Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePsyche-R1: Towards Reliable Psychological LLMs through Unified Empathy, Expertise, and Reasoning
Amidst a shortage of qualified mental health professionals, the integration of large language models (LLMs) into psychological applications offers a promising way to alleviate the growing burden of mental health disorders. Recent reasoning-augmented LLMs have achieved remarkable performance in mathematics and programming, while research in the psychological domain has predominantly emphasized emotional support and empathetic dialogue, with limited attention to reasoning mechanisms that are beneficial to generating reliable responses. Therefore, in this paper, we propose Psyche-R1, the first Chinese psychological LLM that jointly integrates empathy, psychological expertise, and reasoning, built upon a novel data curation pipeline. Specifically, we design a comprehensive data synthesis pipeline that produces over 75k high-quality psychological questions paired with detailed rationales, generated through chain-of-thought (CoT) reasoning and iterative prompt-rationale optimization, along with 73k empathetic dialogues. Subsequently, we employ a hybrid training strategy wherein challenging samples are identified through a multi-LLM cross-selection strategy for group relative policy optimization (GRPO) to improve reasoning ability, while the remaining data is used for supervised fine-tuning (SFT) to enhance empathetic response generation and psychological domain knowledge. Extensive experiment results demonstrate the effectiveness of the Psyche-R1 across several psychological benchmarks, where our 7B Psyche-R1 achieves comparable results to 671B DeepSeek-R1.
DrugReasoner: Interpretable Drug Approval Prediction with a Reasoning-augmented Language Model
Drug discovery is a complex and resource-intensive process, making early prediction of approval outcomes critical for optimizing research investments. While classical machine learning and deep learning methods have shown promise in drug approval prediction, their limited interpretability constraints their impact. Here, we present DrugReasoner, a reasoning-based large language model (LLM) built on the LLaMA architecture and fine-tuned with group relative policy optimization (GRPO) to predict the likelihood of small-molecule approval. DrugReasoner integrates molecular descriptors with comparative reasoning against structurally similar approved and unapproved compounds, generating predictions alongside step-by-step rationales and confidence scores. DrugReasoner achieved robust performance with an AUC of 0.732 and an F1 score of 0.729 on the validation set and 0.725 and 0.718 on the test set, respectively. These results outperformed conventional baselines, including logistic regression, support vector machine, and k-nearest neighbors and had competitive performance relative to XGBoost. On an external independent dataset, DrugReasoner outperformed both baseline and the recently developed ChemAP model, achieving an AUC of 0.728 and an F1-score of 0.774, while maintaining high precision and balanced sensitivity, demonstrating robustness in real-world scenarios. These findings demonstrate that DrugReasoner not only delivers competitive predictive accuracy but also enhances transparency through its reasoning outputs, thereby addressing a key bottleneck in AI-assisted drug discovery. This study highlights the potential of reasoning-augmented LLMs as interpretable and effective tools for pharmaceutical decision-making.
Advancing Reasoning in Large Language Models: Promising Methods and Approaches
Large Language Models (LLMs) have succeeded remarkably in various natural language processing (NLP) tasks, yet their reasoning capabilities remain a fundamental challenge. While LLMs exhibit impressive fluency and factual recall, their ability to perform complex reasoning-spanning logical deduction, mathematical problem-solving, commonsense inference, and multi-step reasoning-often falls short of human expectations. This survey provides a comprehensive review of emerging techniques enhancing reasoning in LLMs. We categorize existing methods into key approaches, including prompting strategies (e.g., Chain-of-Thought reasoning, Self-Consistency, and Tree-of-Thought reasoning), architectural innovations (e.g., retrieval-augmented models, modular reasoning networks, and neuro-symbolic integration), and learning paradigms (e.g., fine-tuning with reasoning-specific datasets, reinforcement learning, and self-supervised reasoning objectives). Additionally, we explore evaluation frameworks used to assess reasoning in LLMs and highlight open challenges, such as hallucinations, robustness, and reasoning generalization across diverse tasks. By synthesizing recent advancements, this survey aims to provide insights into promising directions for future research and practical applications of reasoning-augmented LLMs.
From Good to Great: Improving Math Reasoning with Tool-Augmented Interleaf Prompting
This paper investigates the performance of Large Language Models (LLMs) and Tool-augmented LLMs in tackling complex mathematical reasoning tasks. We introduce IMP-TIP: Improving Math Reasoning with Tool-augmented Interleaf Prompting, a framework that combines the strengths of both LLMs and Tool-augmented LLMs. IMP-TIP follows the ``From Good to Great" concept, collecting multiple potential solutions from both LLMs and their Tool-Augmented counterparts for the same math problem, and then selecting or re-generating the most accurate answer after cross-checking these solutions via tool-augmented interleaf prompting. The framework incorporates two key aspects: self-prompt and tool-augmented interleaf prompting (TIP). The former allows LLMs to autonomously refine and improve an initial prompt related to tool usage, while the latter enables LLMs to derive the final answer by dynamically analyzing the problem, cross-checking potential solutions, and revising previous reasoning hints in an interleaved manner. Experimental analysis shows that IMP-TIP achieves enhanced mathematical capabilities and outperforms traditional LLMs and tool-augmented LLMs in accuracy and reasoning diversity on math reasoning tasks. For instance, IMP-TIP can improve Tool-augmented ChatGPT on GSM8K-Hard from 56.0% to 65.2%.
From Reasoning to Generalization: Knowledge-Augmented LLMs for ARC Benchmark
Recent reasoning-oriented LLMs have demonstrated strong performance on challenging tasks such as mathematics and science examinations. However, core cognitive faculties of human intelligence, such as abstract reasoning and generalization, remain underexplored. To address this, we evaluate recent reasoning-oriented LLMs on the Abstraction and Reasoning Corpus (ARC) benchmark, which explicitly demands both faculties. We formulate ARC as a program synthesis task and propose nine candidate solvers. Experimental results show that repeated-sampling planning-aided code generation (RSPC) achieves the highest test accuracy and demonstrates consistent generalization across most LLMs. To further improve performance, we introduce an ARC solver, Knowledge Augmentation for Abstract Reasoning (KAAR), which encodes core knowledge priors within an ontology that classifies priors into three hierarchical levels based on their dependencies. KAAR progressively expands LLM reasoning capacity by gradually augmenting priors at each level, and invokes RSPC to generate candidate solutions after each augmentation stage. This stage-wise reasoning reduces interference from irrelevant priors and improves LLM performance. Empirical results show that KAAR maintains strong generalization and consistently outperforms non-augmented RSPC across all evaluated LLMs, achieving around 5% absolute gains and up to 64.52% relative improvement. Despite these achievements, ARC remains a challenging benchmark for reasoning-oriented LLMs, highlighting future avenues of progress in LLMs.
Search and Refine During Think: Autonomous Retrieval-Augmented Reasoning of LLMs
Large language models have demonstrated impressive reasoning capabilities but are inherently limited by their knowledge reservoir. Retrieval-augmented reasoning mitigates this limitation by allowing LLMs to query external resources, but existing methods often retrieve irrelevant or noisy information, hindering accurate reasoning. In this paper, we propose AutoRefine, a reinforcement learning post-training framework that adopts a new ``search-and-refine-during-think'' paradigm. AutoRefine introduces explicit knowledge refinement steps between successive search calls, enabling the model to iteratively filter, distill, and organize evidence before generating an answer. Furthermore, we incorporate tailored retrieval-specific rewards alongside answer correctness rewards using group relative policy optimization. Experiments on single-hop and multi-hop QA benchmarks demonstrate that AutoRefine significantly outperforms existing approaches, particularly in complex, multi-hop reasoning scenarios. Detailed analysis shows that AutoRefine issues frequent, higher-quality searches and synthesizes evidence effectively.
Med-R$^3$: Enhancing Medical Retrieval-Augmented Reasoning of LLMs via Progressive Reinforcement Learning
In medical scenarios, effectively retrieving external knowledge and leveraging it for rigorous logical reasoning is of significant importance. Despite their potential, existing work has predominantly focused on enhancing either retrieval or reasoning capabilities of the models in isolation, with little attention given to their joint optimization, which leads to limited coordination between the two processes. Additionally, current methods rely heavily on supervised fine-tuning (SFT), which can cause models to memorize existing problem-solving pathways, thereby restricting their generalization ability when confronted with novel problem contexts. Furthermore, while some studies have explored to improve retrieval-augmented reasoning in general domains via reinforcement learning, their reward function designs do not adequately capture the specific demands of the medical domain. To address these challenges, we introduce **Med-R^3**, a **Med**ical **R**etrieval-augmented **R**easoning framework driven by progressive **R**einforcement learning. In this framework, we first develop the model's ability to perform logical reasoning over medical problems. Subsequently, on the basis of this foundation, we adaptively optimize the retrieval capability to better align with the characteristics of knowledge corpus and external information utilization throughout the reasoning process. Finally, we conduct joint optimization of the model's retrieval and reasoning coordination. Extensive experiments indicate that **Med-R^3** could achieve state-of-the-art performances, with LLaMA3.1-8B-Instruct + Med-R^3 surpassing closed-sourced GPT-4o-mini by 3.93\% at a comparable parameter scale, while Qwen2.5-14B augmented with Med-R^3 shows a more substantial gain of 13.53\%.
From Sufficiency to Reflection: Reinforcement-Guided Thinking Quality in Retrieval-Augmented Reasoning for LLMs
Reinforcement learning-based retrieval-augmented generation (RAG) methods enhance the reasoning abilities of large language models (LLMs). However, most rely only on final-answer rewards, overlooking intermediate reasoning quality. This paper analyzes existing RAG reasoning models and identifies three main failure patterns: (1) information insufficiency, meaning the model fails to retrieve adequate support; (2) faulty reasoning, where logical or content-level flaws appear despite sufficient information; and (3) answer-reasoning inconsistency, where a valid reasoning chain leads to a mismatched final answer. We propose TIRESRAG-R1, a novel framework using a think-retrieve-reflect process and a multi-dimensional reward system to improve reasoning and stability. TIRESRAG-R1 introduces: (1) a sufficiency reward to encourage thorough retrieval; (2) a reasoning quality reward to assess the rationality and accuracy of the reasoning chain; and (3) a reflection reward to detect and revise errors. It also employs a difficulty-aware reweighting strategy and training sample filtering to boost performance on complex tasks. Experiments on four multi-hop QA datasets show that TIRESRAG-R1 outperforms prior RAG methods and generalizes well to single-hop tasks. The code and data are available at: https://github.com/probe2/TIRESRAG-R1.
AceSearcher: Bootstrapping Reasoning and Search for LLMs via Reinforced Self-Play
Search-augmented LLMs often struggle with complex reasoning tasks due to ineffective multi-hop retrieval and limited reasoning ability. We propose AceSearcher, a cooperative self-play framework that trains a single large language model (LLM) to alternate between two roles: a decomposer that breaks down complex queries and a solver that integrates retrieved contexts for answer generation. AceSearcher couples supervised fine-tuning on a diverse mixture of search, reasoning, and decomposition tasks with reinforcement fine-tuning optimized for final answer accuracy, eliminating the need for intermediate annotations. Extensive experiments on three reasoning-intensive tasks across 10 datasets show that AceSearcher outperforms state-of-the-art baselines, achieving an average exact match improvement of 7.6%. Remarkably, on document-level finance reasoning tasks, AceSearcher-32B matches the performance of the DeepSeek-V3 model using less than 5% of its parameters. Even at smaller scales (1.5B and 8B), AceSearcher often surpasses existing search-augmented LLMs with up to 9x more parameters, highlighting its exceptional efficiency and effectiveness in tackling complex reasoning tasks. Our code will be published at https://github.com/ritaranx/AceSearcher and https://huggingface.co/AceSearcher.
RePrompt: Reasoning-Augmented Reprompting for Text-to-Image Generation via Reinforcement Learning
Despite recent progress in text-to-image (T2I) generation, existing models often struggle to faithfully capture user intentions from short and under-specified prompts. While prior work has attempted to enhance prompts using large language models (LLMs), these methods frequently generate stylistic or unrealistic content due to insufficient grounding in visual semantics and real-world composition. Inspired by recent advances in reasoning for language model, we propose RePrompt, a novel reprompting framework that introduces explicit reasoning into the prompt enhancement process via reinforcement learning. Instead of relying on handcrafted rules or stylistic rewrites, our method trains a language model to generate structured, self-reflective prompts by optimizing for image-level outcomes. The tailored reward models assesse the generated images in terms of human preference, semantic alignment, and visual composition, providing indirect supervision to refine prompt generation. Our approach enables end-to-end training without human-annotated data. Experiments on GenEval and T2I-Compbench show that RePrompt significantly boosts spatial layout fidelity and compositional generalization across diverse T2I backbones, establishing new state-of-the-art results.
LLM Augmented LLMs: Expanding Capabilities through Composition
Foundational models with billions of parameters which have been trained on large corpora of data have demonstrated non-trivial skills in a variety of domains. However, due to their monolithic structure, it is challenging and expensive to augment them or impart new skills. On the other hand, due to their adaptation abilities, several new instances of these models are being trained towards new domains and tasks. In this work, we study the problem of efficient and practical composition of existing foundation models with more specific models to enable newer capabilities. To this end, we propose CALM -- Composition to Augment Language Models -- which introduces cross-attention between models to compose their representations and enable new capabilities. Salient features of CALM are: (i) Scales up LLMs on new tasks by 're-using' existing LLMs along with a few additional parameters and data, (ii) Existing model weights are kept intact, and hence preserves existing capabilities, and (iii) Applies to diverse domains and settings. We illustrate that augmenting PaLM2-S with a smaller model trained on low-resource languages results in an absolute improvement of up to 13\% on tasks like translation into English and arithmetic reasoning for low-resource languages. Similarly, when PaLM2-S is augmented with a code-specific model, we see a relative improvement of 40\% over the base model for code generation and explanation tasks -- on-par with fully fine-tuned counterparts.
SMARTAPS: Tool-augmented LLMs for Operations Management
Large language models (LLMs) present intriguing opportunities to enhance user interaction with traditional algorithms and tools in real-world applications. An advanced planning system (APS) is a sophisticated software that leverages optimization to help operations planners create, interpret, and modify an operational plan. While highly beneficial, many customers are priced out of using an APS due to the ongoing costs of consultants responsible for customization and maintenance. To address the need for a more accessible APS expressed by supply chain planners, we present SmartAPS, a conversational system built on a tool-augmented LLM. Our system provides operations planners with an intuitive natural language chat interface, allowing them to query information, perform counterfactual reasoning, receive recommendations, and execute scenario analysis to better manage their operation. A short video demonstrating the system has been released: https://youtu.be/KtIrJjlDbyw
Tool Zero: Training Tool-Augmented LLMs via Pure RL from Scratch
Training tool-augmented LLMs has emerged as a promising approach to enhancing language models' capabilities for complex tasks. The current supervised fine-tuning paradigm relies on constructing extensive domain-specific datasets to train models. However, this approach often struggles to generalize effectively to unfamiliar or intricate tool-use scenarios. Recently, reinforcement learning (RL) paradigm can endow LLMs with superior reasoning and generalization abilities. In this work, we address a key question: Can the pure RL be used to effectively elicit a model's intrinsic reasoning capabilities and enhance the tool-agnostic generalization? We propose a dynamic generalization-guided reward design for rule-based RL, which progressively shifts rewards from exploratory to exploitative tool-use patterns. Based on this design, we introduce the Tool-Zero series models. These models are trained to enable LLMs to autonomously utilize general tools by directly scaling up RL from Zero models (i.e., base models without post-training). Experimental results demonstrate that our models achieve over 7% performance improvement compared to both SFT and RL-with-SFT models under the same experimental settings. These gains are consistently replicated across cross-dataset and intra-dataset evaluations, validating the effectiveness and robustness of our methods.
ReaKase-8B: Legal Case Retrieval via Knowledge and Reasoning Representations with LLMs
Legal case retrieval (LCR) is a cornerstone of real-world legal decision making, as it enables practitioners to identify precedents for a given query case. Existing approaches mainly rely on traditional lexical models and pretrained language models to encode the texts of legal cases. Yet there are rich information in the relations among different legal entities as well as the crucial reasoning process that uncovers how legal facts and legal issues can lead to judicial decisions. Such relational reasoning process reflects the distinctive characteristics of each case that can distinguish one from another, mirroring the real-world judicial process. Naturally, incorporating such information into the precise case embedding could further enhance the accuracy of case retrieval. In this paper, a novel ReaKase-8B framework is proposed to leverage extracted legal facts, legal issues, legal relation triplets and legal reasoning for effective legal case retrieval. ReaKase-8B designs an in-context legal case representation learning paradigm with a fine-tuned large language model. Extensive experiments on two benchmark datasets from COLIEE 2022 and COLIEE 2023 demonstrate that our knowledge and reasoning augmented embeddings substantially improve retrieval performance over baseline models, highlighting the potential of integrating legal reasoning into legal case retrieval systems. The code has been released on https://github.com/yanran-tang/ReaKase-8B.
A Reasoning-Focused Legal Retrieval Benchmark
As the legal community increasingly examines the use of large language models (LLMs) for various legal applications, legal AI developers have turned to retrieval-augmented LLMs ("RAG" systems) to improve system performance and robustness. An obstacle to the development of specialized RAG systems is the lack of realistic legal RAG benchmarks which capture the complexity of both legal retrieval and downstream legal question-answering. To address this, we introduce two novel legal RAG benchmarks: Bar Exam QA and Housing Statute QA. Our tasks correspond to real-world legal research tasks, and were produced through annotation processes which resemble legal research. We describe the construction of these benchmarks and the performance of existing retriever pipelines. Our results suggest that legal RAG remains a challenging application, thus motivating future research.
