search space of MCTS via properly understanding the distribution of reward, and (3) a modulated sub-tree discovery block that heuristically learns and defines new math operators to improve representation ability of math expression trees. Biding of these modules yields the state-of-the-art performance of RSRM in symbolic regression as demonstrated by multiple sets of benchmark examples. The RSRM model shows clear superiority over several representative baseline models.
Discovering Symbolic Models from Deep Learning with Inductive Biases
We develop a general approach to distill symbolic representations of a learned deep model by introducing strong inductive biases. We focus on Graph Neural Networks (GNNs). The technique works as follows: we first encourage sparse latent representations when we train a GNN in a supervised setting, then we apply symbolic regression to components of the learned model to extract explicit physical relations. We find the correct known equations, including force laws and Hamiltonians, can be extracted from the neural network. We then apply our method to a non-trivial cosmology example-a detailed dark matter simulation-and discover a new analytic formula which can predict the concentration of dark matter from the mass distribution of nearby cosmic structures. The symbolic expressions extracted from the GNN using our technique also generalized to out-of-distribution data better than the GNN itself. Our approach offers alternative directions for interpreting neural networks and discovering novel physical principles from the representations they learn.
Symbol-LLM: Towards Foundational Symbol-centric Interface For Large Language Models
Large Language Models (LLMs) have greatly propelled the progress in natural language(NL)-centric tasks based on NL interface. However, the NL form is not enough for world knowledge. Current works focus on this question by injecting specific symbolic knowledge into LLM, which ignore two critical challenges: the interrelations between various symbols and the balance between symbolic-centric and NL-centric capabilities. In this work, we tackle these challenges from both a data and framework perspective and introduce Symbol-LLM series models. First, we collect 34 symbolic tasks, covering ~20 different forms, which are unified to capture symbol interrelations. Then, a two-stage tuning framework succeeds in injecting symbolic knowledge without loss of the generality ability. Extensive experiments on both symbol- and NL-centric tasks demonstrate the balanced and superior performances of Symbol-LLM series models.
Safe: Enhancing Mathematical Reasoning in Large Language Models via Retrospective Step-aware Formal Verification
Chain-of-Thought (CoT) prompting has become the de facto method to elicit reasoning capabilities from large language models (LLMs). However, to mitigate hallucinations in CoT that are notoriously difficult to detect, current methods such as process reward models (PRMs) or self-consistency operate as opaque boxes and do not provide checkable evidence for their judgments, possibly limiting their effectiveness. To address this issue, we draw inspiration from the idea that "the gold standard for supporting a mathematical claim is to provide a proof". We propose a retrospective, step-aware formal verification framework Safe. Rather than assigning arbitrary scores, we strive to articulate mathematical claims in formal mathematical language Lean 4 at each reasoning step and provide formal proofs to identify hallucinations. We evaluate our framework Safe across multiple language models and various mathematical datasets, demonstrating a significant performance improvement while offering interpretable and verifiable evidence. We also propose FormalStep as a benchmark for step correctness theorem proving with 30,809 formal statements. To the best of our knowledge, our work represents the first endeavor to utilize formal mathematical language Lean 4 for verifying natural language content generated by LLMs, aligning with the reason why formal mathematical languages were created in the first place: to provide a robust foundation for hallucination-prone human-written proofs.
ReGAL: Refactoring Programs to Discover Generalizable Abstractions
While large language models (LLMs) are increasingly being used for program synthesis, they lack the global view needed to develop useful abstractions; they generally predict programs one at a time, often repeating the same functionality. Generating redundant code from scratch is both inefficient and error-prone. To address this, we propose Refactoring for Generalizable Abstraction Learning (ReGAL), a gradient-free method for learning a library of reusable functions via code refactorization, i.e. restructuring code without changing its execution output. ReGAL learns from a small set of existing programs, iteratively verifying and refining its abstractions via execution. We find that the shared function libraries discovered by ReGAL make programs easier to predict across diverse domains. On three datasets (LOGO graphics generation, Date reasoning, and TextCraft, a Minecraft-based text game), both open-source and proprietary LLMs improve in accuracy when predicting programs with ReGAL functions. For CodeLlama-13B, ReGAL results in absolute accuracy increases of 11.5% on graphics, 26.1% on date understanding, and 8.1% on TextCraft, outperforming GPT-3.5 in two of three domains. Our analysis reveals ReGAL's abstractions encapsulate frequently-used subroutines as well as environment dynamics.
ChatDB: Augmenting LLMs with Databases as Their Symbolic Memory
Large language models (LLMs) with memory are computationally universal. However, mainstream LLMs are not taking full advantage of memory, and the designs are heavily influenced by biological brains. Due to their approximate nature and proneness to the accumulation of errors, conventional neural memory mechanisms cannot support LLMs to simulate complex reasoning. In this paper, we seek inspiration from modern computer architectures to augment LLMs with symbolic memory for complex multi-hop reasoning. Such a symbolic memory framework is instantiated as an LLM and a set of SQL databases, where the LLM generates SQL instructions to manipulate the SQL databases. We validate the effectiveness of the proposed memory framework on a synthetic dataset requiring complex reasoning. The project website is available at https://chatdatabase.github.io/ .
Interpretable by AI Mother Tongue: Native Symbolic Reasoning in Neural Models
We present a framework where neural models develop an AI Mother Tongue, a native symbolic language that simultaneously supports intuitive reasoning, compositional symbol chains, and inherent interpretability. Unlike post-hoc explanation methods, our approach embeds reasoning directly into the model's representations: symbols capture meaningful semantic patterns, chains trace decision paths, and gated induction mechanisms guide selective focus, yielding transparent yet flexible reasoning. We introduce complementary training objectives to enhance symbol purity and decision sparsity, and employ a sequential specialization strategy to first build broad symbolic competence and then refine intuitive judgments. Experiments on AI tasks demonstrate competitive accuracy alongside verifiable reasoning traces, showing that AI Mother Tongue can serve as a unified mechanism for interpretability, intuition, and symbolic reasoning in neural models.
Bridging Logic and Learning: A Neural-Symbolic Approach for Enhanced Reasoning in Neural Models (ASPER)
Neural-symbolic learning, an intersection of neural networks and symbolic reasoning, aims to blend neural networks' learning capabilities with symbolic AI's interpretability and reasoning. This paper introduces an approach designed to improve the performance of neural models in learning reasoning tasks. It achieves this by integrating Answer Set Programming (ASP) solvers and domain-specific expertise, which is an approach that diverges from traditional complex neural-symbolic models. In this paper, a shallow artificial neural network (ANN) is specifically trained to solve Sudoku puzzles with minimal training data. The model has a unique loss function that integrates losses calculated using the ASP solver outputs, effectively enhancing its training efficiency. Most notably, the model shows a significant improvement in solving Sudoku puzzles using only 12 puzzles for training and testing without hyperparameter tuning. This advancement indicates that the model's enhanced reasoning capabilities have practical applications, extending well beyond Sudoku puzzles to potentially include a variety of other domains. The code can be found on GitHub: https://github.com/Fadi2200/ASPEN.
