Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeTowards Building Large Scale Multimodal Domain-Aware Conversation Systems
While multimodal conversation agents are gaining importance in several domains such as retail, travel etc., deep learning research in this area has been limited primarily due to the lack of availability of large-scale, open chatlogs. To overcome this bottleneck, in this paper we introduce the task of multimodal, domain-aware conversations, and propose the MMD benchmark dataset. This dataset was gathered by working in close coordination with large number of domain experts in the retail domain. These experts suggested various conversations flows and dialog states which are typically seen in multimodal conversations in the fashion domain. Keeping these flows and states in mind, we created a dataset consisting of over 150K conversation sessions between shoppers and sales agents, with the help of in-house annotators using a semi-automated manually intense iterative process. With this dataset, we propose 5 new sub-tasks for multimodal conversations along with their evaluation methodology. We also propose two multimodal neural models in the encode-attend-decode paradigm and demonstrate their performance on two of the sub-tasks, namely text response generation and best image response selection. These experiments serve to establish baseline performance and open new research directions for each of these sub-tasks. Further, for each of the sub-tasks, we present a `per-state evaluation' of 9 most significant dialog states, which would enable more focused research into understanding the challenges and complexities involved in each of these states.
Enabling Chatbots with Eyes and Ears: An Immersive Multimodal Conversation System for Dynamic Interactions
As chatbots continue to evolve toward human-like, real-world, interactions, multimodality remains an active area of research and exploration. So far, efforts to integrate multimodality into chatbots have primarily focused on image-centric tasks, such as visual dialogue and image-based instructions, placing emphasis on the "eyes" of human perception while neglecting the "ears", namely auditory aspects. Moreover, these studies often center around static interactions that focus on discussing the modality rather than naturally incorporating it into the conversation, which limits the richness of simultaneous, dynamic engagement. Furthermore, while multimodality has been explored in multi-party and multi-session conversations, task-specific constraints have hindered its seamless integration into dynamic, natural conversations. To address these challenges, this study aims to equip chatbots with "eyes and ears" capable of more immersive interactions with humans. As part of this effort, we introduce a new multimodal conversation dataset, Multimodal Multi-Session Multi-Party Conversation (M^3C), and propose a novel multimodal conversation model featuring multimodal memory retrieval. Our model, trained on the M^3C, demonstrates the ability to seamlessly engage in long-term conversations with multiple speakers in complex, real-world-like settings, effectively processing visual and auditory inputs to understand and respond appropriately. Human evaluations highlight the model's strong performance in maintaining coherent and dynamic interactions, demonstrating its potential for advanced multimodal conversational agents.
MPCHAT: Towards Multimodal Persona-Grounded Conversation
In order to build self-consistent personalized dialogue agents, previous research has mostly focused on textual persona that delivers personal facts or personalities. However, to fully describe the multi-faceted nature of persona, image modality can help better reveal the speaker's personal characteristics and experiences in episodic memory (Rubin et al., 2003; Conway, 2009). In this work, we extend persona-based dialogue to the multimodal domain and make two main contributions. First, we present the first multimodal persona-based dialogue dataset named MPCHAT, which extends persona with both text and images to contain episodic memories. Second, we empirically show that incorporating multimodal persona, as measured by three proposed multimodal persona-grounded dialogue tasks (i.e., next response prediction, grounding persona prediction, and speaker identification), leads to statistically significant performance improvements across all tasks. Thus, our work highlights that multimodal persona is crucial for improving multimodal dialogue comprehension, and our MPCHAT serves as a high-quality resource for this research.
Towards Human-like Multimodal Conversational Agent by Generating Engaging Speech
Human conversation involves language, speech, and visual cues, with each medium providing complementary information. For instance, speech conveys a vibe or tone not fully captured by text alone. While multimodal LLMs focus on generating text responses from diverse inputs, less attention has been paid to generating natural and engaging speech. We propose a human-like agent that generates speech responses based on conversation mood and responsive style information. To achieve this, we build a novel MultiSensory Conversation dataset focused on speech to enable agents to generate natural speech. We then propose a multimodal LLM-based model for generating text responses and voice descriptions, which are used to generate speech covering paralinguistic information. Experimental results demonstrate the effectiveness of utilizing both visual and audio modalities in conversation to generate engaging speech. The source code is available in https://github.com/kimtaesu24/MSenC
Duplex Conversation: Towards Human-like Interaction in Spoken Dialogue Systems
In this paper, we present Duplex Conversation, a multi-turn, multimodal spoken dialogue system that enables telephone-based agents to interact with customers like a human. We use the concept of full-duplex in telecommunication to demonstrate what a human-like interactive experience should be and how to achieve smooth turn-taking through three subtasks: user state detection, backchannel selection, and barge-in detection. Besides, we propose semi-supervised learning with multimodal data augmentation to leverage unlabeled data to increase model generalization. Experimental results on three sub-tasks show that the proposed method achieves consistent improvements compared with baselines. We deploy the Duplex Conversation to Alibaba intelligent customer service and share lessons learned in production. Online A/B experiments show that the proposed system can significantly reduce response latency by 50%.