Advancing Tool-Augmented Large Language Models: Integrating Insights from Errors in Inference Trees
Tool-augmented large language models (LLMs) leverage tools, often in the form of APIs, to enhance their reasoning capabilities on complex tasks, thus taking on the role of intelligent agents interacting with the real world. The recently introduced ToolLLaMA model by Qin et al. [2024] utilizes the depth-first search-based decision tree (DFSDT) method for reasoning with 16000+ real-world APIs, which effectively improves the planning and inferencing performance of tool-augmented LLMs compared to traditional chain reasoning approaches. However, their approach only employs successful paths from decision trees (also called inference trees) for supervised fine-tuning (SFT) during training, which does not fully exploit the advantages of the tree of thought. In this study, we propose an inference trajectory optimization framework based on the preference data extracted from decision trees to address this limitation. We first introduce a novel method for constructing preference data from the tree of thought, capitalizing on the failed explorations previously overlooked in the trees. Specifically, we generate an effective step-wise preference dataset, named ToolPreference, for tool use based on the ToolBench dataset. In the subsequent training phase, we first fine-tune the LLM with tool-usage expert trajectories and then use these step-wise preference pairs for direct preference optimization (DPO) to update the policy of the LLM, resulting in our ToolPrefer-LLaMA (TP-LLaMA) model. Our experiments demonstrate that by obtaining insights from errors in inference trees, TP-LLaMA significantly outperforms the baselines across almost all test scenarios by a large margin and exhibits better generalization capabilities with unseen APIs. At the same time, TP-LLaMA has also demonstrated superior reasoning efficiency compared to the baselines, making it more suitable for complex tool-usage reasoning tasks.
Efficient Tool Use with Chain-of-Abstraction Reasoning
To achieve faithful reasoning that aligns with human expectations, large language models (LLMs) need to ground their reasoning to real-world knowledge (e.g., web facts, math and physical rules). Tools help LLMs access this external knowledge, but there remains challenges for fine-tuning LLM agents (e.g., Toolformer) to invoke tools in multi-step reasoning problems, where inter-connected tool calls require holistic and efficient tool usage planning. In this work, we propose a new method for LLMs to better leverage tools in multi-step reasoning. Our method, Chain-of-Abstraction (CoA), trains LLMs to first decode reasoning chains with abstract placeholders, and then call domain tools to reify each reasoning chain by filling in specific knowledge. This planning with abstract chains enables LLMs to learn more general reasoning strategies, which are robust to shifts of domain knowledge (e.g., math results) relevant to different reasoning questions. It also allows LLMs to perform decoding and calling of external tools in parallel, which avoids the inference delay caused by waiting for tool responses. In mathematical reasoning and Wiki QA domains, we show that our method consistently outperforms previous chain-of-thought and tool-augmented baselines on both in-distribution and out-of-distribution test sets, with an average ~6% absolute QA accuracy improvement. LLM agents trained with our method also show more efficient tool use, with inference speed being on average ~1.4x faster than baseline tool-augmented LLMs.
To CoT or not to CoT? Chain-of-thought helps mainly on math and symbolic reasoning
Chain-of-thought (CoT) via prompting is the de facto method for eliciting reasoning capabilities from large language models (LLMs). But for what kinds of tasks is this extra ``thinking'' really helpful? To analyze this, we conducted a quantitative meta-analysis covering over 100 papers using CoT and ran our own evaluations of 20 datasets across 14 models. Our results show that CoT gives strong performance benefits primarily on tasks involving math or logic, with much smaller gains on other types of tasks. On MMLU, directly generating the answer without CoT leads to almost identical accuracy as CoT unless the question or model's response contains an equals sign, indicating symbolic operations and reasoning. Following this finding, we analyze the behavior of CoT on these problems by separating planning and execution and comparing against tool-augmented LLMs. Much of CoT's gain comes from improving symbolic execution, but it underperforms relative to using a symbolic solver. Our results indicate that CoT can be applied selectively, maintaining performance while saving inference costs. Furthermore, they suggest a need to move beyond prompt-based CoT to new paradigms that better leverage intermediate computation across the whole range of LLM applications.
Plan-on-Graph: Self-Correcting Adaptive Planning of Large Language Model on Knowledge Graphs
Large Language Models (LLMs) have shown remarkable reasoning capabilities on complex tasks, but they still suffer from out-of-date knowledge, hallucinations, and opaque decision-making. In contrast, Knowledge Graphs (KGs) can provide explicit and editable knowledge for LLMs to alleviate these issues. Existing paradigm of KG-augmented LLM manually predefines the breadth of exploration space and requires flawless navigation in KGs. However, this paradigm cannot adaptively explore reasoning paths in KGs based on the question semantics and self-correct erroneous reasoning paths, resulting in a bottleneck in efficiency and effect. To address these limitations, we propose a novel self-correcting adaptive planning paradigm for KG-augmented LLM named Plan-on-Graph (PoG), which first decomposes the question into several sub-objectives and then repeats the process of adaptively exploring reasoning paths, updating memory, and reflecting on the need to self-correct erroneous reasoning paths until arriving at the answer. Specifically, three important mechanisms of Guidance, Memory, and Reflection are designed to work together, to guarantee the adaptive breadth of self-correcting planning for graph reasoning. Finally, extensive experiments on three real-world datasets demonstrate the effectiveness and efficiency of PoG.
Fusing LLM Capabilities with Routing Data
The rapid advancement of large language models (LLMs) has created a vibrant ecosystem of diverse architectures, each with unique strengths due to differences in design, training data, and objectives. However, most applications still rely on a single backend model, limiting coverage of capabilities and leading to inefficiencies in performance and token cost when tackling complex tasks. We highlight an underexploited opportunity: LLM routing data, produced when hosting platforms route diverse queries to different models, which can reveal comparative strengths across tasks. To address this, we propose FusionBench, a comprehensive routing benchmark covering 14 tasks across five domains with 20 open-source LLMs (8B to 671B parameters), capturing 103M tokens and summarizing reusable thought templates from top models. Building on this, we introduce FusionFactory, a systematic fusion framework with three levels: (1) query-level fusion, tailoring routers for each query using both direct responses and reasoning-augmented outputs; (2) thought-level fusion, leveraging abstract templates derived from top-performing LLMs' answers to similar queries; and (3) model-level fusion, transferring capabilities between models via distillation, using top responses or highest judge scores as training data. Experiments show FusionFactory consistently outperforms the best individual LLM across all 14 benchmarks, with optimal fusion configurations varying by benchmark, demonstrating the value of systematic LLM fusion in harnessing complementary strengths and improving overall performance.
Knowledge-Augmented Reasoning Distillation for Small Language Models in Knowledge-Intensive Tasks
Large Language Models (LLMs) have shown promising performance in knowledge-intensive reasoning tasks that require a compound understanding of knowledge. However, deployment of the LLMs in real-world applications can be challenging due to their high computational requirements and concerns on data privacy. Previous studies have focused on building task-specific small language models (LMs) by fine-tuning them with labeled data or distilling LLMs. However, these approaches are ill-suited for knowledge-intensive reasoning tasks due to the limited capacity of small LMs in memorizing the knowledge required. Motivated by our theoretical analysis on memorization, we propose Knowledge-Augmented Reasoning Distillation (KARD), a novel method that fine-tunes small LMs to generate rationales with augmented knowledge retrieved from an external knowledge base. Moreover, we further propose a neural reranker to obtain documents relevant to rationale generation. We empirically show that KARD significantly improves the performance of small T5 and Flan-T5 models on the challenging knowledge-intensive reasoning datasets, namely MedQA-USMLE and StrategyQA. Notably, our method makes the 250M models achieve superior performance against the fine-tuned 3B models, having 12 times larger parameters, on both MedQA-USMLE and StrategyQA benchmarks.
RARE: Retrieval-Augmented Reasoning Enhancement for Large Language Models
This work introduces RARE (Retrieval-Augmented Reasoning Enhancement), a versatile extension to the mutual reasoning framework (rStar), aimed at enhancing reasoning accuracy and factual integrity across large language models (LLMs) for complex, knowledge-intensive tasks such as commonsense and medical reasoning. RARE incorporates two innovative actions within the Monte Carlo Tree Search (MCTS) framework: A6, which generates search queries based on the initial problem statement, performs information retrieval using those queries, and augments reasoning with the retrieved data to formulate the final answer; and A7, which leverages information retrieval specifically for generated sub-questions and re-answers these sub-questions with the relevant contextual information. Additionally, a Retrieval-Augmented Factuality Scorer is proposed to replace the original discriminator, prioritizing reasoning paths that meet high standards of factuality. Experimental results with LLaMA 3.1 show that RARE enables open-source LLMs to achieve competitive performance with top open-source models like GPT-4 and GPT-4o. This research establishes RARE as a scalable solution for improving LLMs in domains where logical coherence and factual integrity are critical.
ARise: Towards Knowledge-Augmented Reasoning via Risk-Adaptive Search
Large language models (LLMs) have demonstrated impressive capabilities and are receiving increasing attention to enhance their reasoning through scaling test--time compute. However, their application in open--ended, knowledge--intensive, complex reasoning scenarios is still limited. Reasoning--oriented methods struggle to generalize to open--ended scenarios due to implicit assumptions of complete world knowledge. Meanwhile, knowledge--augmented reasoning (KAR) methods fail to address two core challenges: 1) error propagation, where errors in early steps cascade through the chain, and 2) verification bottleneck, where the explore--exploit tradeoff arises in multi--branch decision processes. To overcome these limitations, we introduce ARise, a novel framework that integrates risk assessment of intermediate reasoning states with dynamic retrieval--augmented generation (RAG) within a Monte Carlo tree search paradigm. This approach enables effective construction and optimization of reasoning plans across multiple maintained hypothesis branches. Experimental results show that ARise significantly outperforms the state--of--the--art KAR methods by up to 23.10%, and the latest RAG-equipped large reasoning models by up to 25.37%. Our project page is at https://opencausalab.github.io/ARise.
ReARTeR: Retrieval-Augmented Reasoning with Trustworthy Process Rewarding
Retrieval-Augmented Generation (RAG) systems for Large Language Models (LLMs) hold promise in knowledge-intensive tasks but face limitations in complex multi-step reasoning. While recent methods have integrated RAG with chain-of-thought reasoning or test-time search using Process Reward Models (PRMs), these approaches encounter challenges such as a lack of explanations, bias in PRM training data, early-step bias in PRM scores, and insufficient post-training optimization of reasoning potential. To address these issues, we propose Retrieval-Augmented Reasoning through Trustworthy Process Rewarding (ReARTeR), a framework that enhances RAG systems' reasoning capabilities through post-training and test-time scaling. At test time, ReARTeR introduces Trustworthy Process Rewarding via a Process Reward Model for accurate scalar scoring and a Process Explanation Model (PEM) for generating natural language explanations, enabling step refinement. During post-training, it utilizes Monte Carlo Tree Search guided by Trustworthy Process Rewarding to collect high-quality step-level preference data, optimized through Iterative Preference Optimization. ReARTeR addresses three core challenges: (1) misalignment between PRM and PEM, tackled through off-policy preference learning; (2) bias in PRM training data, mitigated by balanced annotation methods and stronger annotations for challenging examples; and (3) early-step bias in PRM, resolved through a temporal-difference-based look-ahead search strategy. Experimental results on multi-step reasoning benchmarks demonstrate significant improvements, underscoring ReARTeR's potential to advance the reasoning capabilities of RAG systems.
ChipMind: Retrieval-Augmented Reasoning for Long-Context Circuit Design Specifications
While Large Language Models (LLMs) demonstrate immense potential for automating integrated circuit (IC) development, their practical deployment is fundamentally limited by restricted context windows. Existing context-extension methods struggle to achieve effective semantic modeling and thorough multi-hop reasoning over extensive, intricate circuit specifications. To address this, we introduce ChipMind, a novel knowledge graph-augmented reasoning framework specifically designed for lengthy IC specifications. ChipMind first transforms circuit specifications into a domain-specific knowledge graph ChipKG through the Circuit Semantic-Aware Knowledge Graph Construction methodology. It then leverages the ChipKG-Augmented Reasoning mechanism, combining information-theoretic adaptive retrieval to dynamically trace logical dependencies with intent-aware semantic filtering to prune irrelevant noise, effectively balancing retrieval completeness and precision. Evaluated on an industrial-scale specification reasoning benchmark, ChipMind significantly outperforms state-of-the-art baselines, achieving an average improvement of 34.59% (up to 72.73%). Our framework bridges a critical gap between academic research and practical industrial deployment of LLM-aided Hardware Design (LAD).
ChatCoT: Tool-Augmented Chain-of-Thought Reasoning on Chat-based Large Language Models
Although large language models (LLMs) have achieved excellent performance in a variety of evaluation benchmarks, they still struggle in complex reasoning tasks which require specific knowledge and multi-hop reasoning. To improve the reasoning abilities, we propose ChatCoT, a tool-augmented chain-of-thought reasoning framework for chat-based LLMs. In ChatCoT, we model the chain-of-thought~(CoT) reasoning as multi-turn conversations, to utilize tools in a more natural way through chatting. At each turn, LLMs can either interact with tools or perform the reasoning. Our approach can effectively leverage the multi-turn conversation ability of chat-based LLMs, and integrate the thought chain following and tools manipulation in a unified way. Specially, we initialize the early turns of the conversation by the tools, tasks and reasoning format, and propose an iterative tool-augmented reasoning step to perform step-by-step tool-augmented reasoning. The experiment results on two complex reasoning datasets (MATH and HotpotQA) have shown the effectiveness of ChatCoT on complex reasoning tasks, achieving a 6.8\% relative improvement over the state-of-the-art baseline. Our code and data are available at: https://github.com/RUCAIBOX/ChatCoT.
Open-RAG: Enhanced Retrieval-Augmented Reasoning with Open-Source Large Language Models
Retrieval-Augmented Generation (RAG) has been shown to enhance the factual accuracy of Large Language Models (LLMs), but existing methods often suffer from limited reasoning capabilities in effectively using the retrieved evidence, particularly when using open-source LLMs. To mitigate this gap, we introduce a novel framework, Open-RAG, designed to enhance reasoning capabilities in RAG with open-source LLMs. Our framework transforms an arbitrary dense LLM into a parameter-efficient sparse mixture of experts (MoE) model capable of handling complex reasoning tasks, including both single- and multi-hop queries. Open-RAG uniquely trains the model to navigate challenging distractors that appear relevant but are misleading. As a result, Open-RAG leverages latent learning, dynamically selecting relevant experts and integrating external knowledge effectively for more accurate and contextually relevant responses. In addition, we propose a hybrid adaptive retrieval method to determine retrieval necessity and balance the trade-off between performance gain and inference speed. Experimental results show that the Llama2-7B-based Open-RAG outperforms state-of-the-art LLMs and RAG models such as ChatGPT, Self-RAG, and Command R+ in various knowledge-intensive tasks. We open-source our code and models at https://openragmoe.github.io/
Improving Context Fidelity via Native Retrieval-Augmented Reasoning
Large language models (LLMs) often struggle with context fidelity, producing inconsistent answers when responding to questions based on provided information. Existing approaches either rely on expensive supervised fine-tuning to generate evidence post-answer or train models to perform web searches without necessarily improving utilization of the given context. We propose CARE, a novel native retrieval-augmented reasoning framework that teaches LLMs to explicitly integrate in-context evidence within their reasoning process with the model's own retrieval capabilities. Our method requires limited labeled evidence data while significantly enhancing both retrieval accuracy and answer generation performance through strategically retrieved in-context tokens in the reasoning chain. Extensive experiments on multiple real-world and counterfactual QA benchmarks demonstrate that our approach substantially outperforms supervised fine-tuning, traditional retrieval-augmented generation methods, and external retrieval solutions. This work represents a fundamental advancement in making LLMs more accurate, reliable, and efficient for knowledge-intensive tasks.
Graph-Augmented Reasoning: Evolving Step-by-Step Knowledge Graph Retrieval for LLM Reasoning
Recent large language model (LLM) reasoning, despite its success, suffers from limited domain knowledge, susceptibility to hallucinations, and constrained reasoning depth, particularly in small-scale models deployed in resource-constrained environments. This paper presents the first investigation into integrating step-wise knowledge graph retrieval with step-wise reasoning to address these challenges, introducing a novel paradigm termed as graph-augmented reasoning. Our goal is to enable frozen, small-scale LLMs to retrieve and process relevant mathematical knowledge in a step-wise manner, enhancing their problem-solving abilities without additional training. To this end, we propose KG-RAR, a framework centered on process-oriented knowledge graph construction, a hierarchical retrieval strategy, and a universal post-retrieval processing and reward model (PRP-RM) that refines retrieved information and evaluates each reasoning step. Experiments on the Math500 and GSM8K benchmarks across six models demonstrate that KG-RAR yields encouraging results, achieving a 20.73\% relative improvement with Llama-3B on Math500.
GRAIL:Learning to Interact with Large Knowledge Graphs for Retrieval Augmented Reasoning
Large Language Models (LLMs) integrated with Retrieval-Augmented Generation (RAG) techniques have exhibited remarkable performance across a wide range of domains. However, existing RAG approaches primarily operate on unstructured data and demonstrate limited capability in handling structured knowledge such as knowledge graphs. Meanwhile, current graph retrieval methods fundamentally struggle to capture holistic graph structures while simultaneously facing precision control challenges that manifest as either critical information gaps or excessive redundant connections, collectively undermining reasoning performance. To address this challenge, we propose GRAIL: Graph-Retrieval Augmented Interactive Learning, a framework designed to interact with large-scale graphs for retrieval-augmented reasoning. Specifically, GRAIL integrates LLM-guided random exploration with path filtering to establish a data synthesis pipeline, where a fine-grained reasoning trajectory is automatically generated for each task. Based on the synthesized data, we then employ a two-stage training process to learn a policy that dynamically decides the optimal actions at each reasoning step. The overall objective of precision-conciseness balance in graph retrieval is decoupled into fine-grained process-supervised rewards to enhance data efficiency and training stability. In practical deployment, GRAIL adopts an interactive retrieval paradigm, enabling the model to autonomously explore graph paths while dynamically balancing retrieval breadth and precision. Extensive experiments have shown that GRAIL achieves an average accuracy improvement of 21.01% and F1 improvement of 22.43% on three knowledge graph question-answering datasets. Our source code and datasets is available at https://github.com/Changgeww/GRAIL.