NeSyCoCo: A Neuro-Symbolic Concept Composer for Compositional Generalization
Compositional generalization is crucial for artificial intelligence agents to solve complex vision-language reasoning tasks. Neuro-symbolic approaches have demonstrated promise in capturing compositional structures, but they face critical challenges: (a) reliance on predefined predicates for symbolic representations that limit adaptability, (b) difficulty in extracting predicates from raw data, and (c) using non-differentiable operations for combining primitive concepts. To address these issues, we propose NeSyCoCo, a neuro-symbolic framework that leverages large language models (LLMs) to generate symbolic representations and map them to differentiable neural computations. NeSyCoCo introduces three innovations: (a) augmenting natural language inputs with dependency structures to enhance the alignment with symbolic representations, (b) employing distributed word representations to link diverse, linguistically motivated logical predicates to neural modules, and (c) using the soft composition of normalized predicate scores to align symbolic and differentiable reasoning. Our framework achieves state-of-the-art results on the ReaSCAN and CLEVR-CoGenT compositional generalization benchmarks and demonstrates robust performance with novel concepts in the CLEVR-SYN benchmark.
Intensional Inheritance Between Concepts: An Information-Theoretic Interpretation
This paper addresses the problem of formalizing and quantifying the concept of "intensional inheritance" between two concepts. We begin by conceiving the intensional inheritance of W from F as the amount of information the proposition "x is F " provides about the proposition "x is W. To flesh this out, we consider concepts F and W defined by sets of properties left{F_{1}, F_{2}, ldots, F_{n}right} and left{W_{1}, W_{2}, ldots, W_{m}right} with associated degrees left{d_{1}, d_{2}, ldots, d_{n}right} and left{e_{1}, e_{2}, ldots, e_{m}right}, respectively, where the properties may overlap. We then derive formulas for the intensional inheritance using both Shannon information theory and algorithmic information theory, incorporating interaction information among properties. We examine a special case where all properties are mutually exclusive and calculate the intensional inheritance in this case in both frameworks. We also derive expressions for P(W mid F) based on the mutual information formula. Finally we consider the relationship between intensional inheritance and conventional set-theoretic "extensional" inheritance, concluding that in our information-theoretic framework, extensional inheritance emerges as a special case of intensional inheritance.
CLIPasso: Semantically-Aware Object Sketching
Abstraction is at the heart of sketching due to the simple and minimal nature of line drawings. Abstraction entails identifying the essential visual properties of an object or scene, which requires semantic understanding and prior knowledge of high-level concepts. Abstract depictions are therefore challenging for artists, and even more so for machines. We present CLIPasso, an object sketching method that can achieve different levels of abstraction, guided by geometric and semantic simplifications. While sketch generation methods often rely on explicit sketch datasets for training, we utilize the remarkable ability of CLIP (Contrastive-Language-Image-Pretraining) to distill semantic concepts from sketches and images alike. We define a sketch as a set of B\'ezier curves and use a differentiable rasterizer to optimize the parameters of the curves directly with respect to a CLIP-based perceptual loss. The abstraction degree is controlled by varying the number of strokes. The generated sketches demonstrate multiple levels of abstraction while maintaining recognizability, underlying structure, and essential visual components of the subject drawn.
Analysing Mathematical Reasoning Abilities of Neural Models
Mathematical reasoning---a core ability within human intelligence---presents some unique challenges as a domain: we do not come to understand and solve mathematical problems primarily on the back of experience and evidence, but on the basis of inferring, learning, and exploiting laws, axioms, and symbol manipulation rules. In this paper, we present a new challenge for the evaluation (and eventually the design) of neural architectures and similar system, developing a task suite of mathematics problems involving sequential questions and answers in a free-form textual input/output format. The structured nature of the mathematics domain, covering arithmetic, algebra, probability and calculus, enables the construction of training and test splits designed to clearly illuminate the capabilities and failure-modes of different architectures, as well as evaluate their ability to compose and relate knowledge and learned processes. Having described the data generation process and its potential future expansions, we conduct a comprehensive analysis of models from two broad classes of the most powerful sequence-to-sequence architectures and find notable differences in their ability to resolve mathematical problems and generalize their knowledge.
From Zero to Hero: Examining the Power of Symbolic Tasks in Instruction Tuning
Fine-tuning language models on tasks with instructions has demonstrated potential in facilitating zero-shot generalization to unseen tasks. In this paper, we introduce a straightforward yet effective method for enhancing instruction tuning by employing symbolic tasks. Compared to crowdsourced human tasks or model-generated tasks, symbolic tasks present a unique advantage as they can be easily generated in vast quantities, theoretically providing an infinite supply of high-quality training instances. To explore the potential of symbolic tasks, we carry out an extensive case study on the representative symbolic task of SQL execution. Empirical results on various benchmarks validate that the integration of SQL execution leads to significant improvements in zero-shot scenarios, particularly in table reasoning. Notably, our 3B model surpasses both the 175B GPT-3 and ChatGPT in zero-shot table reasoning across four benchmarks. Furthermore, experimental results on BBH (27 tasks) and MMLU (57 tasks) reveal that language models can be enhanced through symbolic tasks without compromising their generality. We hope that our paper serves as a catalyst, inspiring increased efforts to incorporate symbolic tasks in instruction tuning.
Lemur: Integrating Large Language Models in Automated Program Verification
The demonstrated code-understanding capability of LLMs raises the question of whether they can be used for automated program verification, a task that often demands high-level abstract reasoning about program properties, which is challenging for verification tools. We propose a general methodology to combine the power of LLMs and automated reasoners for automated program verification. We formally describe this methodology as a set of derivation rules and prove its soundness. We instantiate the calculus as a sound automated verification procedure, which led to practical improvements on a set of synthetic and competition benchmarks.
Deep Learning for Symbolic Mathematics
Neural networks have a reputation for being better at solving statistical or approximate problems than at performing calculations or working with symbolic data. In this paper, we show that they can be surprisingly good at more elaborated tasks in mathematics, such as symbolic integration and solving differential equations. We propose a syntax for representing mathematical problems, and methods for generating large datasets that can be used to train sequence-to-sequence models. We achieve results that outperform commercial Computer Algebra Systems such as Matlab or Mathematica.
Sound and Complete Neuro-symbolic Reasoning with LLM-Grounded Interpretations
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but they exhibit problems with logical consistency in the output they generate. How can we harness LLMs' broad-coverage parametric knowledge in formal reasoning despite their inconsistency? We present a method for directly integrating an LLM into the interpretation function of the formal semantics for a paraconsistent logic. We provide experimental evidence for the feasibility of the method by evaluating the function using datasets created from several short-form factuality benchmarks. Unlike prior work, our method offers a theoretical framework for neuro-symbolic reasoning that leverages an LLM's knowledge while preserving the underlying logic's soundness and completeness properties.