MIRIX: Multi-Agent Memory System for LLM-Based Agents
Although memory capabilities of AI agents are gaining increasing attention, existing solutions remain fundamentally limited. Most rely on flat, narrowly scoped memory components, constraining their ability to personalize, abstract, and reliably recall user-specific information over time. To this end, we introduce MIRIX, a modular, multi-agent memory system that redefines the future of AI memory by solving the field's most critical challenge: enabling language models to truly remember. Unlike prior approaches, MIRIX transcends text to embrace rich visual and multimodal experiences, making memory genuinely useful in real-world scenarios. MIRIX consists of six distinct, carefully structured memory types: Core, Episodic, Semantic, Procedural, Resource Memory, and Knowledge Vault, coupled with a multi-agent framework that dynamically controls and coordinates updates and retrieval. This design enables agents to persist, reason over, and accurately retrieve diverse, long-term user data at scale. We validate MIRIX in two demanding settings. First, on ScreenshotVQA, a challenging multimodal benchmark comprising nearly 20,000 high-resolution computer screenshots per sequence, requiring deep contextual understanding and where no existing memory systems can be applied, MIRIX achieves 35% higher accuracy than the RAG baseline while reducing storage requirements by 99.9%. Second, on LOCOMO, a long-form conversation benchmark with single-modal textual input, MIRIX attains state-of-the-art performance of 85.4%, far surpassing existing baselines. These results show that MIRIX sets a new performance standard for memory-augmented LLM agents. To allow users to experience our memory system, we provide a packaged application powered by MIRIX. It monitors the screen in real time, builds a personalized memory base, and offers intuitive visualization and secure local storage to ensure privacy.
TalkPlayData 2: An Agentic Synthetic Data Pipeline for Multimodal Conversational Music Recommendation
We present TalkPlayData 2, a synthetic dataset for multimodal conversational music recommendation generated by an agentic data pipeline. In TalkPlayData 2 pipeline, multiple large language model (LLM) agents are created under various roles with specialized prompts and access to different parts of information, and the chat data is acquired by logging the conversation between the Listener LLM and the Recsys LLM. To cover various conversation scenarios, for each conversation, the Listener LLM is conditioned on a finetuned conversation goal. Finally, all the LLMs are multimodal with audio and images, allowing a simulation of multimodal recommendation and conversation. In the LLM-as-a-judge and subjective evaluation experiments, TalkPlayData 2 achieved the proposed goal in various aspects related to training a generative recommendation model for music. TalkPlayData 2 and its generation code are open-sourced at https://talkpl.ai/talkplaydata2.html.
Situated and Interactive Multimodal Conversations
Next generation virtual assistants are envisioned to handle multimodal inputs (e.g., vision, memories of previous interactions, in addition to the user's utterances), and perform multimodal actions (e.g., displaying a route in addition to generating the system's utterance). We introduce Situated Interactive MultiModal Conversations (SIMMC) as a new direction aimed at training agents that take multimodal actions grounded in a co-evolving multimodal input context in addition to the dialog history. We provide two SIMMC datasets totalling ~13K human-human dialogs (~169K utterances) using a multimodal Wizard-of-Oz (WoZ) setup, on two shopping domains: (a) furniture (grounded in a shared virtual environment) and, (b) fashion (grounded in an evolving set of images). We also provide logs of the items appearing in each scene, and contextual NLU and coreference annotations, using a novel and unified framework of SIMMC conversational acts for both user and assistant utterances. Finally, we present several tasks within SIMMC as objective evaluation protocols, such as Structural API Prediction and Response Generation. We benchmark a collection of existing models on these SIMMC tasks as strong baselines, and demonstrate rich multimodal conversational interactions. Our data, annotations, code, and models are publicly available.