Aligning Vision to Language: Text-Free Multimodal Knowledge Graph Construction for Enhanced LLMs Reasoning
Multimodal reasoning in Large Language Models (LLMs) struggles with incomplete knowledge and hallucination artifacts, challenges that textual Knowledge Graphs (KGs) only partially mitigate due to their modality isolation. While Multimodal Knowledge Graphs (MMKGs) promise enhanced cross-modal understanding, their practical construction is impeded by semantic narrowness of manual text annotations and inherent noise in visual-semantic entity linkages. In this paper, we propose Vision-align-to-Language integrated Knowledge Graph (VaLiK), a novel approach for constructing MMKGs that enhances LLMs reasoning through cross-modal information supplementation. Specifically, we cascade pre-trained Vision-Language Models (VLMs) to align image features with text, transforming them into descriptions that encapsulate image-specific information. Furthermore, we developed a cross-modal similarity verification mechanism to quantify semantic consistency, effectively filtering out noise introduced during feature alignment. Even without manually annotated image captions, the refined descriptions alone suffice to construct the MMKG. Compared to conventional MMKGs construction paradigms, our approach achieves substantial storage efficiency gains while maintaining direct entity-to-image linkage capability. Experimental results on multimodal reasoning tasks demonstrate that LLMs augmented with VaLiK outperform previous state-of-the-art models. Our code is published at https://github.com/Wings-Of-Disaster/VaLiK.
RARE: Retrieval-Augmented Reasoning Modeling
Domain-specific intelligence demands specialized knowledge and sophisticated reasoning for problem-solving, posing significant challenges for large language models (LLMs) that struggle with knowledge hallucination and inadequate reasoning capabilities under constrained parameter budgets. Inspired by Bloom's Taxonomy in educational theory, we propose Retrieval-Augmented Reasoning Modeling (RARE), a novel paradigm that decouples knowledge storage from reasoning optimization. RARE externalizes domain knowledge to retrievable sources and internalizes domain-specific reasoning patterns during training. Specifically, by injecting retrieved knowledge into training prompts with masked losses, RARE transforms learning objectives from rote memorization to contextualized reasoning. It enables models to bypass parameter-intensive memorization and prioritize the development of higher-order cognitive processes. Extensive experiments demonstrate that lightweight RARE-trained models (e.g., Llama-3.1-8B) could achieve state-of-the-art performance, surpassing retrieval-augmented GPT-4 and DeepSeek-R1 up to approximately 20\% accuracy. RARE establishes a paradigm shift where maintainable external knowledge bases synergize with compact, reasoning-optimized models, collectively driving more scalable domain-specific intelligence.
RAGAR, Your Falsehood RADAR: RAG-Augmented Reasoning for Political Fact-Checking using Multimodal Large Language Models
The escalating challenge of misinformation, particularly in the context of political discourse, necessitates advanced solutions for fact-checking. We introduce innovative approaches to enhance the reliability and efficiency of multimodal fact-checking through the integration of Large Language Models (LLMs) with Retrieval-augmented Generation (RAG)- based advanced reasoning techniques. This work proposes two novel methodologies, Chain of RAG (CoRAG) and Tree of RAG (ToRAG). The approaches are designed to handle multimodal claims by reasoning the next questions that need to be answered based on previous evidence. Our approaches improve the accuracy of veracity predictions and the generation of explanations over the traditional fact-checking approach of sub-question generation with chain of thought veracity prediction. By employing multimodal LLMs adept at analyzing both text and images, this research advances the capability of automated systems in identifying and countering misinformation.
TAGS: A Test-Time Generalist-Specialist Framework with Retrieval-Augmented Reasoning and Verification
Recent advances such as Chain-of-Thought prompting have significantly improved large language models (LLMs) in zero-shot medical reasoning. However, prompting-based methods often remain shallow and unstable, while fine-tuned medical LLMs suffer from poor generalization under distribution shifts and limited adaptability to unseen clinical scenarios. To address these limitations, we present TAGS, a test-time framework that combines a broadly capable generalist with a domain-specific specialist to offer complementary perspectives without any model fine-tuning or parameter updates. To support this generalist-specialist reasoning process, we introduce two auxiliary modules: a hierarchical retrieval mechanism that provides multi-scale exemplars by selecting examples based on both semantic and rationale-level similarity, and a reliability scorer that evaluates reasoning consistency to guide final answer aggregation. TAGS achieves strong performance across nine MedQA benchmarks, boosting GPT-4o accuracy by 13.8%, DeepSeek-R1 by 16.8%, and improving a vanilla 7B model from 14.1% to 23.9%. These results surpass several fine-tuned medical LLMs, without any parameter updates. The code will be available at https://github.com/JianghaoWu/TAGS.
Buffer of Thoughts: Thought-Augmented Reasoning with Large Language Models
We introduce Buffer of Thoughts (BoT), a novel and versatile thought-augmented reasoning approach for enhancing accuracy, efficiency and robustness of large language models (LLMs). Specifically, we propose meta-buffer to store a series of informative high-level thoughts, namely thought-template, distilled from the problem-solving processes across various tasks. Then for each problem, we retrieve a relevant thought-template and adaptively instantiate it with specific reasoning structures to conduct efficient reasoning. To guarantee the scalability and stability, we further propose buffer-manager to dynamically update the meta-buffer, thus enhancing the capacity of meta-buffer as more tasks are solved. We conduct extensive experiments on 10 challenging reasoning-intensive tasks, and achieve significant performance improvements over previous SOTA methods: 11% on Game of 24, 20% on Geometric Shapes and 51% on Checkmate-in-One. Further analysis demonstrate the superior generalization ability and model robustness of our BoT, while requiring only 12% of the cost of multi-query prompting methods (e.g., tree/graph of thoughts) on average. Notably, we find that our Llama3-8B+BoT has the potential to surpass Llama3-70B model. Our project is available at: https://github.com/YangLing0818/buffer-of-thought-llm
Evidence to Generate (E2G): A Single-agent Two-step Prompting for Context Grounded and Retrieval Augmented Reasoning
While chain-of-thought (CoT) prompting has revolutionized how LLMs perform reasoning tasks, its current methods and variations (e.g, Self-consistency, ReACT, Reflexion, Tree-of-Thoughts (ToT), Cumulative Reasoning (CR)) suffer from limitations like slowness, limited context grounding, hallucination and inconsistent outputs. To overcome these challenges, we introduce Evidence to Generate (E2G), a novel single-agent, two-step prompting framework. Instead of unverified reasoning claims, this innovative approach leverages the power of "evidence for decision making" by first focusing exclusively on the thought sequences (the series of intermediate steps) explicitly mentioned in the context which then serve as extracted evidence, guiding the LLM's output generation process with greater precision and efficiency. This simple yet powerful approach unlocks the true potential of chain-of-thought like prompting, paving the way for faster, more reliable, and more contextually aware reasoning in LLMs. \tool achieves remarkable results robustly across a wide range of knowledge-intensive reasoning and generation tasks, surpassing baseline approaches with state-of-the-art LLMs. For example, (i) on LogiQA benchmark using GPT-4 as backbone model, \tool achieves a new state-of-the Accuracy of 53.8% exceeding CoT by 18%, ToT by 11%, CR by 9% (ii) a variant of E2G with PaLM2 outperforms the variable-shot performance of Gemini Ultra by 0.9 F1 points, reaching an F1 score of 83.3 on a subset of DROP.
ChatDB: Augmenting LLMs with Databases as Their Symbolic Memory
Large language models (LLMs) with memory are computationally universal. However, mainstream LLMs are not taking full advantage of memory, and the designs are heavily influenced by biological brains. Due to their approximate nature and proneness to the accumulation of errors, conventional neural memory mechanisms cannot support LLMs to simulate complex reasoning. In this paper, we seek inspiration from modern computer architectures to augment LLMs with symbolic memory for complex multi-hop reasoning. Such a symbolic memory framework is instantiated as an LLM and a set of SQL databases, where the LLM generates SQL instructions to manipulate the SQL databases. We validate the effectiveness of the proposed memory framework on a synthetic dataset requiring complex reasoning. The project website is available at https://chatdatabase.github.io/ .
Thinking in a Crowd: How Auxiliary Information Shapes LLM Reasoning
The capacity of Large Language Models (LLMs) to reason is fundamental to their application in complex, knowledge-intensive domains. In real-world scenarios, LLMs are often augmented with external information that can be helpful, irrelevant, or even misleading. This paper investigates the causal impact of such auxiliary information on the reasoning process of LLMs with explicit step-by-step thinking capabilities. We introduce SciAux, a new dataset derived from ScienceQA, to systematically test the robustness of the model against these types of information. Our findings reveal a critical vulnerability: the model's deliberative "thinking mode" is a double-edged sword. While helpful context improves accuracy, misleading information causes a catastrophic drop in performance, which is amplified by the thinking process. Instead of conferring robustness, thinking reinforces the degree of error when provided with misinformation. This highlights that the challenge is not merely to make models "think", but to endow them with the critical faculty to evaluate the information upon which their reasoning is based. The SciAux dataset is available at https://huggingface.co/datasets/billhdzhao/SciAux.
Enhancing Test-Time Scaling of Large Language Models with Hierarchical Retrieval-Augmented MCTS
Test-time scaling has emerged as a promising paradigm in language modeling, leveraging additional computational resources at inference time to enhance model performance. In this work, we introduce R2-LLMs, a novel and versatile hierarchical retrieval-augmented reasoning framework designed to improve test-time scaling in large language models (LLMs) without requiring distillation from more advanced models to obtain chain-of-thought (CoT) training data. R2-LLMs enhances inference-time generalization by integrating dual-level retrieval-based in-context learning: (1) At the coarse level, our approach extracts abstract templates from complex reasoning problems and retrieves similar problem-answer pairs to facilitate high-level in-context learning; (2) At the fine level, during Monte Carlo Tree Search (MCTS), R2-LLMs efficiently retrieves analogous intermediate solution steps from reference mathematical problem datasets, refining step-wise reasoning with the aid of a process reward model (PRM) for scoring. R2-LLMs is a robust hierarchical reasoning-augmentation method that enhances in-context-level reasoning while seamlessly integrating with step-level tree search methods. Utilizing PRM, it refines both candidate generation and decision-making for improved reasoning accuracy. Empirical evaluations on the MATH500, GSM8K, and OlympiadBench-TO datasets achieve substantial relative improvement with an increase of up to 16% using LLaMA-3.1-8B compared to the baselines, showcasing the effectiveness of our approach in complex reasoning tasks.
ThinkEdit: Interpretable Weight Editing to Mitigate Overly Short Thinking in Reasoning Models
Recent studies have shown that Large Language Models (LLMs) augmented with chain-of-thought (CoT) reasoning demonstrate impressive problem-solving abilities. However, in this work, we identify a recurring issue where these models occasionally generate overly short reasoning, leading to degraded performance on even simple mathematical problems. Specifically, we investigate how reasoning length is embedded in the hidden representations of reasoning models and its impact on accuracy. Our analysis reveals that reasoning length is governed by a linear direction in the representation space, allowing us to induce overly short reasoning by steering the model along this direction. Building on this insight, we introduce ThinkEdit, a simple yet effective weight-editing approach to mitigate the issue of overly short reasoning. We first identify a small subset of attention heads (approximately 2%) that predominantly drive short reasoning behavior. We then edit the output projection weights of these heads to suppress the short reasoning direction. With changes to only 0.1% of the model's parameters, ThinkEdit effectively reduces overly short reasoning and yields notable accuracy gains for short reasoning outputs (+5.44%), along with an overall improvement across multiple math benchmarks (+2.43%). Our findings provide new mechanistic insights into how reasoning length is controlled within LLMs and highlight the potential of fine-grained model interventions to improve reasoning quality. Our code is available at https://github.com/Trustworthy-ML-Lab/ThinkEdit
MathVista: Evaluating Mathematical Reasoning of Foundation Models in Visual Contexts
Although Large Language Models (LLMs) and Large Multimodal Models (LMMs) exhibit impressive skills in various domains, their ability for mathematical reasoning within visual contexts has not been formally examined. Equipping LLMs and LMMs with this capability is vital for general-purpose AI assistants and showcases promising potential in education, data analysis, and scientific discovery. To bridge this gap, we present MathVista, a benchmark designed to amalgamate challenges from diverse mathematical and visual tasks. We first taxonomize the key task types, reasoning skills, and visual contexts from the literature to guide our selection from 28 existing math-focused and visual question answering datasets. Then, we construct three new datasets, IQTest, FunctionQA, and PaperQA, to accommodate for missing types of visual contexts. The problems featured often require deep visual understanding beyond OCR or image captioning, and compositional reasoning with rich domain-specific tools, thus posing a notable challenge to existing models. We conduct a comprehensive evaluation of 11 prominent open-source and proprietary foundation models (LLMs, LLMs augmented with tools, and LMMs), and early experiments with GPT-4V. The best-performing model, Multimodal Bard, achieves only 58% of human performance (34.8% vs 60.3%), indicating ample room for further improvement. Given this significant gap, MathVista fuels future research in the development of general-purpose AI agents capable of tackling mathematically intensive and visually rich real-world tasks. Preliminary tests show that MathVista also presents challenges to GPT-4V, underscoring the benchmark's importance. The project is available at https://mathvista.github.io/.
Thinking Before Looking: Improving Multimodal LLM Reasoning via Mitigating Visual Hallucination
Multimodal large language models (MLLMs) have advanced the integration of visual and linguistic modalities, establishing themselves as the dominant paradigm for visual-language tasks. Current approaches like chain of thought (CoT) reasoning have augmented the cognitive capabilities of large language models (LLMs), yet their adaptation to MLLMs is hindered by heightened risks of hallucination in cross-modality comprehension. In this paper, we find that the thinking while looking paradigm in current multimodal CoT approaches--where reasoning chains are generated alongside visual input--fails to mitigate hallucinations caused by misleading images. To address these limitations, we propose the Visual Inference Chain (VIC) framework, a novel approach that constructs reasoning chains using textual context alone before introducing visual input, effectively reducing cross-modal biases and enhancing multimodal reasoning accuracy. Comprehensive evaluations demonstrate that VIC significantly improves zero-shot performance across various vision-related tasks, mitigating hallucinations while refining the reasoning capabilities of MLLMs. Our code repository can be found at https://github.com/Terry-Xu-666/visual_inference_chain.
Eliciting Critical Reasoning in Retrieval-Augmented Language Models via Contrastive Explanations
Retrieval-augmented generation (RAG) has emerged as a critical mechanism in contemporary NLP to support Large Language Models(LLMs) in systematically accessing richer factual context. However, the integration of RAG mechanisms brings its inherent challenges, as LLMs need to deal with potentially noisy contexts. Recent studies have shown that LLMs still struggle to critically analyse RAG-based in-context information, a limitation that may lead to incorrect inferences and hallucinations. In this paper, we investigate how to elicit critical reasoning in RAG via contrastive explanations. In particular, we propose Contrastive-RAG (C-RAG), a framework that (i) retrieves relevant documents given a query, (ii) selects and exemplifies relevant passages, and (iii) generates explanations that explicitly contrast the relevance of the passages to (iv) support the final answer. We show the impact of C-RAG building contrastive reasoning demonstrations from LLMs to instruct smaller models for retrieval-augmented tasks. Extensive experiments demonstrate that C-RAG improves state-of-the-art RAG models while (a) requiring significantly fewer prompts and demonstrations and (b) being robust to perturbations in the retrieved documents.
RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement
Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks. Despite the successes of chain-of-thought and tree-based search methods, they mainly depend on the internal knowledge of LLMs to search over intermediate reasoning steps, limited to dealing with simple tasks involving fewer reasoning steps. In this paper, we propose RAG-Star, a novel RAG approach that integrates the retrieved information to guide the tree-based deliberative reasoning process that relies on the inherent knowledge of LLMs. By leveraging Monte Carlo Tree Search, RAG-Star iteratively plans intermediate sub-queries and answers for reasoning based on the LLM itself. To consolidate internal and external knowledge, we propose an retrieval-augmented verification that utilizes query- and answer-aware reward modeling to provide feedback for the inherent reasoning of LLMs. Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods.
AGRAG: Advanced Graph-based Retrieval-Augmented Generation for LLMs
Graph-based retrieval-augmented generation (Graph-based RAG) has demonstrated significant potential in enhancing Large Language Models (LLMs) with structured knowledge. However, existing methods face three critical challenges: Inaccurate Graph Construction, caused by LLM hallucination; Poor Reasoning Ability, caused by failing to generate explicit reasons telling LLM why certain chunks were selected; and Inadequate Answering, which only partially answers the query due to the inadequate LLM reasoning, making their performance lag behind NaiveRAG on certain tasks. To address these issues, we propose AGRAG, an advanced graph-based retrieval-augmented generation framework. When constructing the graph, AGRAG substitutes the widely used LLM entity extraction method with a statistics-based method, avoiding hallucination and error propagation. When retrieval, AGRAG formulates the graph reasoning procedure as the Minimum Cost Maximum Influence (MCMI) subgraph generation problem, where we try to include more nodes with high influence score, but with less involving edge cost, to make the generated reasoning paths more comprehensive. We prove this problem to be NP-hard, and propose a greedy algorithm to solve it. The MCMI subgraph generated can serve as explicit reasoning paths to tell LLM why certain chunks were retrieved, thereby making the LLM better focus on the query-related part contents of the chunks, reducing the impact of noise, and improving AGRAG's reasoning ability. Furthermore, compared with the simple tree-structured reasoning paths, our MCMI subgraph can allow more complex graph structures, such as cycles, and improve the comprehensiveness of the generated reasoning paths.