Language Models Use Trigonometry to Do Addition
Mathematical reasoning is an increasingly important indicator of large language model (LLM) capabilities, yet we lack understanding of how LLMs process even simple mathematical tasks. To address this, we reverse engineer how three mid-sized LLMs compute addition. We first discover that numbers are represented in these LLMs as a generalized helix, which is strongly causally implicated for the tasks of addition and subtraction, and is also causally relevant for integer division, multiplication, and modular arithmetic. We then propose that LLMs compute addition by manipulating this generalized helix using the "Clock" algorithm: to solve a+b, the helices for a and b are manipulated to produce the a+b answer helix which is then read out to model logits. We model influential MLP outputs, attention head outputs, and even individual neuron preactivations with these helices and verify our understanding with causal interventions. By demonstrating that LLMs represent numbers on a helix and manipulate this helix to perform addition, we present the first representation-level explanation of an LLM's mathematical capability.
Correctness of Automatic Differentiation via Diffeologies and Categorical Gluing
We present semantic correctness proofs of Automatic Differentiation (AD). We consider a forward-mode AD method on a higher order language with algebraic data types, and we characterise it as the unique structure preserving macro given a choice of derivatives for basic operations. We describe a rich semantics for differentiable programming, based on diffeological spaces. We show that it interprets our language, and we phrase what it means for the AD method to be correct with respect to this semantics. We show that our characterisation of AD gives rise to an elegant semantic proof of its correctness based on a gluing construction on diffeological spaces. We explain how this is, in essence, a logical relations argument. Finally, we sketch how the analysis extends to other AD methods by considering a continuation-based method.
AutoGRAMS: Autonomous Graphical Agent Modeling Software
We introduce the AutoGRAMS framework for programming multi-step interactions with language models. AutoGRAMS represents AI agents as a graph, where each node can execute either a language modeling instruction or traditional code. Likewise, transitions in the graph can be governed by either language modeling decisions or traditional branch logic. AutoGRAMS supports using variables as memory and allows nodes to call other AutoGRAMS graphs as functions. We show how AutoGRAMS can be used to design highly sophisticated agents, including self-referential agents that can modify their own graph. AutoGRAMS's graph-centric approach aids interpretability, controllability, and safety during the design, development, and deployment of AI agents. We provide our framework as open source at https://github.com/autograms/autograms .
The Ramon Llull's Thinking Machine for Automated Ideation
This paper revisits Ramon Llull's Ars combinatoria - a medieval framework for generating knowledge through symbolic recombination - as a conceptual foundation for building a modern Llull's thinking machine for research ideation. Our approach defines three compositional axes: Theme (e.g., efficiency, adaptivity), Domain (e.g., question answering, machine translation), and Method (e.g., adversarial training, linear attention). These elements represent high-level abstractions common in scientific work - motivations, problem settings, and technical approaches - and serve as building blocks for LLM-driven exploration. We mine elements from human experts or conference papers and show that prompting LLMs with curated combinations produces research ideas that are diverse, relevant, and grounded in current literature. This modern thinking machine offers a lightweight, interpretable tool for augmenting scientific creativity and suggests a path toward collaborative ideation between humans and AI.
Decomposed Prompting: A Modular Approach for Solving Complex Tasks
Few-shot prompting is a surprisingly powerful way to use Large Language Models (LLMs) to solve various tasks. However, this approach struggles as the task complexity increases or when the individual reasoning steps of the task themselves are hard to learn, especially when embedded in more complex tasks. To address this, we propose Decomposed Prompting, a new approach to solve complex tasks by decomposing them (via prompting) into simpler sub-tasks that can be delegated to a library of prompting-based LLMs dedicated to these sub-tasks. This modular structure allows each prompt to be optimized for its specific sub-task, further decomposed if necessary, and even easily replaced with more effective prompts, trained models, or symbolic functions if desired. We show that the flexibility and modularity of Decomposed Prompting allows it to outperform prior work on few-shot prompting using GPT3. On symbolic reasoning tasks, we can further decompose sub-tasks that are hard for LLMs into even simpler solvable sub-tasks. When the complexity comes from the input length, we can recursively decompose the task into the same task but with smaller inputs. We also evaluate our approach on textual multi-step reasoning tasks: on long-context multi-hop QA task, we can more effectively teach the sub-tasks via our separate sub-tasks prompts; and on open-domain multi-hop QA, we can incorporate a symbolic information retrieval within our decomposition framework, leading to improved performance on both tasks. Datasets, Code and Prompts available at https://github.com/allenai/DecomP.
Llemma: An Open Language Model For Mathematics
We present Llemma, a large language model for mathematics. We continue pretraining Code Llama on the Proof-Pile-2, a mixture of scientific papers, web data containing mathematics, and mathematical code, yielding Llemma. On the MATH benchmark Llemma outperforms all known open base models, as well as the unreleased Minerva model suite on an equi-parameter basis. Moreover, Llemma is capable of tool use and formal theorem proving without any further finetuning. We openly release all artifacts, including 7 billion and 34 billion parameter models, the Proof-Pile-2, and code to replicate our experiments.
Alchemy: Amplifying Theorem-Proving Capability through Symbolic Mutation
Formal proofs are challenging to write even for experienced experts. Recent progress in Neural Theorem Proving (NTP) shows promise in expediting this process. However, the formal corpora available on the Internet are limited compared to the general text, posing a significant data scarcity challenge for NTP. To address this issue, this work proposes Alchemy, a general framework for data synthesis that constructs formal theorems through symbolic mutation. Specifically, for each candidate theorem in Mathlib, we identify all invocable theorems that can be used to rewrite or apply to it. Subsequently, we mutate the candidate theorem by replacing the corresponding term in the statement with its equivalent form or antecedent. As a result, our method increases the number of theorems in Mathlib by an order of magnitude, from 110k to 6M. Furthermore, we perform continual pretraining and supervised finetuning on this augmented corpus for large language models. Experimental results demonstrate the effectiveness of our approach, achieving a 5% absolute performance improvement on Leandojo benchmark. Additionally, our synthetic data achieve a 2.5% absolute performance gain on the out-of-distribution miniF2F benchmark. To provide further insights, we conduct a comprehensive analysis of synthetic data composition and the training paradigm, offering valuable guidance for developing a strong theorem prover.
