- Optimism in Equality Saturation Equality saturation is a technique for program optimization based on non-destructive rewriting and a form of program analysis called e-class analysis. The current form of e-class analysis is pessimistic and therefore ineffective at analyzing cyclic programs, such as those in SSA form. We propose an abstract interpretation algorithm that can precisely analyze cycles during equality saturation. This results in a unified algorithm for optimistic analysis and non-destructive rewriting. We instantiate this approach on a prototype abstract interpreter for SSA programs using a new semantics of SSA. Our prototype can analyze simple example programs more precisely than clang and gcc. 3 authors · Nov 25
3 Questioning Representational Optimism in Deep Learning: The Fractured Entangled Representation Hypothesis Much of the excitement in modern AI is driven by the observation that scaling up existing systems leads to better performance. But does better performance necessarily imply better internal representations? While the representational optimist assumes it must, this position paper challenges that view. We compare neural networks evolved through an open-ended search process to networks trained via conventional stochastic gradient descent (SGD) on the simple task of generating a single image. This minimal setup offers a unique advantage: each hidden neuron's full functional behavior can be easily visualized as an image, thus revealing how the network's output behavior is internally constructed neuron by neuron. The result is striking: while both networks produce the same output behavior, their internal representations differ dramatically. The SGD-trained networks exhibit a form of disorganization that we term fractured entangled representation (FER). Interestingly, the evolved networks largely lack FER, even approaching a unified factored representation (UFR). In large models, FER may be degrading core model capacities like generalization, creativity, and (continual) learning. Therefore, understanding and mitigating FER could be critical to the future of representation learning. 4 authors · May 16
- Multi-Agent Online Optimization with Delays: Asynchronicity, Adaptivity, and Optimism In this paper, we provide a general framework for studying multi-agent online learning problems in the presence of delays and asynchronicities. Specifically, we propose and analyze a class of adaptive dual averaging schemes in which agents only need to accumulate gradient feedback received from the whole system, without requiring any between-agent coordination. In the single-agent case, the adaptivity of the proposed method allows us to extend a range of existing results to problems with potentially unbounded delays between playing an action and receiving the corresponding feedback. In the multi-agent case, the situation is significantly more complicated because agents may not have access to a global clock to use as a reference point; to overcome this, we focus on the information that is available for producing each prediction rather than the actual delay associated with each feedback. This allows us to derive adaptive learning strategies with optimal regret bounds, even in a fully decentralized, asynchronous environment. Finally, we also analyze an "optimistic" variant of the proposed algorithm which is capable of exploiting the predictability of problems with a slower variation and leads to improved regret bounds. 4 authors · Dec 21, 2020