Don't Let It Hallucinate: Premise Verification via Retrieval-Augmented Logical Reasoning
Large language models (LLMs) have shown substantial capacity for generating fluent, contextually appropriate responses. However, they can produce hallucinated outputs, especially when a user query includes one or more false premises-claims that contradict established facts. Such premises can mislead LLMs into offering fabricated or misleading details. Existing approaches include pretraining, fine-tuning, and inference-time techniques that often rely on access to logits or address hallucinations after they occur. These methods tend to be computationally expensive, require extensive training data, or lack proactive mechanisms to prevent hallucination before generation, limiting their efficiency in real-time applications. We propose a retrieval-based framework that identifies and addresses false premises before generation. Our method first transforms a user's query into a logical representation, then applies retrieval-augmented generation (RAG) to assess the validity of each premise using factual sources. Finally, we incorporate the verification results into the LLM's prompt to maintain factual consistency in the final output. Experiments show that this approach effectively reduces hallucinations, improves factual accuracy, and does not require access to model logits or large-scale fine-tuning.
AirRAG: Activating Intrinsic Reasoning for Retrieval Augmented Generation via Tree-based Search
Leveraging the autonomous decision-making capabilities of large language models (LLMs) demonstrates superior performance in reasoning tasks. Despite the successes of iterative or recursive retrieval-augmented generation (RAG), they often are trapped in a single solution space when confronted with complex tasks. In this paper, we propose a novel thinking pattern in RAG which integrates system analysis with efficient reasoning actions, significantly activating intrinsic reasoning capabilities and expanding the solution space of specific tasks via Monte Carlo Tree Search (MCTS), dubbed AirRAG. Specifically, our approach designs five fundamental reasoning actions that are expanded to a wide tree-based reasoning spaces using MCTS. The extension also uses self-consistency verification to explore potential reasoning paths and implement inference scaling. In addition, computationally optimal strategies are used to apply more inference computation to key actions to achieve further performance improvements. Experimental results demonstrate the effectiveness of AirRAG through considerable performance gains over complex QA datasets. Furthermore, AirRAG is flexible and lightweight, making it easy to integrate with other advanced technologies.
SealQA: Raising the Bar for Reasoning in Search-Augmented Language Models
We introduce SealQA, a new challenge benchmark for evaluating SEarch-Augmented Language models on fact-seeking questions where web search yields conflicting, noisy, or unhelpful results. SealQA comes in three flavors: (1) Seal-0 (main) and (2) Seal-Hard, which assess factual accuracy and reasoning capabilities, with Seal-0 focusing on the most challenging questions where chat models (e.g., GPT-4.1) typically achieve near-zero accuracy; and (3) LongSeal, which extends SealQA to test long-context, multi-document reasoning in "needle-in-a-haystack" settings. Our evaluation reveals critical limitations in current models: Even frontier LLMs perform poorly across all SealQA flavors. On Seal-0, frontier agentic models equipped with tools like o3 and o4-mini achieve only 17.1% and 6.3% accuracy, respectively, at their best reasoning efforts. We find that advanced reasoning models such as DeepSeek-R1-671B and o3-mini are highly vulnerable to noisy search results. Notably, increasing test-time compute does not yield reliable gains across o3-mini, o4-mini, and o3, with performance often plateauing or even declining early. Additionally, while recent models are less affected by the "lost-in-the-middle" issue, they still fail to reliably identify relevant documents in LongSeal when faced with numerous distractors. To facilitate future work, we release SealQA at huggingface.co/datasets/vtllms/sealqa.
Vendi-RAG: Adaptively Trading-Off Diversity And Quality Significantly Improves Retrieval Augmented Generation With LLMs
Retrieval-augmented generation (RAG) enhances large language models (LLMs) for domain-specific question-answering (QA) tasks by leveraging external knowledge sources. However, traditional RAG systems primarily focus on relevance-based retrieval and often struggle with redundancy, especially when reasoning requires connecting information from multiple sources. This paper introduces Vendi-RAG, a framework based on an iterative process that jointly optimizes retrieval diversity and answer quality. This joint optimization leads to significantly higher accuracy for multi-hop QA tasks. Vendi-RAG leverages the Vendi Score (VS), a flexible similarity-based diversity metric, to promote semantic diversity in document retrieval. It then uses an LLM judge that evaluates candidate answers, generated after a reasoning step, and outputs a score that the retriever uses to balance relevance and diversity among the retrieved documents during each iteration. Experiments on three challenging datasets -- HotpotQA, MuSiQue, and 2WikiMultiHopQA -- demonstrate Vendi-RAG's effectiveness in multi-hop reasoning tasks. The framework achieves significant accuracy improvements over traditional single-step and multi-step RAG approaches, with accuracy increases reaching up to +4.2% on HotpotQA, +4.1% on 2WikiMultiHopQA, and +1.3% on MuSiQue compared to Adaptive-RAG, the current best baseline. The benefits of Vendi-RAG are even more pronounced as the number of retrieved documents increases. Finally, we evaluated Vendi-RAG across different LLM backbones, including GPT-3.5, GPT-4, and GPT-4o-mini, and observed consistent improvements, demonstrating that the framework's advantages are model-agnostic.
Deductive Beam Search: Decoding Deducible Rationale for Chain-of-Thought Reasoning
Recent advancements have significantly augmented the reasoning capabilities of Large Language Models (LLMs) through various methodologies, especially chain-of-thought (CoT) reasoning. However, previous methods fail to address reasoning errors in intermediate steps, leading to accumulative errors. In this paper, we propose Deductive Beam Search (DBS), which seamlessly integrates CoT and deductive reasoning with step-wise beam search for LLMs. Our approach deploys a verifier, verifying the deducibility of a reasoning step and its premises, thus alleviating the error accumulation. Furthermore, we introduce a scalable and labor-free data construction method to amplify our model's verification capabilities. Extensive experiments demonstrate that our approach significantly enhances the base performance of LLMs of various scales (7B, 13B, 70B, and ChatGPT) across 8 reasoning datasets from 3 diverse reasoning genres, including arithmetic, commonsense, and symbolic. Moreover, our analysis proves DBS's capability of detecting diverse and subtle reasoning errors and robustness on different model scales.
DianJin-R1: Evaluating and Enhancing Financial Reasoning in Large Language Models
Effective reasoning remains a core challenge for large language models (LLMs) in the financial domain, where tasks often require domain-specific knowledge, precise numerical calculations, and strict adherence to compliance rules. We propose DianJin-R1, a reasoning-enhanced framework designed to address these challenges through reasoning-augmented supervision and reinforcement learning. Central to our approach is DianJin-R1-Data, a high-quality dataset constructed from CFLUE, FinQA, and a proprietary compliance corpus (Chinese Compliance Check, CCC), combining diverse financial reasoning scenarios with verified annotations. Our models, DianJin-R1-7B and DianJin-R1-32B, are fine-tuned from Qwen2.5-7B-Instruct and Qwen2.5-32B-Instruct using a structured format that generates both reasoning steps and final answers. To further refine reasoning quality, we apply Group Relative Policy Optimization (GRPO), a reinforcement learning method that incorporates dual reward signals: one encouraging structured outputs and another rewarding answer correctness. We evaluate our models on five benchmarks: three financial datasets (CFLUE, FinQA, and CCC) and two general reasoning benchmarks (MATH-500 and GPQA-Diamond). Experimental results show that DianJin-R1 models consistently outperform their non-reasoning counterparts, especially on complex financial tasks. Moreover, on the real-world CCC dataset, our single-call reasoning models match or even surpass the performance of multi-agent systems that require significantly more computational cost. These findings demonstrate the effectiveness of DianJin-R1 in enhancing financial reasoning through structured supervision and reward-aligned learning, offering a scalable and practical solution for real-world applications.
Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-Augmented Generation
Large Language Models (LLMs) have demonstrated significant performance improvements across various cognitive tasks. An emerging application is using LLMs to enhance retrieval-augmented generation (RAG) capabilities. These systems require LLMs to understand user queries, retrieve relevant information, and synthesize coherent and accurate responses. Given the increasing real-world deployment of such systems, comprehensive evaluation becomes crucial. To this end, we propose FRAMES (Factuality, Retrieval, And reasoning MEasurement Set), a high-quality evaluation dataset designed to test LLMs' ability to provide factual responses, assess retrieval capabilities, and evaluate the reasoning required to generate final answers. While previous work has provided datasets and benchmarks to evaluate these abilities in isolation, FRAMES offers a unified framework that provides a clearer picture of LLM performance in end-to-end RAG scenarios. Our dataset comprises challenging multi-hop questions that require the integration of information from multiple sources. We present baseline results demonstrating that even state-of-the-art LLMs struggle with this task, achieving 0.40 accuracy with no retrieval. The accuracy is significantly improved with our proposed multi-step retrieval pipeline, achieving an accuracy of 0.66 (>50% improvement). We hope our work will help bridge evaluation gaps and assist in developing more robust and capable RAG systems.
GNN-RAG: Graph Neural Retrieval for Large Language Model Reasoning
Knowledge Graphs (KGs) represent human-crafted factual knowledge in the form of triplets (head, relation, tail), which collectively form a graph. Question Answering over KGs (KGQA) is the task of answering natural questions grounding the reasoning to the information provided by the KG. Large Language Models (LLMs) are the state-of-the-art models for QA tasks due to their remarkable ability to understand natural language. On the other hand, Graph Neural Networks (GNNs) have been widely used for KGQA as they can handle the complex graph information stored in the KG. In this work, we introduce GNN-RAG, a novel method for combining language understanding abilities of LLMs with the reasoning abilities of GNNs in a retrieval-augmented generation (RAG) style. First, a GNN reasons over a dense KG subgraph to retrieve answer candidates for a given question. Second, the shortest paths in the KG that connect question entities and answer candidates are extracted to represent KG reasoning paths. The extracted paths are verbalized and given as input for LLM reasoning with RAG. In our GNN-RAG framework, the GNN acts as a dense subgraph reasoner to extract useful graph information, while the LLM leverages its natural language processing ability for ultimate KGQA. Furthermore, we develop a retrieval augmentation (RA) technique to further boost KGQA performance with GNN-RAG. Experimental results show that GNN-RAG achieves state-of-the-art performance in two widely used KGQA benchmarks (WebQSP and CWQ), outperforming or matching GPT-4 performance with a 7B tuned LLM. In addition, GNN-RAG excels on multi-hop and multi-entity questions outperforming competing approaches by 8.9--15.5% points at answer F1.
Multimodal DeepResearcher: Generating Text-Chart Interleaved Reports From Scratch with Agentic Framework
Visualizations play a crucial part in effective communication of concepts and information. Recent advances in reasoning and retrieval augmented generation have enabled Large Language Models (LLMs) to perform deep research and generate comprehensive reports. Despite its progress, existing deep research frameworks primarily focus on generating text-only content, leaving the automated generation of interleaved texts and visualizations underexplored. This novel task poses key challenges in designing informative visualizations and effectively integrating them with text reports. To address these challenges, we propose Formal Description of Visualization (FDV), a structured textual representation of charts that enables LLMs to learn from and generate diverse, high-quality visualizations. Building on this representation, we introduce Multimodal DeepResearcher, an agentic framework that decomposes the task into four stages: (1) researching, (2) exemplar report textualization, (3) planning, and (4) multimodal report generation. For the evaluation of generated multimodal reports, we develop MultimodalReportBench, which contains 100 diverse topics served as inputs along with 5 dedicated metrics. Extensive experiments across models and evaluation methods demonstrate the effectiveness of Multimodal DeepResearcher. Notably, utilizing the same Claude 3.7 Sonnet model, Multimodal DeepResearcher achieves an 82\% overall win rate over the baseline method.
When to Reason: Semantic Router for vLLM
Large Language Models (LLMs) demonstrate substantial accuracy gains when augmented with reasoning modes such as chain-of-thought and inference-time scaling. However, reasoning also incurs significant costs in inference latency and token usage, with environmental and financial impacts, which are unnecessary for many simple prompts. We present a semantic router that classifies queries based on their reasoning requirements and selectively applies reasoning only when beneficial. Our approach achieves a 10.2 percentage point improvement in accuracy on the MMLU-Pro benchmark while reducing response latency by 47.1% and token consumption by 48.5% compared to direct inference with vLLM. These results demonstrate that semantic routing offers an effective mechanism for striking a balance between accuracy and efficiency in open-source LLM serving systems
Graph-ToolFormer: To Empower LLMs with Graph Reasoning Ability via Prompt Augmented by ChatGPT
In this paper, we aim to develop a large language model (LLM) with the reasoning ability on complex graph data. Currently, LLMs have achieved very impressive performance on various natural language learning tasks, extensions of which have also been applied to study the vision tasks with multi-modal data. However, when it comes to the graph learning tasks, existing LLMs present very serious flaws due to their several inherited weaknesses in performing {multi-step logic reasoning}, {precise mathematical calculation} and {perception about the spatial and temporal factors}. To address such challenges, in this paper, we will investigate the principles, methodologies and algorithms to empower existing LLMs with graph reasoning ability, which will have tremendous impacts on the current research of both LLMs and graph learning. Inspired by the latest ChatGPT and Toolformer models, we propose the Graph-ToolFormer (Graph Reasoning oriented Toolformer) framework to teach LLMs themselves with prompts augmented by ChatGPT to use external graph reasoning API tools. Specifically, we will investigate to teach Graph-ToolFormer to handle various graph data reasoning tasks in this paper, including both (1) very basic graph data loading and graph property reasoning tasks, ranging from simple graph order and size to the graph diameter and periphery, and (2) more advanced reasoning tasks on real-world graph data, such as bibliographic networks, protein molecules, sequential recommender systems, social networks and knowledge graphs.
StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization
Retrieval-augmented generation (RAG) is a key means to effectively enhance large language models (LLMs) in many knowledge-based tasks. However, existing RAG methods struggle with knowledge-intensive reasoning tasks, because useful information required to these tasks are badly scattered. This characteristic makes it difficult for existing RAG methods to accurately identify key information and perform global reasoning with such noisy augmentation. In this paper, motivated by the cognitive theories that humans convert raw information into various structured knowledge when tackling knowledge-intensive reasoning, we proposes a new framework, StructRAG, which can identify the optimal structure type for the task at hand, reconstruct original documents into this structured format, and infer answers based on the resulting structure. Extensive experiments across various knowledge-intensive tasks show that StructRAG achieves state-of-the-art performance, particularly excelling in challenging scenarios, demonstrating its potential as an effective solution for enhancing LLMs in complex real-world applications.
AAPO: Enhance the Reasoning Capabilities of LLMs with Advantage Momentum
Reinforcement learning (RL) has emerged as an effective approach for enhancing the reasoning capabilities of large language models (LLMs), especially in scenarios where supervised fine-tuning (SFT) falls short due to limited chain-of-thought (CoT) data. Among RL-based post-training methods, group relative advantage estimation, as exemplified by Group Relative Policy Optimization (GRPO), has attracted considerable attention for eliminating the dependency on the value model, thereby simplifying training compared to traditional approaches like Proximal Policy Optimization (PPO). However, we observe that exsiting group relative advantage estimation method still suffers from training inefficiencies, particularly when the estimated advantage approaches zero. To address this limitation, we propose Advantage-Augmented Policy Optimization (AAPO), a novel RL algorithm that optimizes the cross-entropy (CE) loss using advantages enhanced through a momentum-based estimation scheme. This approach effectively mitigates the inefficiencies associated with group relative advantage estimation. Experimental results on multiple mathematical reasoning benchmarks demonstrate the superior performance of AAPO.
Reasoning Under 1 Billion: Memory-Augmented Reinforcement Learning for Large Language Models
Recent advances in fine-tuning large language models (LLMs) with reinforcement learning (RL) have shown promising improvements in complex reasoning tasks, particularly when paired with chain-of-thought (CoT) prompting. However, these successes have been largely demonstrated on large-scale models with billions of parameters, where a strong pretraining foundation ensures effective initial exploration. In contrast, RL remains challenging for tiny LLMs with 1 billion parameters or fewer because they lack the necessary pretraining strength to explore effectively, often leading to suboptimal reasoning patterns. This work introduces a novel intrinsic motivation approach that leverages episodic memory to address this challenge, improving tiny LLMs in CoT reasoning tasks. Inspired by human memory-driven learning, our method leverages successful reasoning patterns stored in memory while allowing for controlled exploration to generate novel responses. Intrinsic rewards are computed efficiently using a kNN-based episodic memory, allowing the model to discover new reasoning strategies while quickly adapting to effective past solutions. Experiments on fine-tuning GSM8K and AI-MO datasets demonstrate that our approach significantly enhances smaller LLMs' sample efficiency and generalization capability, making RL-based reasoning improvements more accessible in low-resource settings.