SweepNet: Unsupervised Learning Shape Abstraction via Neural Sweepers
Shape abstraction is an important task for simplifying complex geometric structures while retaining essential features. Sweep surfaces, commonly found in human-made objects, aid in this process by effectively capturing and representing object geometry, thereby facilitating abstraction. In this paper, we introduce \papername, a novel approach to shape abstraction through sweep surfaces. We propose an effective parameterization for sweep surfaces, utilizing superellipses for profile representation and B-spline curves for the axis. This compact representation, requiring as few as 14 float numbers, facilitates intuitive and interactive editing while preserving shape details effectively. Additionally, by introducing a differentiable neural sweeper and an encoder-decoder architecture, we demonstrate the ability to predict sweep surface representations without supervision. We show the superiority of our model through several quantitative and qualitative experiments throughout the paper. Our code is available at https://mingrui-zhao.github.io/SweepNet/
An Interpretable Neuro-Symbolic Reasoning Framework for Task-Oriented Dialogue Generation
We study the interpretability issue of task-oriented dialogue systems in this paper. Previously, most neural-based task-oriented dialogue systems employ an implicit reasoning strategy that makes the model predictions uninterpretable to humans. To obtain a transparent reasoning process, we introduce neuro-symbolic to perform explicit reasoning that justifies model decisions by reasoning chains. Since deriving reasoning chains requires multi-hop reasoning for task-oriented dialogues, existing neuro-symbolic approaches would induce error propagation due to the one-phase design. To overcome this, we propose a two-phase approach that consists of a hypothesis generator and a reasoner. We first obtain multiple hypotheses, i.e., potential operations to perform the desired task, through the hypothesis generator. Each hypothesis is then verified by the reasoner, and the valid one is selected to conduct the final prediction. The whole system is trained by exploiting raw textual dialogues without using any reasoning chain annotations. Experimental studies on two public benchmark datasets demonstrate that the proposed approach not only achieves better results, but also introduces an interpretable decision process.
Accurately and Efficiently Interpreting Human-Robot Instructions of Varying Granularities
Humans can ground natural language commands to tasks at both abstract and fine-grained levels of specificity. For instance, a human forklift operator can be instructed to perform a high-level action, like "grab a pallet" or a low-level action like "tilt back a little bit." While robots are also capable of grounding language commands to tasks, previous methods implicitly assume that all commands and tasks reside at a single, fixed level of abstraction. Additionally, methods that do not use multiple levels of abstraction encounter inefficient planning and execution times as they solve tasks at a single level of abstraction with large, intractable state-action spaces closely resembling real world complexity. In this work, by grounding commands to all the tasks or subtasks available in a hierarchical planning framework, we arrive at a model capable of interpreting language at multiple levels of specificity ranging from coarse to more granular. We show that the accuracy of the grounding procedure is improved when simultaneously inferring the degree of abstraction in language used to communicate the task. Leveraging hierarchy also improves efficiency: our proposed approach enables a robot to respond to a command within one second on 90% of our tasks, while baselines take over twenty seconds on half the tasks. Finally, we demonstrate that a real, physical robot can ground commands at multiple levels of abstraction allowing it to efficiently plan different subtasks within the same planning hierarchy.
JARVIS: A Neuro-Symbolic Commonsense Reasoning Framework for Conversational Embodied Agents
Building a conversational embodied agent to execute real-life tasks has been a long-standing yet quite challenging research goal, as it requires effective human-agent communication, multi-modal understanding, long-range sequential decision making, etc. Traditional symbolic methods have scaling and generalization issues, while end-to-end deep learning models suffer from data scarcity and high task complexity, and are often hard to explain. To benefit from both worlds, we propose JARVIS, a neuro-symbolic commonsense reasoning framework for modular, generalizable, and interpretable conversational embodied agents. First, it acquires symbolic representations by prompting large language models (LLMs) for language understanding and sub-goal planning, and by constructing semantic maps from visual observations. Then the symbolic module reasons for sub-goal planning and action generation based on task- and action-level common sense. Extensive experiments on the TEACh dataset validate the efficacy and efficiency of our JARVIS framework, which achieves state-of-the-art (SOTA) results on all three dialog-based embodied tasks, including Execution from Dialog History (EDH), Trajectory from Dialog (TfD), and Two-Agent Task Completion (TATC) (e.g., our method boosts the unseen Success Rate on EDH from 6.1\% to 15.8\%). Moreover, we systematically analyze the essential factors that affect the task performance and also demonstrate the superiority of our method in few-shot settings. Our JARVIS model ranks first in the Alexa Prize SimBot Public Benchmark Challenge.
Neuro-Symbolic Frameworks: Conceptual Characterization and Empirical Comparative Analysis
Neurosymbolic (NeSy) frameworks combine neural representations and learning with symbolic representations and reasoning. Combining the reasoning capacities, explainability, and interpretability of symbolic processing with the flexibility and power of neural computing allows us to solve complex problems with more reliability while being data-efficient. However, this recently growing topic poses a challenge to developers with its learning curve, lack of user-friendly tools, libraries, and unifying frameworks. In this paper, we characterize the technical facets of existing NeSy frameworks, such as the symbolic representation language, integration with neural models, and the underlying algorithms. A majority of the NeSy research focuses on algorithms instead of providing generic frameworks for declarative problem specification to leverage problem solving. To highlight the key aspects of Neurosymbolic modeling, we showcase three generic NeSy frameworks - DeepProbLog, Scallop, and DomiKnowS. We identify the challenges within each facet that lay the foundation for identifying the expressivity of each framework in solving a variety of problems. Building on this foundation, we aim to spark transformative action and encourage the community to rethink this problem in novel ways.
InternLM-Math: Open Math Large Language Models Toward Verifiable Reasoning
The math abilities of large language models can represent their abstract reasoning ability. In this paper, we introduce and open-source our math reasoning LLMs InternLM-Math which is continue pre-trained from InternLM2. We unify chain-of-thought reasoning, reward modeling, formal reasoning, data augmentation, and code interpreter in a unified seq2seq format and supervise our model to be a versatile math reasoner, verifier, prover, and augmenter. These abilities can be used to develop the next math LLMs or self-iteration. InternLM-Math obtains open-sourced state-of-the-art performance under the setting of in-context learning, supervised fine-tuning, and code-assisted reasoning in various informal and formal benchmarks including GSM8K, MATH, Hungary math exam, MathBench-ZH, and MiniF2F. Our pre-trained model achieves 30.3 on the MiniF2F test set without fine-tuning. We further explore how to use LEAN to solve math problems and study its performance under the setting of multi-task learning which shows the possibility of using LEAN as a unified platform for solving and proving in math. Our models, codes, and data are released at https://github.com/InternLM/InternLM-Math.
L-Mosaics and Bounded Join-Semilattices in Isabelle/HOL
We present a complete formalization in Isabelle/HOL of the object part of an equivalence between L-mosaics and bounded join-semilattices, employing an AI-assisted methodology that integrates large language models as reasoning assistants throughout the proof development process. The equivalence was originally established by Cangiotti, Linzi, and Talotti in their study of hypercompositional structures related to orthomodular lattices and quantum logic. Our formalization rigorously verifies the main theoretical result and demonstrates the mutual inverse property of the transformations establishing this equivalence. The development showcases both the mathematical depth of multivalued algebraic operations and the potential for AI-enhanced interactive theorem proving in tackling complex formalization projects.