UMass-BioNLP at MEDIQA-M3G 2024: DermPrompt -- A Systematic Exploration of Prompt Engineering with GPT-4V for Dermatological Diagnosis
This paper presents our team's participation in the MEDIQA-ClinicalNLP2024 shared task B. We present a novel approach to diagnosing clinical dermatology cases by integrating large multimodal models, specifically leveraging the capabilities of GPT-4V under a retriever and a re-ranker framework. Our investigation reveals that GPT-4V, when used as a retrieval agent, can accurately retrieve the correct skin condition 85% of the time using dermatological images and brief patient histories. Additionally, we empirically show that Naive Chain-of-Thought (CoT) works well for retrieval while Medical Guidelines Grounded CoT is required for accurate dermatological diagnosis. Further, we introduce a Multi-Agent Conversation (MAC) framework and show its superior performance and potential over the best CoT strategy. The experiments suggest that using naive CoT for retrieval and multi-agent conversation for critique-based diagnosis, GPT-4V can lead to an early and accurate diagnosis of dermatological conditions. The implications of this work extend to improving diagnostic workflows, supporting dermatological education, and enhancing patient care by providing a scalable, accessible, and accurate diagnostic tool.
Multi-Party Conversational Agents: A Survey
Multi-party Conversational Agents (MPCAs) are systems designed to engage in dialogue with more than two participants simultaneously. Unlike traditional two-party agents, designing MPCAs faces additional challenges due to the need to interpret both utterance semantics and social dynamics. This survey explores recent progress in MPCAs by addressing three key questions: 1) Can agents model each participants' mental states? (State of Mind Modeling); 2) Can they properly understand the dialogue content? (Semantic Understanding); and 3) Can they reason about and predict future conversation flow? (Agent Action Modeling). We review methods ranging from classical machine learning to Large Language Models (LLMs) and multi-modal systems. Our analysis underscores Theory of Mind (ToM) as essential for building intelligent MPCAs and highlights multi-modal understanding as a promising yet underexplored direction. Finally, this survey offers guidance to future researchers on developing more capable MPCAs.
Mem-Gallery: Benchmarking Multimodal Long-Term Conversational Memory for MLLM Agents
Long-term memory is a critical capability for multimodal large language model (MLLM) agents, particularly in conversational settings where information accumulates and evolves over time. However, existing benchmarks either evaluate multi-session memory in text-only conversations or assess multimodal understanding within localized contexts, failing to evaluate how multimodal memory is preserved, organized, and evolved across long-term conversational trajectories. Thus, we introduce Mem-Gallery, a new benchmark for evaluating multimodal long-term conversational memory in MLLM agents. Mem-Gallery features high-quality multi-session conversations grounded in both visual and textual information, with long interaction horizons and rich multimodal dependencies. Building on this dataset, we propose a systematic evaluation framework that assesses key memory capabilities along three functional dimensions: memory extraction and test-time adaptation, memory reasoning, and memory knowledge management. Extensive benchmarking across thirteen memory systems reveals several key findings, highlighting the necessity of explicit multimodal information retention and memory organization, the persistent limitations in memory reasoning and knowledge management, as well as the efficiency bottleneck of current models.
MTPChat: A Multimodal Time-Aware Persona Dataset for Conversational Agents
Understanding temporal dynamics is critical for conversational agents, enabling effective content analysis and informed decision-making. However, time-aware datasets, particularly for persona-grounded conversations, are still limited, which narrows their scope and diminishes their complexity. To address this gap, we introduce MTPChat, a multimodal, time-aware persona dialogue dataset that integrates linguistic, visual, and temporal elements within dialogue and persona memory. Leveraging MTPChat, we propose two time-sensitive tasks: Temporal Next Response Prediction (TNRP) and Temporal Grounding Memory Prediction (TGMP), both designed to assess a model's ability to understand implicit temporal cues and dynamic interactions. Additionally, we present an innovative framework featuring an adaptive temporal module to effectively integrate multimodal streams and capture temporal dependencies. Experimental results validate the challenges posed by MTPChat and demonstrate the effectiveness of our framework in multimodal time-sensitive scenarios.