MemoTime: Memory-Augmented Temporal Knowledge Graph Enhanced Large Language Model Reasoning
Large Language Models (LLMs) have achieved impressive reasoning abilities, but struggle with temporal understanding, especially when questions involve multiple entities, compound operators, and evolving event sequences. Temporal Knowledge Graphs (TKGs), which capture vast amounts of temporal facts in a structured format, offer a reliable source for temporal reasoning. However, existing TKG-based LLM reasoning methods still struggle with four major challenges: maintaining temporal faithfulness in multi-hop reasoning, achieving multi-entity temporal synchronization, adapting retrieval to diverse temporal operators, and reusing prior reasoning experience for stability and efficiency. To address these issues, we propose MemoTime, a memory-augmented temporal knowledge graph framework that enhances LLM reasoning through structured grounding, recursive reasoning, and continual experience learning. MemoTime decomposes complex temporal questions into a hierarchical Tree of Time, enabling operator-aware reasoning that enforces monotonic timestamps and co-constrains multiple entities under unified temporal bounds. A dynamic evidence retrieval layer adaptively selects operator-specific retrieval strategies, while a self-evolving experience memory stores verified reasoning traces, toolkit decisions, and sub-question embeddings for cross-type reuse. Comprehensive experiments on multiple temporal QA benchmarks show that MemoTime achieves overall state-of-the-art results, outperforming the strong baseline by up to 24.0%. Furthermore, MemoTime enables smaller models (e.g., Qwen3-4B) to achieve reasoning performance comparable to that of GPT-4-Turbo.
Retrieval-augmented Multi-modal Chain-of-Thoughts Reasoning for Large Language Models
The advancement of Large Language Models(LLMs) has brought substantial attention to the Chain of Thought(CoT) approach, primarily due to its ability to enhance the capability of LLMs on tasks requiring complex reasoning. Moreover, the significance of CoT approaches extends to the application of LLMs for multi-modal tasks, such as multi-modal question answering. However, the selection of optimal CoT demonstration examples in multi-modal reasoning for LLMs remains less explored for LLMs due to the inherent complexity of multi-modal examples. In this paper, we introduce a novel approach that addresses this challenge by using retrieval mechanisms to dynamically and automatically select demonstration examples based on cross-modal similarities. This method aims to refine the CoT reasoning process in multi-modal scenarios via informing LLMs with more relevant and informative examples. Furthermore, we employ a stratified sampling method categorising demonstration examples into groups based on their types and retrieving examples from different groups respectively to promote the diversity of demonstration examples. Through a series of experiments, we demonstrate that our approach significantly improves the performance of LLMs, achieving state-of-the-art results in multi-modal reasoning tasks. Specifically, our methods demonstrate significant advancements on the ScienceQA dataset. While our method based on ChatGPT outperforms the Chameleon(ChatGPT) by 2.74% with an accuracy of 82.67%, the GPT4-based approach surpasses the Chameleon(GPT-4) by 0.89%, achieving 87.43% on accuracy under the same setting. Moreover, our best performing show a 6.05% increase over Chameleon for ChatGPT-based models and a 4.57% increase for GPT-4-based models.
LIR$^3$AG: A Lightweight Rerank Reasoning Strategy Framework for Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) effectively enhances Large Language Models (LLMs) by incorporating retrieved external knowledge into the generation process. Reasoning models improve LLM performance in multi-hop QA tasks, which require integrating and reasoning over multiple pieces of evidence across different documents to answer a complex question. However, they often introduce substantial computational costs, including increased token consumption and inference latency. To better understand and mitigate this trade-off, we conduct a comprehensive study of reasoning strategies for reasoning models in RAG multi-hop QA tasks. Our findings reveal that reasoning models adopt structured strategies to integrate retrieved and internal knowledge, primarily following two modes: Context-Grounded Reasoning, which relies directly on retrieved content, and Knowledge-Reconciled Reasoning, which resolves conflicts or gaps using internal knowledge. To this end, we propose a novel Lightweight Rerank Reasoning Strategy Framework for RAG (LiR^3AG) to enable non-reasoning models to transfer reasoning strategies by restructuring retrieved evidence into coherent reasoning chains. LiR^3AG significantly reduce the average 98% output tokens overhead and 58.6% inferencing time while improving 8B non-reasoning model's F1 performance ranging from 6.2% to 22.5% to surpass the performance of 32B reasoning model in RAG, offering a practical and efficient path forward for RAG systems.
Tool-Augmented Policy Optimization: Synergizing Reasoning and Adaptive Tool Use with Reinforcement Learning
Recent advances in large language models (LLMs) have popularized test-time scaling, where models generate additional reasoning tokens before producing final answers. These approaches have demonstrated significant performance improvements on benchmarks involving mathematical reasoning. However, language models relying solely on direct inference still struggle with tasks demanding up-to-date knowledge or computational tools such as calculators and code interpreters for complex arithmetic operations. To overcome these limitations, we propose Tool-Augmented Policy Optimization (TAPO), a novel reinforcement learning framework that systematically integrates multi-hop reasoning with adaptive tool-calling capabilities. Our approach employs a modified version of Dynamic Sampling Policy Optimization (DAPO), a recently developed RL paradigm, which we adapt specifically for tool invocation scenarios, enabling models to dynamically interleave complex reasoning with on-demand tool usage (including search APIs and Python interpreters). To support this research, we introduce two new datasets: TAPO-easy-60K and TAPO-hard-18K, specifically designed to train and evaluate both fact-based reasoning and mathematical calculation capabilities. Our experiments on Qwen2.5-3B and Qwen2.5-7B models demonstrate the effectiveness of our approach, with both models achieving state-of-the-art performance on tasks requiring external knowledge and mathematical computation among methods with comparable parameters. Notably, TAPO achieves more efficient tool utilization than baseline methods while preventing excessive calls caused by reward hacking. These results highlight the significant potential of combining advanced reasoning with tool usage to enhance model performance in knowledge-intensive and computationally demanding tasks.
ClueAnchor: Clue-Anchored Knowledge Reasoning Exploration and Optimization for Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) augments Large Language Models (LLMs) with external knowledge to improve factuality. However, existing RAG systems frequently underutilize the retrieved documents, failing to extract and integrate the key clues needed to support faithful and interpretable reasoning, especially in cases where relevant evidence is implicit, scattered, or obscured by noise. To address this issue, we propose ClueAnchor, a novel framework for enhancing RAG via clue-anchored reasoning exploration and optimization. ClueAnchor extracts key clues from retrieved content and generates multiple reasoning paths based on different knowledge configurations, optimizing the model by selecting the most appropriate reasoning path for the given context through reward-based preference optimization. Experiments show that ClueAnchor significantly outperforms prior RAG baselines in the completeness and robustness of reasoning. Further analysis confirms its strong resilience to noisy or partially relevant retrieved content, as well as its capability to identify supporting evidence even in the absence of explicit clue supervision during inference. All codes are available at https://github.com/thunlp/ClueAnchor.
Retrieval-Augmented Generation by Evidence Retroactivity in LLMs
Retrieval-augmented generation has gained significant attention due to its ability to integrate relevant external knowledge, enhancing the accuracy and reliability of the LLMs' responses. Most of the existing methods apply a dynamic multiple retrieval-generating process, to address multi-hop complex questions by decomposing them into sub-problems. However, these methods rely on an unidirectional forward reasoning paradigm, where errors from insufficient reasoning steps or inherent flaws in current retrieval systems are irreversible, potentially derailing the entire reasoning chain. For the first time, this work introduces Retroactive Retrieval-Augmented Generation (RetroRAG), a novel framework to build a retroactive reasoning paradigm. RetroRAG revises and updates the evidence, redirecting the reasoning chain to the correct direction. RetroRAG constructs an evidence-collation-discovery framework to search, generate, and refine credible evidence. It synthesizes inferential evidence related to the key entities in the question from the existing source knowledge and formulates search queries to uncover additional information. As new evidence is found, RetroRAG continually updates and organizes this information, enhancing its ability to locate further necessary evidence. Paired with an Answerer to generate and evaluate outputs, RetroRAG is capable of refining its reasoning process iteratively until a reliable answer is obtained. Empirical evaluations show that RetroRAG significantly outperforms existing methods.
SciAgent: Tool-augmented Language Models for Scientific Reasoning
Scientific reasoning poses an excessive challenge for even the most advanced Large Language Models (LLMs). To make this task more practical and solvable for LLMs, we introduce a new task setting named tool-augmented scientific reasoning. This setting supplements LLMs with scalable toolsets, and shifts the focus from pursuing an omniscient problem solver to a proficient tool-user. To facilitate the research of such setting, we construct a tool-augmented training corpus named MathFunc which encompasses over 30,000 samples and roughly 6,000 tools. Building on MathFunc, we develop SciAgent to retrieve, understand and, if necessary, use tools for scientific problem solving. Additionally, we craft a benchmark, SciToolBench, spanning five scientific domains to evaluate LLMs' abilities with tool assistance. Extensive experiments on SciToolBench confirm the effectiveness of SciAgent. Notably, SciAgent-Mistral-7B surpasses other LLMs with the same size by more than 13% in absolute accuracy. Furthermore, SciAgent-DeepMath-7B shows much superior performance than ChatGPT.
CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models
While chain-of-thought (CoT) reasoning improves the performance of large language models (LLMs) in complex tasks, it still has two main challenges: the low reliability of relying solely on LLMs to generate reasoning chains and the interference of natural language reasoning chains on the inference logic of LLMs. To address these issues, we propose CoT-RAG, a novel reasoning framework with three key designs: (i) Knowledge Graph-driven CoT Generation, featuring knowledge graphs to modulate reasoning chain generation of LLMs, thereby enhancing reasoning credibility; (ii) Learnable Knowledge Case-aware RAG, which incorporates retrieval-augmented generation (RAG) into knowledge graphs to retrieve relevant sub-cases and sub-descriptions, providing LLMs with learnable information; (iii) Pseudo-Program Prompting Execution, which encourages LLMs to execute reasoning tasks in pseudo-programs with greater logical rigor. We conduct a comprehensive evaluation on nine public datasets, covering three reasoning problems. Compared with the-state-of-the-art methods, CoT-RAG exhibits a significant accuracy improvement, ranging from 4.0% to 23.0%. Furthermore, testing on four domain-specific datasets, CoT-RAG shows remarkable accuracy and efficient execution, highlighting its strong practical applicability and scalability.
Furthest Reasoning with Plan Assessment: Stable Reasoning Path with Retrieval-Augmented Large Language Models
Large Language Models (LLMs), acting as a powerful reasoner and generator, exhibit extraordinary performance across various natural language tasks, such as question answering (QA). Among these tasks, Multi-Hop Question Answering (MHQA) stands as a widely discussed category, necessitating seamless integration between LLMs and the retrieval of external knowledge. Existing methods employ LLM to generate reasoning paths and plans, and utilize IR to iteratively retrieve related knowledge, but these approaches have inherent flaws. On one hand, Information Retriever (IR) is hindered by the low quality of generated queries by LLM. On the other hand, LLM is easily misguided by the irrelevant knowledge by IR. These inaccuracies, accumulated by the iterative interaction between IR and LLM, lead to a disaster in effectiveness at the end. To overcome above barriers, in this paper, we propose a novel pipeline for MHQA called Furthest-Reasoning-with-Plan-Assessment (FuRePA), including an improved framework (Furthest Reasoning) and an attached module (Plan Assessor). 1) Furthest reasoning operates by masking previous reasoning path and generated queries for LLM, encouraging LLM generating chain of thought from scratch in each iteration. This approach enables LLM to break the shackle built by previous misleading thoughts and queries (if any). 2) The Plan Assessor is a trained evaluator that selects an appropriate plan from a group of candidate plans proposed by LLM. Our methods are evaluated on three highly recognized public multi-hop question answering datasets and outperform state-of-the-art on most metrics (achieving a 10%-12% in answer accuracy).
Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs
Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge, yet it falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts. This survey synthesizes both strands under a unified reasoning-retrieval perspective. We first map how advanced reasoning optimizes each stage of RAG (Reasoning-Enhanced RAG). Then, we show how retrieved knowledge of different type supply missing premises and expand context for complex inference (RAG-Enhanced Reasoning). Finally, we spotlight emerging Synergized RAG-Reasoning frameworks, where (agentic) LLMs iteratively interleave search and reasoning to achieve state-of-the-art performance across knowledge-intensive benchmarks. We categorize methods, datasets, and open challenges, and outline research avenues toward deeper RAG-Reasoning systems that are more effective, multimodally-adaptive, trustworthy, and human-centric. The collection is available at https://github.com/DavidZWZ/Awesome-RAG-Reasoning.
Injecting External Knowledge into the Reasoning Process Enhances Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) has been widely adopted to augment large language models (LLMs) with external knowledge for knowledge-intensive tasks. However, its effectiveness is often undermined by the presence of noisy (i.e., low-quality) retrieved passages. Enhancing LLMs' robustness to such noise is critical for improving the reliability of RAG systems. Recent advances have equipped LLMs with strong reasoning and self-reflection capabilities, allowing them to identify and correct errors in their reasoning process. Inspired by this ability, we propose Passage Injection-a simple yet effective method that explicitly incorporates retrieved passages into LLMs' reasoning process, aiming to enhance the model's ability to recognize and resist noisy passages. We validate Passage Injection under general RAG settings using BM25 as the retriever. Experiments on four reasoning-enhanced LLMs across four factual QA datasets demonstrate that Passage Injection significantly improves overall RAG performance. Further analysis on two noisy retrieval settings-random noise, where the model is provided irrelevant passages, and counterfactual noise, where it is given misleading passages-shows that Passage Injection consistently improves robustness. Controlled experiments confirm that Passage Injection can also effectively leverage helpful passages. These findings suggest that incorporating passages in LLMs' reasoning process is a promising direction for building more robust RAG systems. The code can be found here{https://github.com/mh-tang/Passage-Injection}.
KAM-CoT: Knowledge Augmented Multimodal Chain-of-Thoughts Reasoning
Large Language Models (LLMs) have demonstrated impressive performance in natural language processing tasks by leveraging chain of thought (CoT) that enables step-by-step thinking. Extending LLMs with multimodal capabilities is the recent interest, but incurs computational cost and requires substantial hardware resources. To address these challenges, we propose KAM-CoT a framework that integrates CoT reasoning, Knowledge Graphs (KGs), and multiple modalities for a comprehensive understanding of multimodal tasks. KAM-CoT adopts a two-stage training process with KG grounding to generate effective rationales and answers. By incorporating external knowledge from KGs during reasoning, the model gains a deeper contextual understanding reducing hallucinations and enhancing the quality of answers. This knowledge-augmented CoT reasoning empowers the model to handle questions requiring external context, providing more informed answers. Experimental findings show KAM-CoT outperforms the state-of-the-art methods. On the ScienceQA dataset, we achieve an average accuracy of 93.87%, surpassing GPT-3.5 (75.17%) by 18% and GPT-4 (83.99%) by 10%. Remarkably, KAM-CoT achieves these results with only 280M trainable parameters at a time, demonstrating its cost-efficiency and effectiveness.
ReWOO: Decoupling Reasoning from Observations for Efficient Augmented Language Models
Augmented Language Models (ALMs) blend the reasoning capabilities of Large Language Models (LLMs) with tools that allow for knowledge retrieval and action execution. Existing ALM systems trigger LLM thought processes while pulling observations from these tools in an interleaved fashion. Specifically, an LLM reasons to call an external tool, gets halted to fetch the tool's response, and then decides the next action based on all preceding response tokens. Such a paradigm, though straightforward and easy to implement, often leads to huge computation complexity from redundant prompts and repeated execution. This study addresses such challenges for the first time, proposing a modular paradigm ReWOO (Reasoning WithOut Observation) that detaches the reasoning process from external observations, thus significantly reducing token consumption. Comprehensive evaluations across six public NLP benchmarks and a curated dataset reveal consistent performance enhancements with our proposed methodology. Notably, ReWOO achieves 5x token efficiency and 4% accuracy improvement on HotpotQA, a multi-step reasoning benchmark. Furthermore, ReWOO demonstrates robustness under tool-failure scenarios. Beyond prompt efficiency, decoupling parametric modules from non-parametric tool calls enables instruction fine-tuning to offload LLMs into smaller language models, thus substantially reducing model parameters. Our illustrative work offloads reasoning ability from 175B GPT3.5 into 7B LLaMA, demonstrating the significant potential for truly efficient and scalable ALM systems.
HalluGuard: Evidence-Grounded Small Reasoning Models to Mitigate Hallucinations in Retrieval-Augmented Generation
Large Language Models (LLMs) excel in many NLP tasks but remain prone to hallucinations, limiting trust in real-world applications. We present HalluGuard, a 4B-parameter Small Reasoning Model (SRM) for mitigating hallucinations in Retrieval-Augmented Generation (RAG). HalluGuard classifies document-claim pairs as grounded or hallucinated and produces evidence-grounded justifications for transparency. Our approach combines (i) a domain-agnostic synthetic dataset derived from FineWeb and refined through multi-stage curation and data reformation, (ii) synthetic grounded and hallucinated claims, and (iii) preference-based fine-tuning with Odds Ratio Preference Optimization to distill large-model reasoning into a smaller backbone. On the RAGTruth subset of the LLM-AggreFact benchmark, HalluGuard achieves 84.0% balanced accuracy (BAcc), rivaling specialized models, MiniCheck (7B; 84.0%) and Granite Guardian 3.3 (8B; 82.2%) while using roughly half their parameters. Over the full benchmark it reaches 75.7% BAcc, matching larger general-purpose LLMs such as GPT-4o (75.9%). We will release HalluGuard and datasets under Apache 2.0 upon acceptance.