Learning with Language-Guided State Abstractions
We describe a framework for using natural language to design state abstractions for imitation learning. Generalizable policy learning in high-dimensional observation spaces is facilitated by well-designed state representations, which can surface important features of an environment and hide irrelevant ones. These state representations are typically manually specified, or derived from other labor-intensive labeling procedures. Our method, LGA (language-guided abstraction), uses a combination of natural language supervision and background knowledge from language models (LMs) to automatically build state representations tailored to unseen tasks. In LGA, a user first provides a (possibly incomplete) description of a target task in natural language; next, a pre-trained LM translates this task description into a state abstraction function that masks out irrelevant features; finally, an imitation policy is trained using a small number of demonstrations and LGA-generated abstract states. Experiments on simulated robotic tasks show that LGA yields state abstractions similar to those designed by humans, but in a fraction of the time, and that these abstractions improve generalization and robustness in the presence of spurious correlations and ambiguous specifications. We illustrate the utility of the learned abstractions on mobile manipulation tasks with a Spot robot.
From Informal to Formal -- Incorporating and Evaluating LLMs on Natural Language Requirements to Verifiable Formal Proofs
The research in AI-based formal mathematical reasoning has shown an unstoppable growth trend. These studies have excelled in mathematical competitions like IMO, showing significant progress. However, these studies intertwined multiple skills simultaneously, i.e., problem-solving, reasoning, and writing formal specifications, making it hard to precisely identify the LLMs' strengths and weaknesses in each task. This paper focuses on formal verification, an immediate application scenario of formal reasoning, and decomposes it into six sub-tasks. We constructed 18k high-quality instruction-response pairs across five mainstream formal specification languages (Coq, Lean4, Dafny, ACSL, and TLA+) in six formal-verification-related tasks by distilling GPT-4o. They are split into a 14k+ fine-tuning dataset FM-alpaca and a 4k benchmark FM-Bench. We found that LLMs are good at writing proof segments when given either the code, or the detailed description of proof steps. Also, the fine-tuning brought about a nearly threefold improvement at most. Interestingly, we observed that fine-tuning with formal data also enhances mathematics, reasoning, and coding abilities. We hope our findings inspire further research. Fine-tuned models are released to facilitate subsequent studies
Math Agents: Computational Infrastructure, Mathematical Embedding, and Genomics
The advancement in generative AI could be boosted with more accessible mathematics. Beyond human-AI chat, large language models (LLMs) are emerging in programming, algorithm discovery, and theorem proving, yet their genomics application is limited. This project introduces Math Agents and mathematical embedding as fresh entries to the "Moore's Law of Mathematics", using a GPT-based workflow to convert equations from literature into LaTeX and Python formats. While many digital equation representations exist, there's a lack of automated large-scale evaluation tools. LLMs are pivotal as linguistic user interfaces, providing natural language access for human-AI chat and formal languages for large-scale AI-assisted computational infrastructure. Given the infinite formal possibility spaces, Math Agents, which interact with math, could potentially shift us from "big data" to "big math". Math, unlike the more flexible natural language, has properties subject to proof, enabling its use beyond traditional applications like high-validation math-certified icons for AI alignment aims. This project aims to use Math Agents and mathematical embeddings to address the ageing issue in information systems biology by applying multiscalar physics mathematics to disease models and genomic data. Generative AI with episodic memory could help analyse causal relations in longitudinal health records, using SIR Precision Health models. Genomic data is suggested for addressing the unsolved Alzheimer's disease problem.
Bridging State and History Representations: Understanding Self-Predictive RL
Representations are at the core of all deep reinforcement learning (RL) methods for both Markov decision processes (MDPs) and partially observable Markov decision processes (POMDPs). Many representation learning methods and theoretical frameworks have been developed to understand what constitutes an effective representation. However, the relationships between these methods and the shared properties among them remain unclear. In this paper, we show that many of these seemingly distinct methods and frameworks for state and history abstractions are, in fact, based on a common idea of self-predictive abstraction. Furthermore, we provide theoretical insights into the widely adopted objectives and optimization, such as the stop-gradient technique, in learning self-predictive representations. These findings together yield a minimalist algorithm to learn self-predictive representations for states and histories. We validate our theories by applying our algorithm to standard MDPs, MDPs with distractors, and POMDPs with sparse rewards. These findings culminate in a set of preliminary guidelines for RL practitioners.
Tutte's theorem as an educational formalization project
In this work, we present two results: The first result is the formalization of Tutte's theorem in Lean, a key theorem concerning matchings in graph theory. As this formalization is ready to be integrated in Lean's mathlib, it provides a valuable step in the path towards formalizing research-level mathematics in this area. The second result is a framework for doing educational formalization projects. This framework provides a structure to learn to formalize mathematics with minimal teacher input. This framework applies to both traditional academic settings and independent community-driven environments. We demonstrate the framework's use by connecting it to the process of formalizing Tutte's theorem.
A rewriting-logic-with-SMT-based formal analysis and parameter synthesis framework for parametric time Petri nets
This paper presents a concrete and a symbolic rewriting logic semantics for parametric time Petri nets with inhibitor arcs (PITPNs), a flexible model of timed systems where parameters are allowed in firing bounds. We prove that our semantics is bisimilar to the "standard" semantics of PITPNs. This allows us to use the rewriting logic tool Maude, combined with SMT solving, to provide sound and complete formal analyses for PITPNs. We develop and implement a new general folding approach for symbolic reachability, so that Maude-with-SMT reachability analysis terminates whenever the parametric state-class graph of the PITPN is finite. Our work opens up the possibility of using the many formal analysis capabilities of Maude -- including full LTL model checking, analysis with user-defined analysis strategies, and even statistical model checking -- for such nets. We illustrate this by explaining how almost all formal analysis and parameter synthesis methods supported by the state-of-the-art PITPN tool Romeo can be performed using Maude with SMT. In addition, we also support analysis and parameter synthesis from parametric initial markings, as well as full LTL model checking and analysis with user-defined execution strategies. Experiments show that our methods outperform Romeo in many cases.
Measuring abstract reasoning in neural networks
Whether neural networks can learn abstract reasoning or whether they merely rely on superficial statistics is a topic of recent debate. Here, we propose a dataset and challenge designed to probe abstract reasoning, inspired by a well-known human IQ test. To succeed at this challenge, models must cope with various generalisation `regimes' in which the training and test data differ in clearly-defined ways. We show that popular models such as ResNets perform poorly, even when the training and test sets differ only minimally, and we present a novel architecture, with a structure designed to encourage reasoning, that does significantly better. When we vary the way in which the test questions and training data differ, we find that our model is notably proficient at certain forms of generalisation, but notably weak at others. We further show that the model's ability to generalise improves markedly if it is trained to predict symbolic explanations for its answers. Altogether, we introduce and explore ways to both measure and induce stronger abstract reasoning in neural networks. Our freely-available dataset should motivate further progress in this direction.