Maria: A Visual Experience Powered Conversational Agent
Arguably, the visual perception of conversational agents to the physical world is a key way for them to exhibit the human-like intelligence. Image-grounded conversation is thus proposed to address this challenge. Existing works focus on exploring the multimodal dialog models that ground the conversation on a given image. In this paper, we take a step further to study image-grounded conversation under a fully open-ended setting where no paired dialog and image are assumed available. Specifically, we present Maria, a neural conversation agent powered by the visual world experiences which are retrieved from a large-scale image index. Maria consists of three flexible components, i.e., text-to-image retriever, visual concept detector and visual-knowledge-grounded response generator. The retriever aims to retrieve a correlated image to the dialog from an image index, while the visual concept detector extracts rich visual knowledge from the image. Then, the response generator is grounded on the extracted visual knowledge and dialog context to generate the target response. Extensive experiments demonstrate Maria outperforms previous state-of-the-art methods on automatic metrics and human evaluation, and can generate informative responses that have some visual commonsense of the physical world.
First Steps Towards Overhearing LLM Agents: A Case Study With Dungeons & Dragons Gameplay
Much work has been done on conversational LLM agents which directly assist human users with tasks. We present an alternative paradigm for interacting with LLM agents, which we call "overhearing agents". These overhearing agents do not actively participate in conversation -- instead, they "listen in" on human-to-human conversations and perform background tasks or provide suggestions to assist the user. In this work, we explore the overhearing agents paradigm through the lens of Dungeons & Dragons gameplay. We present an in-depth study using large multimodal audio-language models as overhearing agents to assist a Dungeon Master. We perform a human evaluation to examine the helpfulness of such agents and find that some large audio-language models have the emergent ability to perform overhearing agent tasks using implicit audio cues. Finally, we release Python libraries and our project code to support further research into the overhearing agents paradigm at https://github.com/zhudotexe/overhearing_agents.
VCB Bench: An Evaluation Benchmark for Audio-Grounded Large Language Model Conversational Agents
Recent advances in large audio language models (LALMs) have greatly enhanced multimodal conversational systems. However, existing benchmarks remain limited -- they are mainly English-centric, rely on synthetic speech, and lack comprehensive, discriminative evaluation across multiple dimensions. To address these gaps, we present Voice Chat Bot Bench (VCB Bench) -- a high-quality Chinese benchmark built entirely on real human speech. VCB Bench evaluates LALMs from three complementary perspectives: instruction following (including speech-level control beyond text commands), knowledge understanding (general knowledge, reasoning, and daily dialogue), and robustness (stability under perturbations in content, environment, and speaker traits). Experiments on representative LALMs reveal notable performance gaps and highlight future directions for improvement. VCB Bench provides a reproducible and fine-grained evaluation framework, offering standardized methodology and practical insights for advancing Chinese voice conversational models.
Multimodal Policy Internalization for Conversational Agents
Modern conversational agents like ChatGPT and Alexa+ rely on predefined policies specifying metadata, response styles, and tool-usage rules. As these LLM-based systems expand to support diverse business and user queries, such policies, often implemented as in-context prompts, are becoming increasingly complex and lengthy, making faithful adherence difficult and imposing large fixed computational costs. With the rise of multimodal agents, policies that govern visual and multimodal behaviors are critical but remain understudied. Prior prompt-compression work mainly shortens task templates and demonstrations, while existing policy-alignment studies focus only on text-based safety rules. We introduce Multimodal Policy Internalization (MPI), a new task that internalizes reasoning-intensive multimodal policies into model parameters, enabling stronger policy-following without including the policy during inference. MPI poses unique data and algorithmic challenges. We build two datasets spanning synthetic and real-world decision-making and tool-using tasks and propose TriMPI, a three-stage training framework. TriMPI first injects policy knowledge via continual pretraining, then performs supervised finetuning, and finally applies PolicyRollout, a GRPO-style reinforcement learning extension that augments rollouts with policy-aware responses for grounded exploration. TriMPI achieves notable gains in end-to-end accuracy, generalization, and robustness to forgetting. As the first work on multimodal policy internalization, we provide datasets, training recipes, and comprehensive evaluations to foster future research. Project page: https://mikewangwzhl.github.io/TriMPI.
EgoSpeak: Learning When to Speak for Egocentric Conversational Agents in the Wild
Predicting when to initiate speech in real-world environments remains a fundamental challenge for conversational agents. We introduce EgoSpeak, a novel framework for real-time speech initiation prediction in egocentric streaming video. By modeling the conversation from the speaker's first-person viewpoint, EgoSpeak is tailored for human-like interactions in which a conversational agent must continuously observe its environment and dynamically decide when to talk. Our approach bridges the gap between simplified experimental setups and complex natural conversations by integrating four key capabilities: (1) first-person perspective, (2) RGB processing, (3) online processing, and (4) untrimmed video processing. We also present YT-Conversation, a diverse collection of in-the-wild conversational videos from YouTube, as a resource for large-scale pretraining. Experiments on EasyCom and Ego4D demonstrate that EgoSpeak outperforms random and silence-based baselines in real time. Our results also highlight the importance of multimodal input and context length in effectively deciding when to speak.