RAG+: Enhancing Retrieval-Augmented Generation with Application-Aware Reasoning
The integration of external knowledge through Retrieval-Augmented Generation (RAG) has become foundational in enhancing large language models (LLMs) for knowledge-intensive tasks. However, existing RAG paradigms often overlook the cognitive step of applying knowledge, leaving a gap between retrieved facts and task-specific reasoning. In this work, we introduce RAG+, a principled and modular extension that explicitly incorporates application-aware reasoning into the RAG pipeline. RAG+ constructs a dual corpus consisting of knowledge and aligned application examples, created either manually or automatically, and retrieves both jointly during inference. This design enables LLMs not only to access relevant information but also to apply it within structured, goal-oriented reasoning processes. Experiments across mathematical, legal, and medical domains, conducted on multiple models, demonstrate that RAG+ consistently outperforms standard RAG variants, achieving average improvements of 3-5%, and peak gains up to 7.5% in complex scenarios. By bridging retrieval with actionable application, RAG+ advances a more cognitively grounded framework for knowledge integration, representing a step toward more interpretable and capable LLMs.
SymRTLO: Enhancing RTL Code Optimization with LLMs and Neuron-Inspired Symbolic Reasoning
Optimizing Register Transfer Level (RTL) code is crucial for improving the power, performance, and area (PPA) of digital circuits in the early stages of synthesis. Manual rewriting, guided by synthesis feedback, can yield high-quality results but is time-consuming and error-prone. Most existing compiler-based approaches have difficulty handling complex design constraints. Large Language Model (LLM)-based methods have emerged as a promising alternative to address these challenges. However, LLM-based approaches often face difficulties in ensuring alignment between the generated code and the provided prompts. This paper presents SymRTLO, a novel neuron-symbolic RTL optimization framework that seamlessly integrates LLM-based code rewriting with symbolic reasoning techniques. Our method incorporates a retrieval-augmented generation (RAG) system of optimization rules and Abstract Syntax Tree (AST)-based templates, enabling LLM-based rewriting that maintains syntactic correctness while minimizing undesired circuit behaviors. A symbolic module is proposed for analyzing and optimizing finite state machine (FSM) logic, allowing fine-grained state merging and partial specification handling beyond the scope of pattern-based compilers. Furthermore, a fast verification pipeline, combining formal equivalence checks with test-driven validation, further reduces the complexity of verification. Experiments on the RTL-Rewriter benchmark with Synopsys Design Compiler and Yosys show that SymRTLO improves power, performance, and area (PPA) by up to 43.9%, 62.5%, and 51.1%, respectively, compared to the state-of-the-art methods.
Improving Medical Reasoning through Retrieval and Self-Reflection with Retrieval-Augmented Large Language Models
Recent proprietary large language models (LLMs), such as GPT-4, have achieved a milestone in tackling diverse challenges in the biomedical domain, ranging from multiple-choice questions to long-form generations. To address challenges that still cannot be handled with the encoded knowledge of LLMs, various retrieval-augmented generation (RAG) methods have been developed by searching documents from the knowledge corpus and appending them unconditionally or selectively to the input of LLMs for generation. However, when applying existing methods to different domain-specific problems, poor generalization becomes apparent, leading to fetching incorrect documents or making inaccurate judgments. In this paper, we introduce Self-BioRAG, a framework reliable for biomedical text that specializes in generating explanations, retrieving domain-specific documents, and self-reflecting generated responses. We utilize 84k filtered biomedical instruction sets to train Self-BioRAG that can assess its generated explanations with customized reflective tokens. Our work proves that domain-specific components, such as a retriever, domain-related document corpus, and instruction sets are necessary for adhering to domain-related instructions. Using three major medical question-answering benchmark datasets, experimental results of Self-BioRAG demonstrate significant performance gains by achieving a 7.2% absolute improvement on average over the state-of-the-art open-foundation model with a parameter size of 7B or less. Overall, we analyze that Self-BioRAG finds the clues in the question, retrieves relevant documents if needed, and understands how to answer with information from retrieved documents and encoded knowledge as a medical expert does. We release our data and code for training our framework components and model weights (7B and 13B) to enhance capabilities in biomedical and clinical domains.
RoseRAG: Robust Retrieval-augmented Generation with Small-scale LLMs via Margin-aware Preference Optimization
Large language models (LLMs) have achieved impressive performance but face high computational costs and latency, limiting their deployment in resource-constrained settings. In contrast, small-scale LLMs (SLMs) are more efficient yet struggle to capture evolving real-world knowledge. Retrieval-augmented generation (RAG) helps by integrating external knowledge, but imperfect retrieval can introduce distracting noise that misleads SLMs. We propose RoseRAG, a robust RAG framework for SLMs via Margin-aware Preference Optimization. RoseRAG employs multi-turn prompting for detailed reasoning, rejection sampling for high-quality explanations, and contrastive preference selection to refine responses by maximizing the likelihood gap between preferred and non-preferred outputs. By integrating these components into a margin-aware optimization process, RoseRAG robustly enhances the accuracy and reliability of SLMs for RAG applications. Extensive experiments on three open-domain question answering benchmarks indicate that our innovative RoseRAG surpasses state-of-the-art baselines significantly.
Can We Further Elicit Reasoning in LLMs? Critic-Guided Planning with Retrieval-Augmentation for Solving Challenging Tasks
State-of-the-art large language models (LLMs) exhibit impressive problem-solving capabilities but may struggle with complex reasoning and factual correctness. Existing methods harness the strengths of chain-of-thought and retrieval-augmented generation (RAG) to decompose a complex problem into simpler steps and apply retrieval to improve factual correctness. These methods work well on straightforward reasoning tasks but often falter on challenging tasks such as competitive programming and mathematics, due to frequent reasoning errors and irrelevant knowledge retrieval. To address this, we introduce Critic-guided planning with Retrieval-augmentation, CR-Planner, a novel framework that leverages fine-tuned critic models to guide both reasoning and retrieval processes through planning. CR-Planner solves a problem by iteratively selecting and executing sub-goals. Initially, it identifies the most promising sub-goal from reasoning, query generation, and retrieval, guided by rewards given by a critic model named sub-goal critic. It then executes this sub-goal through sampling and selecting the optimal output based on evaluations from another critic model named execution critic. This iterative process, informed by retrieved information and critic models, enables CR-Planner to effectively navigate the solution space towards the final answer. We employ Monte Carlo Tree Search to collect the data for training the critic models, allowing for a systematic exploration of action sequences and their long-term impacts. We validate CR-Planner on challenging domain-knowledge-intensive and reasoning-heavy tasks, including competitive programming, theorem-driven math reasoning, and complex domain retrieval problems. Our experiments demonstrate that CR-Planner significantly outperforms baselines, highlighting its effectiveness in addressing challenging problems by improving both reasoning and retrieval.
RAG-R1 : Incentivize the Search and Reasoning Capabilities of LLMs through Multi-query Parallelism
Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, while LLMs remain prone to generating hallucinated or outdated responses due to their static internal knowledge. Recent advancements in Retrieval-Augmented Generation (RAG) methods have aimed to enhance models' search and reasoning capabilities through reinforcement learning (RL). Although these methods demonstrate promising results, they face challenges in training stability and encounter issues such as substantial inference time and restricted capabilities due to reliance on single-query mode. In this paper, we propose RAG-R1, a novel training framework designed to enable LLMs to adaptively leverage internal and external knowledge during the reasoning process. We further expand the generation and retrieval processes within the framework from single-query mode to multi-query parallelism, with the aim of reducing inference time and enhancing the model's capabilities. Extensive experiments on seven question-answering benchmarks demonstrate that our method outperforms the strongest baseline by up to 13.2% and decreases inference time by 11.1%.
Agentic Reasoning: Reasoning LLMs with Tools for the Deep Research
We introduce Agentic Reasoning, a framework that enhances large language model (LLM) reasoning by integrating external tool-using agents. Unlike conventional LLM-based reasoning approaches, which rely solely on internal inference, Agentic Reasoning dynamically engages web search, code execution, and structured reasoning-context memory to solve complex problems requiring deep research and multi-step logical deduction. Our framework introduces the Mind Map agent, which constructs a structured knowledge graph to track logical relationships, improving deductive reasoning. Additionally, the integration of web-search and coding agents enables real-time retrieval and computational analysis, enhancing reasoning accuracy and decision-making. Evaluations on PhD-level scientific reasoning (GPQA) and domain-specific deep research tasks demonstrate that our approach significantly outperforms existing models, including leading retrieval-augmented generation (RAG) systems and closed-source LLMs. Moreover, our results indicate that agentic reasoning improves expert-level knowledge synthesis, test-time scalability, and structured problem-solving. The code is at: https://github.com/theworldofagents/Agentic-Reasoning.
REX-RAG: Reasoning Exploration with Policy Correction in Retrieval-Augmented Generation
Reinforcement learning (RL) is emerging as a powerful paradigm for enabling large language models (LLMs) to perform complex reasoning tasks. Recent advances indicate that integrating RL with retrieval-augmented generation (RAG) allows LLMs to dynamically incorporate external knowledge, leading to more informed and robust decision making. However, we identify a critical challenge during policy-driven trajectory sampling: LLMs are frequently trapped in unproductive reasoning paths, which we refer to as "dead ends", committing to overconfident yet incorrect conclusions. This severely hampers exploration and undermines effective policy optimization. To address this challenge, we propose REX-RAG (Reasoning Exploration with Policy Correction in Retrieval-Augmented Generation), a novel framework that explores alternative reasoning paths while maintaining rigorous policy learning through principled distributional corrections. Our approach introduces two key innovations: (1) Mixed Sampling Strategy, which combines a novel probe sampling method with exploratory prompts to escape dead ends; and (2) Policy Correction Mechanism, which employs importance sampling to correct distribution shifts induced by mixed sampling, thereby mitigating gradient estimation bias. We evaluate it on seven question-answering benchmarks, and the experimental results show that REX-RAG achieves average performance gains of 5.1% on Qwen2.5-3B and 3.6% on Qwen2.5-7B over strong baselines, demonstrating competitive results across multiple datasets. The code is publicly available at https://github.com/MiliLab/REX-RAG.
GALAX: Graph-Augmented Language Model for Explainable Reinforcement-Guided Subgraph Reasoning in Precision Medicine
In precision medicine, quantitative multi-omic features, topological context, and textual biological knowledge play vital roles in identifying disease-critical signaling pathways and targets. Existing pipelines capture only part of these-numerical omics ignore topological context, text-centric LLMs lack quantitative grounded reasoning, and graph-only models underuse node semantics and the generalization of LLMs-limiting mechanistic interpretability. Although Process Reward Models (PRMs) aim to guide reasoning in LLMs, they remain limited by unreliable intermediate evaluation, and vulnerability to reward hacking with computational cost. These gaps motivate integrating quantitative multi-omic signals, topological structure with node annotations, and literature-scale text via LLMs, using subgraph reasoning as the principle bridge linking numeric evidence, topological knowledge and language context. Therefore, we propose GALAX (Graph Augmented LAnguage model with eXplainability), an innovative framework that integrates pretrained Graph Neural Networks (GNNs) into Large Language Models (LLMs) via reinforcement guided by a Graph Process Reward Model (GPRM), which generates disease-relevant subgraphs in a step-wise manner initiated by an LLM and iteratively evaluated by a pretrained GNN, enabling process-level supervision without explicit intermediate reasoning annotations. As an application, we also introduced Target-QA, a benchmark combining CRISPR-identified targets, multi-omic profiles, and biomedical graph knowledge across diverse cancer cell lines, which enables GNN pretraining for supervising step-wise graph construction and supports long-context reasoning over text-numeric graphs (TNGs), providing a scalable and biologically grounded framework for explainable, reinforcement-guided subgraph reasoning toward reliable and interpretable target and pathway discovery in precision medicine.
Towards a Benchmark for Causal Business Process Reasoning with LLMs
Large Language Models (LLMs) are increasingly used for boosting organizational efficiency and automating tasks. While not originally designed for complex cognitive processes, recent efforts have further extended to employ LLMs in activities such as reasoning, planning, and decision-making. In business processes, such abilities could be invaluable for leveraging on the massive corpora LLMs have been trained on for gaining deep understanding of such processes. In this work, we plant the seeds for the development of a benchmark to assess the ability of LLMs to reason about causal and process perspectives of business operations. We refer to this view as Causally-augmented Business Processes (BP^C). The core of the benchmark comprises a set of BP^C related situations, a set of questions about these situations, and a set of deductive rules employed to systematically resolve the ground truth answers to these questions. Also with the power of LLMs, the seed is then instantiated into a larger-scale set of domain-specific situations and questions. Reasoning on BP^C is of crucial importance for process interventions and process improvement. Our benchmark could be used in one of two possible modalities: testing the performance of any target LLM and training an LLM to advance its capability to reason about BP^C.
rStar-Math: Small LLMs Can Master Math Reasoning with Self-Evolved Deep Thinking
We present rStar-Math to demonstrate that small language models (SLMs) can rival or even surpass the math reasoning capability of OpenAI o1, without distillation from superior models. rStar-Math achieves this by exercising "deep thinking" through Monte Carlo Tree Search (MCTS), where a math policy SLM performs test-time search guided by an SLM-based process reward model. rStar-Math introduces three innovations to tackle the challenges in training the two SLMs: (1) a novel code-augmented CoT data sythesis method, which performs extensive MCTS rollouts to generate step-by-step verified reasoning trajectories used to train the policy SLM; (2) a novel process reward model training method that avoids na\"ive step-level score annotation, yielding a more effective process preference model (PPM); (3) a self-evolution recipe in which the policy SLM and PPM are built from scratch and iteratively evolved to improve reasoning capabilities. Through 4 rounds of self-evolution with millions of synthesized solutions for 747k math problems, rStar-Math boosts SLMs' math reasoning to state-of-the-art levels. On the MATH benchmark, it improves Qwen2.5-Math-7B from 58.8% to 90.0% and Phi3-mini-3.8B from 41.4% to 86.4%, surpassing o1-preview by +4.5% and +0.9%. On the USA Math Olympiad (AIME), rStar-Math solves an average of 53.3% (8/15) of problems, ranking among the top 20% the brightest high school math students. Code and data will be available at https://github.com/microsoft/rStar.
BABILong: Testing the Limits of LLMs with Long Context Reasoning-in-a-Haystack
In recent years, the input context sizes of large language models (LLMs) have increased dramatically. However, existing evaluation methods have not kept pace, failing to comprehensively assess the efficiency of models in handling long contexts. To bridge this gap, we introduce the BABILong benchmark, designed to test language models' ability to reason across facts distributed in extremely long documents. BABILong includes a diverse set of 20 reasoning tasks, including fact chaining, simple induction, deduction, counting, and handling lists/sets. These tasks are challenging on their own, and even more demanding when the required facts are scattered across long natural text. Our evaluations show that popular LLMs effectively utilize only 10-20\% of the context and their performance declines sharply with increased reasoning complexity. Among alternatives to in-context reasoning, Retrieval-Augmented Generation methods achieve a modest 60\% accuracy on single-fact question answering, independent of context length. Among context extension methods, the highest performance is demonstrated by recurrent memory transformers, enabling the processing of lengths up to 11 million tokens. The BABILong benchmark is extendable to any length to support the evaluation of new upcoming models with increased capabilities, and we provide splits up to 1 million token lengths.
Optimizing the Interface Between Knowledge Graphs and LLMs for Complex Reasoning
Integrating Large Language Models (LLMs) with Knowledge Graphs (KGs) results in complex systems with numerous hyperparameters that directly affect performance. While such systems are increasingly common in retrieval-augmented generation, the role of systematic hyperparameter optimization remains underexplored. In this paper, we study this problem in the context of Cognee, a modular framework for end-to-end KG construction and retrieval. Using three multi-hop QA benchmarks (HotPotQA, TwoWikiMultiHop, and MuSiQue) we optimize parameters related to chunking, graph construction, retrieval, and prompting. Each configuration is scored using established metrics (exact match, F1, and DeepEval's LLM-based correctness metric). Our results demonstrate that meaningful gains can be achieved through targeted tuning. While the gains are consistent, they are not uniform, with performance varying across datasets and metrics. This variability highlights both the value of tuning and the limitations of standard evaluation measures. While demonstrating the immediate potential of hyperparameter tuning, we argue that future progress will depend not only on architectural advances but also on clearer frameworks for optimization and evaluation in complex, modular systems.
Knowledge-Driven CoT: Exploring Faithful Reasoning in LLMs for Knowledge-intensive Question Answering
Equipped with Chain-of-Thought (CoT), Large language models (LLMs) have shown impressive reasoning ability in various downstream tasks. Even so, suffering from hallucinations and the inability to access external knowledge, LLMs often come with incorrect or unfaithful intermediate reasoning steps, especially in the context of answering knowledge-intensive tasks such as KBQA. To alleviate this issue, we propose a framework called Knowledge-Driven Chain-of-Thought (KD-CoT) to verify and modify reasoning traces in CoT via interaction with external knowledge, and thus overcome the hallucinations and error propagation. Concretely, we formulate the CoT rationale process of LLMs into a structured multi-round QA format. In each round, LLMs interact with a QA system that retrieves external knowledge and produce faithful reasoning traces based on retrieved precise answers. The structured CoT reasoning of LLMs is facilitated by our developed KBQA CoT collection, which serves as in-context learning demonstrations and can also be utilized as feedback augmentation to train a robust retriever. Extensive experiments on WebQSP and ComplexWebQuestion datasets demonstrate the effectiveness of proposed KD-CoT in task-solving reasoning generation, which outperforms the vanilla CoT ICL with an absolute success rate of 8.0% and 5.1%. Furthermore, our proposed feedback-augmented retriever outperforms the state-of-the-art baselines for retrieving knowledge, achieving significant improvement in Hit performance.