Categorical semiotics: Foundations for Knowledge Integration
The integration of knowledge extracted from diverse models, whether described by domain experts or generated by machine learning algorithms, has historically been challenged by the absence of a suitable framework for specifying and integrating structures, learning processes, data transformations, and data models or rules. In this work, we extend algebraic specification methods to address these challenges within such a framework. In our work, we tackle the challenging task of developing a comprehensive framework for defining and analyzing deep learning architectures. We believe that previous efforts have fallen short by failing to establish a clear connection between the constraints a model must adhere to and its actual implementation. Our methodology employs graphical structures that resemble Ehresmann's sketches, interpreted within a universe of fuzzy sets. This approach offers a unified theory that elegantly encompasses both deterministic and non-deterministic neural network designs. Furthermore, we highlight how this theory naturally incorporates fundamental concepts from computer science and automata theory. Our extended algebraic specification framework, grounded in graphical structures akin to Ehresmann's sketches, offers a promising solution for integrating knowledge across disparate models and domains. By bridging the gap between domain-specific expertise and machine-generated insights, we pave the way for more comprehensive, collaborative, and effective approaches to knowledge integration and modeling.
Gradient-Based Program Repair: Fixing Bugs in Continuous Program Spaces
Automatic program repair seeks to generate correct code from buggy programs, with most approaches searching the correct program in a discrete, symbolic space of source code tokens. This symbolic search is fundamentally limited by its inability to directly reason about program behavior. We introduce Gradient-Based Program Repair (GBPR), a new paradigm that reframes program repair as continuous optimization in a differentiable numerical program space. Our core insight is to compile symbolic programs into differentiable numerical representations, enabling search in the numerical program space directly guided by program behavior. To evaluate GBPR, we present RaspBugs, a new benchmark of 1,466 buggy symbolic RASP programs and their respective numerical representations. Our experiments demonstrate that GBPR can effectively repair buggy symbolic programs by gradient-based optimization in the numerical program space, with convincing repair trajectories. To our knowledge, we are the first to state program repair as continuous optimization in a numerical program space. Our work establishes a new direction for program repair research, bridging two rich worlds: continuous optimization and program behavior.
The Linear Representation Hypothesis and the Geometry of Large Language Models
Informally, the 'linear representation hypothesis' is the idea that high-level concepts are represented linearly as directions in some representation space. In this paper, we address two closely related questions: What does "linear representation" actually mean? And, how do we make sense of geometric notions (e.g., cosine similarity or projection) in the representation space? To answer these, we use the language of counterfactuals to give two formalizations of "linear representation", one in the output (word) representation space, and one in the input (sentence) space. We then prove these connect to linear probing and model steering, respectively. To make sense of geometric notions, we use the formalization to identify a particular (non-Euclidean) inner product that respects language structure in a sense we make precise. Using this causal inner product, we show how to unify all notions of linear representation. In particular, this allows the construction of probes and steering vectors using counterfactual pairs. Experiments with LLaMA-2 demonstrate the existence of linear representations of concepts, the connection to interpretation and control, and the fundamental role of the choice of inner product.
Position: Categorical Deep Learning is an Algebraic Theory of All Architectures
We present our position on the elusive quest for a general-purpose framework for specifying and studying deep learning architectures. Our opinion is that the key attempts made so far lack a coherent bridge between specifying constraints which models must satisfy and specifying their implementations. Focusing on building a such a bridge, we propose to apply category theory -- precisely, the universal algebra of monads valued in a 2-category of parametric maps -- as a single theory elegantly subsuming both of these flavours of neural network design. To defend our position, we show how this theory recovers constraints induced by geometric deep learning, as well as implementations of many architectures drawn from the diverse landscape of neural networks, such as RNNs. We also illustrate how the theory naturally encodes many standard constructs in computer science and automata theory.
HyDRA: A Hybrid-Driven Reasoning Architecture for Verifiable Knowledge Graphs
The synergy between symbolic knowledge, often represented by Knowledge Graphs (KGs), and the generative capabilities of neural networks is central to advancing neurosymbolic AI. A primary bottleneck in realizing this potential is the difficulty of automating KG construction, which faces challenges related to output reliability, consistency, and verifiability. These issues can manifest as structural inconsistencies within the generated graphs, such as the formation of disconnected isolated islands of data or the inaccurate conflation of abstract classes with specific instances. To address these challenges, we propose HyDRA, a Hybrid-Driven Reasoning Architecture designed for verifiable KG automation. Given a domain or an initial set of documents, HyDRA first constructs an ontology via a panel of collaborative neurosymbolic agents. These agents collaboratively agree on a set of competency questions (CQs) that define the scope and requirements the ontology must be able to answer. Given these CQs, we build an ontology graph that subsequently guides the automated extraction of triplets for KG generation from arbitrary documents. Inspired by design-by-contracts (DbC) principles, our method leverages verifiable contracts as the primary control mechanism to steer the generative process of Large Language Models (LLMs). To verify the output of our approach, we extend beyond standard benchmarks and propose an evaluation framework that assesses the functional correctness of the resulting KG by leveraging symbolic verifications as described by the neurosymbolic AI framework, SymbolicAI. This work contributes a hybrid-driven architecture for improving the reliability of automated KG construction and the exploration of evaluation methods for measuring the functional integrity of its output. The code is publicly available.
We Can't Understand AI Using our Existing Vocabulary
This position paper argues that, in order to understand AI, we cannot rely on our existing vocabulary of human words. Instead, we should strive to develop neologisms: new words that represent precise human concepts that we want to teach machines, or machine concepts that we need to learn. We start from the premise that humans and machines have differing concepts. This means interpretability can be framed as a communication problem: humans must be able to reference and control machine concepts, and communicate human concepts to machines. Creating a shared human-machine language through developing neologisms, we believe, could solve this communication problem. Successful neologisms achieve a useful amount of abstraction: not too detailed, so they're reusable in many contexts, and not too high-level, so they convey precise information. As a proof of concept, we demonstrate how a "length neologism" enables controlling LLM response length, while a "diversity neologism" allows sampling more variable responses. Taken together, we argue that we cannot understand AI using our existing vocabulary, and expanding it through neologisms creates opportunities for both controlling and understanding machines better.