Grounding Task Assistance with Multimodal Cues from a Single Demonstration
A person's demonstration often serves as a key reference for others learning the same task. However, RGB video, the dominant medium for representing these demonstrations, often fails to capture fine-grained contextual cues such as intent, safety-critical environmental factors, and subtle preferences embedded in human behavior. This sensory gap fundamentally limits the ability of Vision Language Models (VLMs) to reason about why actions occur and how they should adapt to individual users. To address this, we introduce MICA (Multimodal Interactive Contextualized Assistance), a framework that improves conversational agents for task assistance by integrating eye gaze and speech cues. MICA segments demonstrations into meaningful sub-tasks and extracts keyframes and captions that capture fine-grained intent and user-specific cues, enabling richer contextual grounding for visual question answering. Evaluations on questions derived from real-time chat-assisted task replication show that multimodal cues significantly improve response quality over frame-based retrieval. Notably, gaze cues alone achieves 93% of speech performance, and their combination yields the highest accuracy. Task type determines the effectiveness of implicit (gaze) vs. explicit (speech) cues, underscoring the need for adaptable multimodal models. These results highlight the limitations of frame-based context and demonstrate the value of multimodal signals for real-world AI task assistance.
Alexa, play with robot: Introducing the First Alexa Prize SimBot Challenge on Embodied AI
The Alexa Prize program has empowered numerous university students to explore, experiment, and showcase their talents in building conversational agents through challenges like the SocialBot Grand Challenge and the TaskBot Challenge. As conversational agents increasingly appear in multimodal and embodied contexts, it is important to explore the affordances of conversational interaction augmented with computer vision and physical embodiment. This paper describes the SimBot Challenge, a new challenge in which university teams compete to build robot assistants that complete tasks in a simulated physical environment. This paper provides an overview of the SimBot Challenge, which included both online and offline challenge phases. We describe the infrastructure and support provided to the teams including Alexa Arena, the simulated environment, and the ML toolkit provided to teams to accelerate their building of vision and language models. We summarize the approaches the participating teams took to overcome research challenges and extract key lessons learned. Finally, we provide analysis of the performance of the competing SimBots during the competition.
V-Rex: Real-Time Streaming Video LLM Acceleration via Dynamic KV Cache Retrieval
Streaming video large language models (LLMs) are increasingly used for real-time multimodal tasks such as video captioning, question answering, conversational agents, and augmented reality. However, these models face fundamental memory and computational challenges because their key-value (KV) caches grow substantially with continuous streaming video input. This process requires an iterative prefill stage, which is a unique feature of streaming video LLMs. Due to its iterative prefill stage, it suffers from significant limitations, including extensive computation, substantial data transfer, and degradation in accuracy. Crucially, this issue is exacerbated for edge deployment, which is the primary target for these models. In this work, we propose V-Rex, the first software-hardware co-designed accelerator that comprehensively addresses both algorithmic and hardware bottlenecks in streaming video LLM inference. At its core, V-Rex introduces ReSV, a training-free dynamic KV cache retrieval algorithm. ReSV exploits temporal and spatial similarity-based token clustering to reduce excessive KV cache memory across video frames. To fully realize these algorithmic benefits, V-Rex offers a compact, low-latency hardware accelerator with a dynamic KV cache retrieval engine (DRE), featuring bit-level and early-exit based computing units. V-Rex achieves unprecedented real-time of 3.9-8.3 FPS and energy-efficient streaming video LLM inference on edge deployment with negligible accuracy loss. While DRE only accounts for 2.2% power and 2.0% area, the system delivers 1.9-19.7x speedup and 3.1-18.5x energy efficiency improvements over AGX Orin GPU. This work is the first to comprehensively tackle KV cache retrieval across algorithms and hardware, enabling real-time streaming video LLM inference on resource-constrained edge devices.