Towards Time Series Reasoning with LLMs
Multi-modal large language models (MLLMs) have enabled numerous advances in understanding and reasoning in domains like vision, but we have not yet seen this broad success for time-series. Although prior works on time-series MLLMs have shown promising performance in time-series forecasting, very few works show how an LLM could be used for time-series reasoning in natural language. We propose a novel multi-modal time-series LLM approach that learns generalizable information across various domains with powerful zero-shot performance. First, we train a lightweight time-series encoder on top of an LLM to directly extract time-series information. Then, we fine-tune our model with chain-of-thought augmented time-series tasks to encourage the model to generate reasoning paths. We show that our model learns a latent representation that reflects specific time-series features (e.g. slope, frequency), as well as outperforming GPT-4o on a set of zero-shot reasoning tasks on a variety of domains.
KAG: Boosting LLMs in Professional Domains via Knowledge Augmented Generation
The recently developed retrieval-augmented generation (RAG) technology has enabled the efficient construction of domain-specific applications. However, it also has limitations, including the gap between vector similarity and the relevance of knowledge reasoning, as well as insensitivity to knowledge logic, such as numerical values, temporal relations, expert rules, and others, which hinder the effectiveness of professional knowledge services. In this work, we introduce a professional domain knowledge service framework called Knowledge Augmented Generation (KAG). KAG is designed to address the aforementioned challenges with the motivation of making full use of the advantages of knowledge graph(KG) and vector retrieval, and to improve generation and reasoning performance by bidirectionally enhancing large language models (LLMs) and KGs through five key aspects: (1) LLM-friendly knowledge representation, (2) mutual-indexing between knowledge graphs and original chunks, (3) logical-form-guided hybrid reasoning engine, (4) knowledge alignment with semantic reasoning, and (5) model capability enhancement for KAG. We compared KAG with existing RAG methods in multihop question answering and found that it significantly outperforms state-of-theart methods, achieving a relative improvement of 19.6% on 2wiki and 33.5% on hotpotQA in terms of F1 score. We have successfully applied KAG to two professional knowledge Q&A tasks of Ant Group, including E-Government Q&A and E-Health Q&A, achieving significant improvement in professionalism compared to RAG methods.
Towards Global Retrieval Augmented Generation: A Benchmark for Corpus-Level Reasoning
Retrieval-augmented generation (RAG) has emerged as a leading approach to reducing hallucinations in large language models (LLMs). Current RAG evaluation benchmarks primarily focus on what we call local RAG: retrieving relevant chunks from a small subset of documents to answer queries that require only localized understanding within specific text chunks. However, many real-world applications require a fundamentally different capability -- global RAG -- which involves aggregating and analyzing information across entire document collections to derive corpus-level insights (for example, "What are the top 10 most cited papers in 2023?"). In this paper, we introduce GlobalQA -- the first benchmark specifically designed to evaluate global RAG capabilities, covering four core task types: counting, extremum queries, sorting, and top-k extraction. Through systematic evaluation across different models and baselines, we find that existing RAG methods perform poorly on global tasks, with the strongest baseline achieving only 1.51 F1 score. To address these challenges, we propose GlobalRAG, a multi-tool collaborative framework that preserves structural coherence through chunk-level retrieval, incorporates LLM-driven intelligent filters to eliminate noisy documents, and integrates aggregation modules for precise symbolic computation. On the Qwen2.5-14B model, GlobalRAG achieves 6.63 F1 compared to the strongest baseline's 1.51 F1, validating the effectiveness of our method.
Reasoning Beyond Limits: Advances and Open Problems for LLMs
Recent generative reasoning breakthroughs have transformed how large language models (LLMs) tackle complex problems by dynamically retrieving and refining information while generating coherent, multi-step thought processes. Techniques such as inference-time scaling, reinforcement learning, supervised fine-tuning, and distillation have been successfully applied to models like DeepSeek-R1, OpenAI's o1 & o3, GPT-4o, Qwen-32B, and various Llama variants, resulting in enhanced reasoning capabilities. In this paper, we provide a comprehensive analysis of the top 27 LLM models released between 2023 and 2025 (including models such as Mistral AI Small 3 24B, DeepSeek-R1, Search-o1, QwQ-32B, and phi-4). Then, we present an extensive overview of training methodologies that spans general training approaches, mixture-of-experts (MoE) and architectural innovations, retrieval-augmented generation (RAG), chain-of-thought and self-improvement techniques, as well as test-time compute scaling, distillation, and reinforcement learning (RL) methods. Finally, we discuss the key challenges in advancing LLM capabilities, including improving multi-step reasoning without human supervision, overcoming limitations in chained tasks, balancing structured prompts with flexibility, and enhancing long-context retrieval and external tool integration.
Aligning LLMs to Ask Good Questions A Case Study in Clinical Reasoning
Large language models (LLMs) often fail to ask effective questions under uncertainty, making them unreliable in domains where proactive information-gathering is essential for decisionmaking. We present ALFA, a framework that improves LLM question-asking by (i) decomposing the notion of a "good" question into a set of theory-grounded attributes (e.g., clarity, relevance), (ii) controllably synthesizing attribute-specific question variations, and (iii) aligning models via preference-based optimization to explicitly learn to ask better questions along these fine-grained attributes. Focusing on clinical reasoning as a case study, we introduce the MediQ-AskDocs dataset, composed of 17k real-world clinical interactions augmented with 80k attribute-specific preference pairs of follow-up questions, as well as a novel expert-annotated interactive healthcare QA task to evaluate question-asking abilities. Models aligned with ALFA reduce diagnostic errors by 56.6% on MediQ-AskDocs compared to SOTA instruction-tuned LLMs, with a question-level win-rate of 64.4% and strong generalizability. Our findings suggest that explicitly guiding question-asking with structured, fine-grained attributes offers a scalable path to improve LLMs, especially in expert application domains.
Improving Multimodal LLMs Ability In Geometry Problem Solving, Reasoning, And Multistep Scoring
This paper presents GPSM4K, a comprehensive geometry multimodal dataset tailored to augment the problem-solving capabilities of Large Vision Language Models (LVLMs). GPSM4K encompasses 2157 multimodal question-answer pairs manually extracted from mathematics textbooks spanning grades 7-12 and is further augmented to 5340 problems, consisting of both numerical and theorem-proving questions. In contrast to PGPS9k, Geometry3K, and Geo170K which feature only objective-type questions, GPSM4K offers detailed step-by-step solutions in a consistent format, facilitating a comprehensive evaluation of problem-solving approaches. This dataset serves as an excellent benchmark for assessing the geometric reasoning capabilities of LVLMs. Evaluation of our test set shows that there is scope for improvement needed in open-source language models in geometry problem-solving. Finetuning on our training set increases the geometry problem-solving capabilities of models. Further, We also evaluate the effectiveness of techniques such as image captioning and Retrieval Augmentation generation (RAG) on model performance. We leveraged LLM to automate the task of final answer evaluation by providing ground truth and predicted solutions. This research will help to assess and improve the geometric reasoning capabilities of LVLMs.
Evaluating and Improving Tool-Augmented Computation-Intensive Math Reasoning
Chain-of-thought prompting~(CoT) and tool augmentation have been validated in recent work as effective practices for improving large language models~(LLMs) to perform step-by-step reasoning on complex math-related tasks. However, most existing math reasoning datasets may be not able to fully evaluate and analyze the ability of LLMs in manipulating tools and performing reasoning, as they may only require very few invocations of tools or miss annotations for evaluating intermediate reasoning steps. To address the issue, we construct CARP, a new Chinese dataset consisting of 4,886 computation-intensive algebra problems with formulated annotations on intermediate steps. In CARP, we test four LLMs with CoT prompting, and find that they are all prone to make mistakes at the early steps of the solution, leading to wrong answers. Based on this finding, we propose a new approach that can deliberate the reasoning steps with tool interfaces, namely DELI. In DELI, we first initialize a step-by-step solution based on retrieved exemplars, then iterate two deliberation procedures that check and refine the intermediate steps of the generated solution, from the perspectives of tool manipulation and natural language reasoning, until obtaining converged solutions or reaching the maximum turn. Experimental results on CARP and six other datasets show that the proposed DELI mostly outperforms competitive baselines, and can further boost the performance of existing CoT methods. Our data and code are available in https://github.com/RUCAIBox/CARP.
Improving Retrieval Augmented Language Model with Self-Reasoning
The Retrieval-Augmented Language Model (RALM) has shown remarkable performance on knowledge-intensive tasks by incorporating external knowledge during inference, which mitigates the factual hallucinations inherited in large language models (LLMs). Despite these advancements, challenges persist in the implementation of RALMs, particularly concerning their reliability and traceability. To be specific, the irrelevant document retrieval may result in unhelpful response generation or even deteriorate the performance of LLMs, while the lack of proper citations in generated outputs complicates efforts to verify the trustworthiness of the models. To this end, we propose a novel self-reasoning framework aimed at improving the reliability and traceability of RALMs, whose core idea is to leverage reasoning trajectories generated by the LLM itself. The framework involves constructing self-reason trajectories with three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process. We have evaluated our framework across four public datasets (two short-form QA datasets, one long-form QA dataset, and one fact verification dataset) to demonstrate the superiority of our method, which can outperform existing state-of-art models and can achieve comparable performance with GPT-4, while only using 2,000 training samples.
MR.Rec: Synergizing Memory and Reasoning for Personalized Recommendation Assistant with LLMs
The application of Large Language Models (LLMs) in recommender systems faces key challenges in delivering deep personalization and intelligent reasoning, especially for interactive scenarios. Current methods are often constrained by limited context windows and single-turn reasoning, hindering their ability to capture dynamic user preferences and proactively reason over recommendation contexts. To address these limitations, we propose MR.Rec, a novel framework that synergizes memory and reasoning for LLM-based recommendations. To achieve personalization, we develop a comprehensive Retrieval-Augmented Generation (RAG) system that efficiently indexes and retrieves relevant external memory to enhance LLM personalization capabilities. Furthermore, to enable the synergy between memory and reasoning, our RAG system goes beyond conventional query-based retrieval by integrating reasoning enhanced memory retrieval. Finally, we design a reinforcement learning framework that trains the LLM to autonomously learn effective strategies for both memory utilization and reasoning refinement. By combining dynamic memory retrieval with adaptive reasoning, this approach ensures more accurate, context-aware, and highly personalized recommendations. Extensive experiments demonstrate that MR.Rec significantly outperforms state-of-the-art baselines across multiple metrics, validating its efficacy in delivering intelligent and personalized recommendations. We will release code and data upon paper notification.
The Impact of Quantization on Retrieval-Augmented Generation: An Analysis of Small LLMs
Post-training quantization reduces the computational demand of Large Language Models (LLMs) but can weaken some of their capabilities. Since LLM abilities emerge with scale, smaller LLMs are more sensitive to quantization. In this paper, we explore how quantization affects smaller LLMs' ability to perform retrieval-augmented generation (RAG), specifically in longer contexts. We chose personalization for evaluation because it is a challenging domain to perform using RAG as it requires long-context reasoning over multiple documents. We compare the original FP16 and the quantized INT4 performance of multiple 7B and 8B LLMs on two tasks while progressively increasing the number of retrieved documents to test how quantized models fare against longer contexts. To better understand the effect of retrieval, we evaluate three retrieval models in our experiments. Our findings reveal that if a 7B LLM performs the task well, quantization does not impair its performance and long-context reasoning capabilities. We conclude that it is possible to utilize RAG with quantized smaller LLMs.
Retrieval Augmented Generation (RAG) and Beyond: A Comprehensive Survey on How to Make your LLMs use External Data More Wisely
Large language models (LLMs) augmented with external data have demonstrated remarkable capabilities in completing real-world tasks. Techniques for integrating external data into LLMs, such as Retrieval-Augmented Generation (RAG) and fine-tuning, are gaining increasing attention and widespread application. Nonetheless, the effective deployment of data-augmented LLMs across various specialized fields presents substantial challenges. These challenges encompass a wide range of issues, from retrieving relevant data and accurately interpreting user intent to fully harnessing the reasoning capabilities of LLMs for complex tasks. We believe that there is no one-size-fits-all solution for data-augmented LLM applications. In practice, underperformance often arises from a failure to correctly identify the core focus of a task or because the task inherently requires a blend of multiple capabilities that must be disentangled for better resolution. In this survey, we propose a RAG task categorization method, classifying user queries into four levels based on the type of external data required and primary focus of the task: explicit fact queries, implicit fact queries, interpretable rationale queries, and hidden rationale queries. We define these levels of queries, provide relevant datasets, and summarize the key challenges and most effective techniques for addressing these challenges. Finally, we discuss three main forms of integrating external data into LLMs: context, small model, and fine-tuning, highlighting their respective strengths, limitations, and the types of problems they are suited to solve. This work aims to help readers thoroughly understand and decompose the data requirements and key bottlenecks in building LLM applications, offering solutions to the different challenges and serving as a guide to systematically developing such applications.
Enhancing Domain-Specific Retrieval-Augmented Generation: Synthetic Data Generation and Evaluation using Reasoning Models
Retrieval-Augmented Generation (RAG) systems face significant performance gaps when applied to technical domains requiring precise information extraction from complex documents. Current evaluation methodologies relying on document-level metrics inadequately capture token-resolution retrieval accuracy that is critical for domain-related documents. We propose a framework combining granular evaluation metrics with synthetic data generation to optimize domain-specific RAG performance. First, we introduce token-aware metrics Precision Omega and Intersection-over-Union (IoU) that quantify context preservation versus information density trade-offs inherent in technical texts. Second, we develop a reasoning model-driven pipeline using instruction-tuned LLMs (DeepSeek-R1, DeepSeek-R1 distilled variants, and Phi-4) to generate context-anchored QA pairs with discontinuous reference spans across three specialized corpora: SEC 10-K filings (finance), biomedical abstracts (PubMed), and APT threat reports (cybersecurity). Our empirical analysis reveals critical insights: smaller chunks (less than 10 tokens) improve precision by 31-42% (IoU = 0.071 vs. baseline 0.053) at recall costs (-18%), while domain-specific embedding strategies yield 22% variance in optimal chunk sizing (5-20 tokens). The DeepSeek-R1-Distill-Qwen-32B model demonstrates superior concept alignment (+14% mean IoU over alternatives), though no configuration universally dominates. Financial texts favor larger chunks for risk factor coverage (Recall = 0.81 at size = 20), whereas cybersecurity content benefits from atomic segmentation, Precision Omega = 0.28 at size = 5. Our code is available on https://github.com/aryan-jadon/Synthetic-Data-Generation-and-Evaluation-using-Reasoning-Model
Bridging Relevance and Reasoning: Rationale Distillation in Retrieval-Augmented Generation
The reranker and generator are two critical components in the Retrieval-Augmented Generation (i.e., RAG) pipeline, responsible for ranking relevant documents and generating responses. However, due to differences in pre-training data and objectives, there is an inevitable gap between the documents ranked as relevant by the reranker and those required by the generator to support answering the query. To address this gap, we propose RADIO, a novel and practical preference alignment framework with RAtionale DIstillatiOn. Specifically, We first propose a rationale extraction method that leverages the reasoning capabilities of Large Language Models (LLMs) to extract the rationales necessary for answering the query. Subsequently, a rationale-based alignment process is designed to rerank the documents based on the extracted rationales, and fine-tune the reranker to align the preferences. We conduct extensive experiments on two tasks across three datasets to demonstrate the effectiveness of our approach compared to baseline methods. Our code is released online to ease reproduction.
TableRAG: A Retrieval Augmented Generation Framework for Heterogeneous Document Reasoning
Retrieval-Augmented Generation (RAG) has demonstrated considerable effectiveness in open-domain question answering. However, when applied to heterogeneous documents, comprising both textual and tabular components, existing RAG approaches exhibit critical limitations. The prevailing practice of flattening tables and chunking strategies disrupts the intrinsic tabular structure, leads to information loss, and undermines the reasoning capabilities of LLMs in multi-hop, global queries. To address these challenges, we propose TableRAG, an hybrid framework that unifies textual understanding and complex manipulations over tabular data. TableRAG iteratively operates in four steps: context-sensitive query decomposition, text retrieval, SQL programming and execution, and compositional intermediate answer generation. We also develop HeteQA, a novel benchmark designed to evaluate the multi-hop heterogeneous reasoning capabilities. Experimental results demonstrate that TableRAG consistently outperforms existing baselines on both public datasets and our HeteQA, establishing a new state-of-the-art for heterogeneous document question answering. We release TableRAG at https://github.com/yxh-y/TableRAG/tree/main.
RAGCap-Bench: Benchmarking Capabilities of LLMs in Agentic Retrieval Augmented Generation Systems
Retrieval-Augmented Generation (RAG) mitigates key limitations of Large Language Models (LLMs)-such as factual errors, outdated knowledge, and hallucinations-by dynamically retrieving external information. Recent work extends this paradigm through agentic RAG systems, where LLMs act as agents to iteratively plan, retrieve, and reason over complex queries. However, these systems still struggle with challenging multi-hop questions, and their intermediate reasoning capabilities remain underexplored. To address this, we propose RAGCap-Bench, a capability-oriented benchmark for fine-grained evaluation of intermediate tasks in agentic RAG workflows. We analyze outputs from state-of-the-art systems to identify common tasks and the core capabilities required for their execution, then construct a taxonomy of typical LLM errors to design targeted evaluation questions. Experiments show that "slow-thinking" models with stronger RAGCap performance achieve better end-to-end results, underscoring the benchmark's validity and the importance of enhancing these intermediate capabilities.
M2IO-R1: An Efficient RL-Enhanced Reasoning Framework for Multimodal Retrieval Augmented Multimodal Generation
Current research on Multimodal Retrieval-Augmented Generation (MRAG) enables diverse multimodal inputs but remains limited to single-modality outputs, restricting expressive capacity and practical utility. In contrast, real-world applications often demand both multimodal inputs and multimodal outputs for effective communication and grounded reasoning. Motivated by the recent success of Reinforcement Learning (RL) in complex reasoning tasks for Large Language Models (LLMs), we adopt RL as a principled and effective paradigm to address the multi-step, outcome-driven challenges inherent in multimodal output generation. Here, we introduce M2IO-R1, a novel framework for Multimodal Retrieval-Augmented Multimodal Generation (MRAMG) that supports both multimodal inputs and outputs. Central to our framework is an RL-based inserter, Inserter-R1-3B, trained with Group Relative Policy Optimization to guide image selection and placement in a controllable and semantically aligned manner. Empirical results show that our lightweight 3B inserter achieves strong reasoning capabilities with significantly reduced latency, outperforming baselines in both quality and efficiency.