LEAN-GitHub: Compiling GitHub LEAN repositories for a versatile LEAN prover
Recently, large language models have presented promising results in aiding formal mathematical reasoning. However, their performance is restricted due to the scarcity of formal theorem-proving data, which requires additional effort to be extracted from raw formal language corpora. Meanwhile, a significant amount of human-written formal language corpora remains underutilized. To address this issue, we propose LEAN-GitHub, a dataset consisting of large-scale formal data extracted from almost all Lean 4 repositories on GitHub. After fine-tuning InternLM-math-plus on this dataset, our model achieved accuracies of 48.8% with a single pass and 54.5% with 64 passes on the Lean 4 miniF2F test, surpassing state-of-the-art method at 52%. And it also achieves state-of-the-art on two other Lean 4 benchmarks (ProofNet and Putnam) targeting different fields/levels of math. These results demonstrate that our proposed dataset is beneficial for formal reasoning on a wide range of math topics. We open-source our model at https://GitHub. com/InternLM/InternLM-Math and our data at https://huggingface.co/ datasets/InternLM/Lean-GitHub
A Deductive Verification Infrastructure for Probabilistic Programs
This paper presents a quantitative program verification infrastructure for discrete probabilistic programs. Our infrastructure can be viewed as the probabilistic analogue of Boogie: its central components are an intermediate verification language (IVL) together with a real-valued logic. Our IVL provides a programming-language-style for expressing verification conditions whose validity implies the correctness of a program under investigation. As our focus is on verifying quantitative properties such as bounds on expected outcomes, expected run-times, or termination probabilities, off-the-shelf IVLs based on Boolean first-order logic do not suffice. Instead, a paradigm shift from the standard Boolean to a real-valued domain is required. Our IVL features quantitative generalizations of standard verification constructs such as assume- and assert-statements. Verification conditions are generated by a weakest-precondition-style semantics, based on our real-valued logic. We show that our verification infrastructure supports natural encodings of numerous verification techniques from the literature. With our SMT-based implementation, we automatically verify a variety of benchmarks. To the best of our knowledge, this establishes the first deductive verification infrastructure for expectation-based reasoning about probabilistic programs.
NaturalProver: Grounded Mathematical Proof Generation with Language Models
Theorem proving in natural mathematical language - the mixture of symbolic and natural language used by humans - plays a central role in mathematical advances and education, and tests aspects of reasoning that are core to intelligence. Yet it has remained underexplored with modern generative models. We study large-scale language models on two new generation tasks: suggesting the next step in a mathematical proof, and full proof generation. We develop NaturalProver, a language model that generates proofs by conditioning on background references (e.g. theorems and definitions that are either retrieved or human-provided), and optionally enforces their presence with constrained decoding. On theorems from the NaturalProofs benchmark, NaturalProver improves the quality of next-step suggestions and generated proofs over fine-tuned GPT-3, according to human evaluations from university-level mathematics students. NaturalProver is capable of proving some theorems that require short (2-6 step) proofs, and providing next-step suggestions that are rated as correct and useful over 40% of the time, which is to our knowledge the first demonstration of these capabilities using neural language models.
Language Models are Symbolic Learners in Arithmetic
Large Language Models (LLMs) are thought to struggle with arithmetic learning due to the inherent differences between language modeling and numerical computation, but concrete evidence has been lacking. This work responds to this claim through a two-side experiment. We first investigate whether LLMs leverage partial products during arithmetic learning. We find that although LLMs can identify some partial products after learning, they fail to leverage them for arithmetic tasks, conversely. We then explore how LLMs approach arithmetic symbolically by breaking tasks into subgroups, hypothesizing that difficulties arise from subgroup complexity and selection. Our results show that when subgroup complexity is fixed, LLMs treat a collection of different arithmetic operations similarly. By analyzing position-level accuracy across different training sizes, we further observe that it follows a U-shaped pattern: LLMs quickly learn the easiest patterns at the first and last positions, while progressively learning the more difficult patterns in the middle positions. This suggests that LLMs select subgroup following an easy-to-hard paradigm during learning. Our work confirms that LLMs are pure symbolic learners in arithmetic tasks and underscores the importance of understanding them deeply through subgroup-level quantification.
SURFACEBENCH: Can Self-Evolving LLMs Find the Equations of 3D Scientific Surfaces?
Equation discovery from data is a core challenge in machine learning for science, requiring the recovery of concise symbolic expressions that govern complex physical and geometric phenomena. Recent approaches with large language models (LLMs) show promise in symbolic regression, but their success often hinges on memorized formulas or overly simplified functional forms. Existing benchmarks exacerbate this limitation: they focus on scalar functions, ignore domain grounding, and rely on brittle string-matching based metrics that fail to capture scientific equivalence. We introduce SurfaceBench, first comprehensive benchmark for symbolic surface discovery. SurfaceBench comprises 183 tasks across 15 categories of symbolic complexity, spanning explicit, implicit, and parametric equation representation forms. Each task includes ground-truth equations, variable semantics, and synthetically sampled three dimensional data. Unlike prior SR datasets, our tasks reflect surface-level structure, resist LLM memorization through novel symbolic compositions, and are grounded in scientific domains such as fluid dynamics, robotics, electromagnetics, and geometry. To evaluate equation discovery quality, we pair symbolic checks with geometry-aware metrics such as Chamfer and Hausdorff distances, capturing both algebraic fidelity and spatial reconstruction accuracy. Our experiments reveal that state-of-the-art frameworks, while occasionally successful on specific families, struggle to generalize across representation types and surface complexities. SurfaceBench thus establishes a challenging and diagnostic testbed that bridges symbolic reasoning with geometric reconstruction, enabling principled benchmarking of progress in compositional generalization, data-driven scientific induction, and geometry-aware reasoning with LLMs. We release the code here: https://github.com/Sanchit-404/surfacebench
Large Language Models Are Not Strong Abstract Reasoners
Large Language Models have shown tremendous performance on a large variety of natural language processing tasks, ranging from text comprehension to common sense reasoning. However, the mechanisms responsible for this success remain opaque, and it is unclear whether LLMs can achieve human-like cognitive capabilities or whether these models are still fundamentally circumscribed. Abstract reasoning is a fundamental task for cognition, consisting of finding and applying a general pattern from few data. Evaluating deep neural architectures on this task could give insight into their potential limitations regarding reasoning and their broad generalisation abilities, yet this is currently an under-explored area. In this paper, we introduce a new benchmark for evaluating language models beyond memorization on abstract reasoning tasks. We perform extensive evaluations of state-of-the-art LLMs, showing that they currently achieve very limited performance in contrast with other natural language tasks, and we examine the reasons for this difference. We apply techniques that have been shown to improve performance on other NLP tasks and show that their impact on abstract reasoning is limited.