Towards Optimizing and Evaluating a Retrieval Augmented QA Chatbot using LLMs with Human in the Loop
Large Language Models have found application in various mundane and repetitive tasks including Human Resource (HR) support. We worked with the domain experts of SAP SE to develop an HR support chatbot as an efficient and effective tool for addressing employee inquiries. We inserted a human-in-the-loop in various parts of the development cycles such as dataset collection, prompt optimization, and evaluation of generated output. By enhancing the LLM-driven chatbot's response quality and exploring alternative retrieval methods, we have created an efficient, scalable, and flexible tool for HR professionals to address employee inquiries effectively. Our experiments and evaluation conclude that GPT-4 outperforms other models and can overcome inconsistencies in data through internal reasoning capabilities. Additionally, through expert analysis, we infer that reference-free evaluation metrics such as G-Eval and Prometheus demonstrate reliability closely aligned with that of human evaluation.
MathGenie: Generating Synthetic Data with Question Back-translation for Enhancing Mathematical Reasoning of LLMs
Large language models (LLMs) have exhibited great potential in mathematical reasoning. However, there remains a performance gap in this area between existing open-source models and closed-source models such as GPT-4. In this paper, we introduce MathGenie, a novel method for generating diverse and reliable math problems from a small-scale problem-solution dataset (denoted as seed data). We augment the ground-truth solutions of our seed data and train a back-translation model to translate the augmented solutions back into new questions. Subsequently, we generate code-integrated solutions for the new questions. To ensure the correctness of the code-integrated solutions, we employ rationale-based strategy for solution verification. Various pretrained models, ranging from 7B to 70B, are trained on the newly curated data to test the effectiveness of the proposed augmentation technique, resulting in a family of models known as MathGenieLM. These models consistently outperform previous open-source models across five representative mathematical reasoning datasets, achieving state-of-the-art performance. In particular, MathGenieLM-InternLM2 achieves an accuracy of 87.7% on GSM8K and 55.7% on MATH, securing the best overall score among open-source language models.
ADAM: A Diverse Archive of Mankind for Evaluating and Enhancing LLMs in Biographical Reasoning
We introduce ADAM (A Diverse Archive of Mankind), a framework for evaluating and improving multimodal large language models (MLLMs) in biographical reasoning. To the best of our knowledge, this is the first work to systematically examine LLM capabilities in biography, a critical yet underexplored dimension of factual knowledge. At its core, AdamDB is a multilingual and multimodal dataset covering over 4 million individuals across geography, time, and profession, while AdamBench provides cognitively structured evaluations based on Bloom's taxonomy, spanning six reasoning levels in both English and native languages. To address hallucinations, particularly for lesser-known individuals, we propose AdamRAG, a retrieval-augmented generation system tailored to biographical contexts. Experiments show that AdamRAG substantially improves open-source models and modestly benefits closed-source ones, with the largest gains on lower-order reasoning. Popularity strongly mediates accuracy, and multimodal input via face images offers smaller, less consistent improvements than retrieval. ADAM establishes the first benchmark and framework for cognitively, culturally, and multimodally grounded biographical evaluation, advancing the development of multilingual, accurate, and hallucination-resistant MLLMs.
Cost-Augmented Monte Carlo Tree Search for LLM-Assisted Planning
While LLMs excel at open-ended reasoning, they often struggle with cost-sensitive planning, either treating all actions as having equal cost or failing to stay within strict budgets. In this paper, we introduce Cost-Augmented Monte Carlo Tree Search (CATS), a novel approach that brings explicit cost-awareness into LLM-guided planning. Tight cost constraints push the planner to quickly identify infeasible solutions, while looser constraints encourage optimization for minimal cost. We benchmark top LLMs such as GPT-4.1, Claude-3.7-Sonnet, and DeepSeek-R1, against our CATS planner to evaluate their performance in cost-sensitive scenarios. Our experiments suggest that raw LLMs such as GPT-4.1 often falter under tight budgets, whereas CATS consistently delivers strong performance, achieving higher task success rates and better cost efficiency. CATS provides an effective solution for budget-aware decision-making by combining the reasoning power of LLMs with structured search.
Knowledge Augmented Complex Problem Solving with Large Language Models: A Survey
Problem-solving has been a fundamental driver of human progress in numerous domains. With advancements in artificial intelligence, Large Language Models (LLMs) have emerged as powerful tools capable of tackling complex problems across diverse domains. Unlike traditional computational systems, LLMs combine raw computational power with an approximation of human reasoning, allowing them to generate solutions, make inferences, and even leverage external computational tools. However, applying LLMs to real-world problem-solving presents significant challenges, including multi-step reasoning, domain knowledge integration, and result verification. This survey explores the capabilities and limitations of LLMs in complex problem-solving, examining techniques including Chain-of-Thought (CoT) reasoning, knowledge augmentation, and various LLM-based and tool-based verification techniques. Additionally, we highlight domain-specific challenges in various domains, such as software engineering, mathematical reasoning and proving, data analysis and modeling, and scientific research. The paper further discusses the fundamental limitations of the current LLM solutions and the future directions of LLM-based complex problems solving from the perspective of multi-step reasoning, domain knowledge integration and result verification.
KnowAgent: Knowledge-Augmented Planning for LLM-Based Agents
Large Language Models (LLMs) have demonstrated great potential in complex reasoning tasks, yet they fall short when tackling more sophisticated challenges, especially when interacting with environments through generating executable actions. This inadequacy primarily stems from the lack of built-in action knowledge in language agents, which fails to effectively guide the planning trajectories during task solving and results in planning hallucination. To address this issue, we introduce KnowAgent, a novel approach designed to enhance the planning capabilities of LLMs by incorporating explicit action knowledge. Specifically, KnowAgent employs an action knowledge base and a knowledgeable self-learning strategy to constrain the action path during planning, enabling more reasonable trajectory synthesis, and thereby enhancing the planning performance of language agents. Experimental results on HotpotQA and ALFWorld based on various backbone models demonstrate that KnowAgent can achieve comparable or superior performance to existing baselines. Further analysis indicates the effectiveness of KnowAgent in terms of planning hallucinations mitigation. Code is available in https://github.com/zjunlp/KnowAgent.
RRAML: Reinforced Retrieval Augmented Machine Learning
The emergence of large language models (LLMs) has revolutionized machine learning and related fields, showcasing remarkable abilities in comprehending, generating, and manipulating human language. However, their conventional usage through API-based text prompt submissions imposes certain limitations in terms of context constraints and external source availability. To address these challenges, we propose a novel framework called Reinforced Retrieval Augmented Machine Learning (RRAML). RRAML integrates the reasoning capabilities of LLMs with supporting information retrieved by a purpose-built retriever from a vast user-provided database. By leveraging recent advancements in reinforcement learning, our method effectively addresses several critical challenges. Firstly, it circumvents the need for accessing LLM gradients. Secondly, our method alleviates the burden of retraining LLMs for specific tasks, as it is often impractical or impossible due to restricted access to the model and the computational intensity involved. Additionally we seamlessly link the retriever's task with the reasoner, mitigating hallucinations and reducing irrelevant, and potentially damaging retrieved documents. We believe that the research agenda outlined in this paper has the potential to profoundly impact the field of AI, democratizing access to and utilization of LLMs for a wide range of entities.
CLaRa: Bridging Retrieval and Generation with Continuous Latent Reasoning
Retrieval-augmented generation (RAG) enhances large language models (LLMs) with external knowledge but still suffers from long contexts and disjoint retrieval-generation optimization. In this work, we propose CLaRa (Continuous Latent Reasoning), a unified framework that performs embedding-based compression and joint optimization in a shared continuous space. To obtain semantically rich and retrievable compressed vectors, we introduce SCP, a key-preserving data synthesis framework using QA and paraphrase supervision. CLaRa then trains the reranker and generator end-to-end via a single language modeling loss, with gradients flowing through both modules using a differentiable top-k estimator. Theoretically, this unified optimization aligns retrieval relevance with answer quality. Experiments across multiple QA benchmarks show that CLaRa achieves state-of-the-art compression and reranking performance, often surpassing text-based fine-tuned baselines.
PokeeResearch: Effective Deep Research via Reinforcement Learning from AI Feedback and Robust Reasoning Scaffold
Tool-augmented large language models (LLMs) are emerging as deep research agents, systems that decompose complex queries, retrieve external evidence, and synthesize grounded responses. Yet current agents remain limited by shallow retrieval, weak alignment metrics, and brittle tool-use behavior. We introduce PokeeResearch-7B, a 7B-parameter deep research agent built under a unified reinforcement learning framework for robustness, alignment, and scalability. PokeeResearch-7B is trained by an annotation-free Reinforcement Learning from AI Feedback (RLAIF) framework to optimize policies using LLM-based reward signals that capture factual accuracy, citation faithfulness, and instruction adherence. A chain-of-thought-driven multi-call reasoning scaffold further enhances robustness through self-verification and adaptive recovery from tool failures. Among 10 popular deep research benchmarks, PokeeResearch-7B achieves state-of-the-art performance among 7B-scale deep research agents. This highlights that careful reinforcement learning and reasoning design can produce efficient, resilient, and research-grade AI agents. The model and inference code is open-sourced under MIT license at https://github.com/Pokee-AI/PokeeResearchOSS.
Multi-hop Reasoning via Early Knowledge Alignment
Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm for Large Language Models (LLMs) to address knowledge-intensive queries requiring domain-specific or up-to-date information. To handle complex multi-hop questions that are challenging for single-step retrieval, iterative RAG approaches incorporating reinforcement learning have been proposed. However, existing iterative RAG systems typically plan to decompose questions without leveraging information about the available retrieval corpus, leading to inefficient retrieval and reasoning chains that cascade into suboptimal performance. In this paper, we introduce Early Knowledge Alignment (EKA), a simple but effective module that aligns LLMs with retrieval set before planning in iterative RAG systems with contextually relevant retrieved knowledge. Extensive experiments on six standard RAG datasets demonstrate that by establishing a stronger reasoning foundation, EKA significantly improves retrieval precision, reduces cascading errors, and enhances both performance and efficiency. Our analysis from an entropy perspective demonstrate that incorporating early knowledge reduces unnecessary exploration during the reasoning process, enabling the model to focus more effectively on relevant information subsets. Moreover, EKA proves effective as a versatile, training-free inference strategy that scales seamlessly to large models. Generalization tests across diverse datasets and retrieval corpora confirm the robustness of our approach. Overall, EKA advances the state-of-the-art in iterative RAG systems while illuminating the critical interplay between structured reasoning and efficient exploration in reinforcement learning-augmented frameworks. The code is released at https://github.com/yxzwang/EarlyKnowledgeAlignment{Github}.
Hydra: Structured Cross-Source Enhanced Large Language Model Reasoning
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external knowledge. Current hybrid RAG system retrieves evidence from both knowledge graphs (KGs) and text documents to support LLM reasoning. However, it faces challenges like handling multi-hop reasoning, multi-entity questions, multi-source verification, and effective graph utilization. To address these limitations, we present Hydra, a training-free framework that unifies graph topology, document semantics, and source reliability to support deep, faithful reasoning in LLMs. Hydra handles multi-hop and multi-entity problems through agent-driven exploration that combines structured and unstructured retrieval, increasing both diversity and precision of evidence. To tackle multi-source verification, Hydra uses a tri-factor cross-source verification (source trustworthiness assessment, cross-source corroboration, and entity-path alignment), to balance topic relevance with cross-modal agreement. By leveraging graph structure, Hydra fuses heterogeneous sources, guides efficient exploration, and prunes noise early. Comprehensive experiments on seven benchmark datasets show that Hydra achieves overall state-of-the-art results on all benchmarks with GPT-3.5, outperforming the strong hybrid baseline ToG-2 by an average of 20.3% and up to 30.1%. Furthermore, Hydra enables smaller models (e.g., Llama-3.1-8B) to achieve reasoning performance comparable to that of GPT-4-Turbo.
GraphSearch: An Agentic Deep Searching Workflow for Graph Retrieval-Augmented Generation
Graph Retrieval-Augmented Generation (GraphRAG) enhances factual reasoning in LLMs by structurally modeling knowledge through graph-based representations. However, existing GraphRAG approaches face two core limitations: shallow retrieval that fails to surface all critical evidence, and inefficient utilization of pre-constructed structural graph data, which hinders effective reasoning from complex queries. To address these challenges, we propose GraphSearch, a novel agentic deep searching workflow with dual-channel retrieval for GraphRAG. GraphSearch organizes the retrieval process into a modular framework comprising six modules, enabling multi-turn interactions and iterative reasoning. Furthermore, GraphSearch adopts a dual-channel retrieval strategy that issues semantic queries over chunk-based text data and relational queries over structural graph data, enabling comprehensive utilization of both modalities and their complementary strengths. Experimental results across six multi-hop RAG benchmarks demonstrate that GraphSearch consistently improves answer accuracy and generation quality over the traditional strategy, confirming GraphSearch as a promising direction for advancing graph retrieval-augmented generation.
SimpleDeepSearcher: Deep Information Seeking via Web-Powered Reasoning Trajectory Synthesis
Retrieval-augmented generation (RAG) systems have advanced large language models (LLMs) in complex deep search scenarios requiring multi-step reasoning and iterative information retrieval. However, existing approaches face critical limitations that lack high-quality training trajectories or suffer from the distributional mismatches in simulated environments and prohibitive computational costs for real-world deployment. This paper introduces SimpleDeepSearcher, a lightweight yet effective framework that bridges this gap through strategic data engineering rather than complex training paradigms. Our approach synthesizes high-quality training data by simulating realistic user interactions in live web search environments, coupled with a multi-criteria curation strategy that optimizes the diversity and quality of input and output side. Experiments on five benchmarks across diverse domains demonstrate that SFT on only 871 curated samples yields significant improvements over RL-based baselines. Our work establishes SFT as a viable pathway by systematically addressing the data-scarce bottleneck, offering practical insights for efficient deep search systems. Our code is available at https://github.com/RUCAIBox/SimpleDeepSearcher.
Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs) in knowledge-intensive tasks such as those from medical domain. However, the sensitive nature of the medical domain necessitates a completely accurate and trustworthy system. While existing RAG benchmarks primarily focus on the standard retrieve-answer setting, they overlook many practical scenarios that measure crucial aspects of a reliable medical system. This paper addresses this gap by providing a comprehensive evaluation framework for medical question-answering (QA) systems in a RAG setting for these situations, including sufficiency, integration, and robustness. We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets for testing LLMs' ability to handle these specific scenarios. Utilizing MedRGB, we conduct extensive evaluations of both state-of-the-art commercial LLMs and open-source models across multiple retrieval conditions. Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents. We further analyze the LLMs' reasoning processes to provides valuable insights and future directions for developing RAG systems in this critical medical domain.
Graph Retrieval-Augmented LLM for Conversational Recommendation Systems
Conversational Recommender Systems (CRSs) have emerged as a transformative paradigm for offering personalized recommendations through natural language dialogue. However, they face challenges with knowledge sparsity, as users often provide brief, incomplete preference statements. While recent methods have integrated external knowledge sources to mitigate this, they still struggle with semantic understanding and complex preference reasoning. Recent Large Language Models (LLMs) demonstrate promising capabilities in natural language understanding and reasoning, showing significant potential for CRSs. Nevertheless, due to the lack of domain knowledge, existing LLM-based CRSs either produce hallucinated recommendations or demand expensive domain-specific training, which largely limits their applicability. In this work, we present G-CRS (Graph Retrieval-Augmented Large Language Model for Conversational Recommender Systems), a novel training-free framework that combines graph retrieval-augmented generation and in-context learning to enhance LLMs' recommendation capabilities. Specifically, G-CRS employs a two-stage retrieve-and-recommend architecture, where a GNN-based graph reasoner first identifies candidate items, followed by Personalized PageRank exploration to jointly discover potential items and similar user interactions. These retrieved contexts are then transformed into structured prompts for LLM reasoning, enabling contextually grounded recommendations without task-specific training. Extensive experiments on two public datasets show that G-CRS achieves superior recommendation performance compared to existing methods without requiring task-specific training.
SR-FoT: A Syllogistic-Reasoning Framework of Thought for Large Language Models Tackling Knowledge-based Reasoning Tasks
Deductive reasoning is a crucial logical capability that assists us in solving complex problems based on existing knowledge. Although augmented by Chain-of-Thought prompts, Large Language Models (LLMs) might not follow the correct reasoning paths. Enhancing the deductive reasoning abilities of LLMs, and leveraging their extensive built-in knowledge for various reasoning tasks, remains an open question. Attempting to mimic the human deductive reasoning paradigm, we propose a multi-stage Syllogistic-Reasoning Framework of Thought (SR-FoT) that enables LLMs to perform syllogistic deductive reasoning to handle complex knowledge-based reasoning tasks. Our SR-FoT begins by interpreting the question and then uses the interpretation and the original question to propose a suitable major premise. It proceeds by generating and answering minor premise questions in two stages to match the minor premises. Finally, it guides LLMs to use the previously generated major and minor premises to perform syllogistic deductive reasoning to derive the answer to the original question. Extensive and thorough experiments on knowledge-based reasoning tasks have demonstrated the effectiveness and advantages of our SR-FoT.