PSIMiner: A Tool for Mining Rich Abstract Syntax Trees from Code
The application of machine learning algorithms to source code has grown in the past years. Since these algorithms are quite sensitive to input data, it is not surprising that researchers experiment with input representations. Nowadays, a popular starting point to represent code is abstract syntax trees (ASTs). Abstract syntax trees have been used for a long time in various software engineering domains, and in particular in IDEs. The API of modern IDEs allows to manipulate and traverse ASTs, resolve references between code elements, etc. Such algorithms can enrich ASTs with new data and therefore may be useful in ML-based code analysis. In this work, we present PSIMiner - a tool for processing PSI trees from the IntelliJ Platform. PSI trees contain code syntax trees as well as functions to work with them, and therefore can be used to enrich code representation using static analysis algorithms of modern IDEs. To showcase this idea, we use our tool to infer types of identifiers in Java ASTs and extend the code2seq model for the method name prediction problem.
Least-to-Most Prompting Enables Complex Reasoning in Large Language Models
Chain-of-thought prompting has demonstrated remarkable performance on various natural language reasoning tasks. However, it tends to perform poorly on tasks which requires solving problems harder than the exemplars shown in the prompts. To overcome this challenge of easy-to-hard generalization, we propose a novel prompting strategy, least-to-most prompting. The key idea in this strategy is to break down a complex problem into a series of simpler subproblems and then solve them in sequence. Solving each subproblem is facilitated by the answers to previously solved subproblems. Our experimental results on tasks related to symbolic manipulation, compositional generalization, and math reasoning reveal that least-to-most prompting is capable of generalizing to more difficult problems than those seen in the prompts. A notable finding is that when the GPT-3 code-davinci-002 model is used with least-to-most prompting, it can solve the compositional generalization benchmark SCAN in any split (including length split) with an accuracy of at least 99% using just 14 exemplars, compared to only 16% accuracy with chain-of-thought prompting. This is particularly noteworthy because neural-symbolic models in the literature that specialize in solving SCAN are trained on the entire training set containing over 15,000 examples. We have included prompts for all the tasks in the Appendix.
Abstract independence relations in neostability theory
We develop a framework, in the style of Adler, for interpreting the notion of "witnessing" that has appeared (usually as a variant of Kim's Lemma) in different areas of neostability theory as a binary relation between abstract independence relations. This involves extending the relativisations of Kim-independence and Conant-independence due to Mutchnik to arbitrary independence relations. After developing this framework, we show that several results from simplicity, NTP_2, NSOP_1, and beyond follow as instances of general theorems for abstract independence relations. In particular, we prove the equivalence between witnessing and symmetry and the implications from this notion to chain local character and the weak independence theorem, and recover some partial converses. Finally, we use this framework to prove a dichotomy between NSOP_1 and Kruckman and Ramsey's BTP that applies to most known NSOP_4 examples in the literature.
SymbolicGPT: A Generative Transformer Model for Symbolic Regression
Symbolic regression is the task of identifying a mathematical expression that best fits a provided dataset of input and output values. Due to the richness of the space of mathematical expressions, symbolic regression is generally a challenging problem. While conventional approaches based on genetic evolution algorithms have been used for decades, deep learning-based methods are relatively new and an active research area. In this work, we present SymbolicGPT, a novel transformer-based language model for symbolic regression. This model exploits the advantages of probabilistic language models like GPT, including strength in performance and flexibility. Through comprehensive experiments, we show that our model performs strongly compared to competing models with respect to the accuracy, running time, and data efficiency.
Searching Latent Program Spaces
Program synthesis methods aim to automatically generate programs restricted to a language that can explain a given specification of input-output pairs. While purely symbolic approaches suffer from a combinatorial search space, recent methods leverage neural networks to learn distributions over program structures to narrow this search space significantly, enabling more efficient search. However, for challenging problems, it remains difficult to train models to perform program synthesis in one shot, making test-time search essential. Most neural methods lack structured search mechanisms during inference, relying instead on stochastic sampling or gradient updates, which can be inefficient. In this work, we propose the Latent Program Network (LPN), a general algorithm for program induction that learns a distribution over latent programs in a continuous space, enabling efficient search and test-time adaptation. We explore how to train these networks to optimize for test-time computation and demonstrate the use of gradient-based search both during training and at test time. We evaluate LPN on ARC-AGI, a program synthesis benchmark that evaluates performance by generalizing programs to new inputs rather than explaining the underlying specification. We show that LPN can generalize beyond its training distribution and adapt to unseen tasks by utilizing test-time computation, outperforming algorithms without test-time adaptation mechanisms.
Visual Programming: Compositional visual reasoning without training
We present VISPROG, a neuro-symbolic approach to solving complex and compositional visual tasks given natural language instructions. VISPROG avoids the need for any task-specific training. Instead, it uses the in-context learning ability of large language models to generate python-like modular programs, which are then executed to get both the solution and a comprehensive and interpretable rationale. Each line of the generated program may invoke one of several off-the-shelf computer vision models, image processing routines, or python functions to produce intermediate outputs that may be consumed by subsequent parts of the program. We demonstrate the flexibility of VISPROG on 4 diverse tasks - compositional visual question answering, zero-shot reasoning on image pairs, factual knowledge object tagging, and language-guided image editing. We believe neuro-symbolic approaches like VISPROG are an exciting avenue to easily and effectively expand the scope of AI systems to serve the long tail of complex tasks that people may wish to perform.
Higher-Order DisCoCat (Peirce-Lambek-Montague semantics)
We propose a new definition of higher-order DisCoCat (categorical compositional distributional) models where the meaning of a word is not a diagram, but a diagram-valued higher-order function. Our models can be seen as a variant of Montague semantics based on a lambda calculus where the primitives act on string diagrams rather than logical formulae. As a special case, we show how to translate from the Lambek calculus into Peirce's system beta for first-order logic. This allows us to give a purely diagrammatic treatment of higher-order and non-linear processes in natural language semantics: adverbs, prepositions, negation and quantifiers. The theoretical definition presented in this article comes with a proof-of-concept implementation in DisCoPy, the Python library for string diagrams.
Synergizing Machine Learning & Symbolic Methods: A Survey on Hybrid Approaches to Natural Language Processing
The advancement of machine learning and symbolic approaches have underscored their strengths and weaknesses in Natural Language Processing (NLP). While machine learning approaches are powerful in identifying patterns in data, they often fall short in learning commonsense and the factual knowledge required for the NLP tasks. Meanwhile, the symbolic methods excel in representing knowledge-rich data. However, they struggle to adapt dynamic data and generalize the knowledge. Bridging these two paradigms through hybrid approaches enables the alleviation of weaknesses in both while preserving their strengths. Recent studies extol the virtues of this union, showcasing promising results in a wide range of NLP tasks. In this paper, we present an overview of hybrid approaches used for NLP. Specifically, we delve into the state-of-the-art hybrid approaches used for a broad spectrum of NLP tasks requiring natural language understanding, generation, and reasoning. Furthermore, we discuss the existing resources available for hybrid approaches for NLP along with the challenges and future directions, offering a roadmap for future research avenues.