MMDialog: A Large-scale Multi-turn Dialogue Dataset Towards Multi-modal Open-domain Conversation
Responding with multi-modal content has been recognized as an essential capability for an intelligent conversational agent. In this paper, we introduce the MMDialog dataset to better facilitate multi-modal conversation. MMDialog is composed of a curated set of 1.08 million real-world dialogues with 1.53 million unique images across 4,184 topics. MMDialog has two main and unique advantages. First, it is the largest multi-modal conversation dataset by the number of dialogues by 88x. Second, it contains massive topics to generalize the open-domain. To build engaging dialogue system with this dataset, we propose and normalize two response producing tasks based on retrieval and generative scenarios. In addition, we build two baselines for above tasks with state-of-the-art techniques and report their experimental performance. We also propose a novel evaluation metric MM-Relevance to measure the multi-modal responses. Our dataset and scripts are available in https://github.com/victorsungo/MMDialog.
Improving Dialogue Agents by Decomposing One Global Explicit Annotation with Local Implicit Multimodal Feedback
We describe an approach for aligning an LLM-based dialogue agent based on global (i.e., dialogue-level) rewards, while also taking into account naturally-occurring multimodal signals. At a high level, our approach (dubbed GELI) learns a local, turn-level reward model by decomposing the human-provided Global Explicit (GE) session-level reward, using Local Implicit (LI) multimodal reward signals to crossmodally shape the reward decomposition step. This decomposed reward model is then used as part of the standard RHLF pipeline improve an LLM-based dialog agent. We run quantitative and qualitative human studies to evaluate the performance of our GELI approach, and find that it shows consistent improvements across various conversational metrics compared to baseline methods.
Multimodal Safety Evaluation in Generative Agent Social Simulations
Can generative agents be trusted in multimodal environments? Despite advances in large language and vision-language models that enable agents to act autonomously and pursue goals in rich settings, their ability to reason about safety, coherence, and trust across modalities remains limited. We introduce a reproducible simulation framework for evaluating agents along three dimensions: (1) safety improvement over time, including iterative plan revisions in text-visual scenarios; (2) detection of unsafe activities across multiple categories of social situations; and (3) social dynamics, measured as interaction counts and acceptance ratios of social exchanges. Agents are equipped with layered memory, dynamic planning, multimodal perception, and are instrumented with SocialMetrics, a suite of behavioral and structural metrics that quantifies plan revisions, unsafe-to-safe conversions, and information diffusion across networks. Experiments show that while agents can detect direct multimodal contradictions, they often fail to align local revisions with global safety, reaching only a 55 percent success rate in correcting unsafe plans. Across eight simulation runs with three models - Claude, GPT-4o mini, and Qwen-VL - five agents achieved average unsafe-to-safe conversion rates of 75, 55, and 58 percent, respectively. Overall performance ranged from 20 percent in multi-risk scenarios with GPT-4o mini to 98 percent in localized contexts such as fire/heat with Claude. Notably, 45 percent of unsafe actions were accepted when paired with misleading visuals, showing a strong tendency to overtrust images. These findings expose critical limitations in current architectures and provide a reproducible platform for studying multimodal safety, coherence, and social dynamics.
Training-Free Multimodal Large Language Model Orchestration
Different Multimodal Large Language Models (MLLMs) cannot be integrated into a unified multimodal input-output system directly. In previous work, training has been considered as an inevitable component due to challenges in modal alignment, Text-to-Speech efficiency and other integration issues. In this paper, we introduce Multimodal Large Language Model Orchestration, an effective approach for creating interactive multimodal AI systems without additional training. MLLM Orchestration leverages the inherent reasoning capabilities of large language models to coordinate specialized models through explicit workflows, enabling natural multimodal interactions while maintaining modularity, improving interpretability, and significantly enhancing computational efficiency. Our orchestration framework is built upon three key innovations: (1) a central controller LLM that analyzes user inputs and dynamically routes tasks to appropriate specialized models through carefully designed agents; (2) a parallel Text-to-Speech architecture that enables true full-duplex interaction with seamless interruption handling and natural conversational flow; and (3) a cross-modal memory integration system that maintains coherent context across modalities through intelligent information synthesis and retrieval, selectively avoiding unnecessary modality calls in certain scenarios to improve response speed. Extensive evaluations demonstrate that MLLM Orchestration achieves comprehensive multimodal capabilities without additional training, performance improvements of up to 7.8% over traditional jointly-trained approaches on standard benchmarks, reduced latency by 10.3%, and significantly enhanced interpretability through explicit orchestration processes.
META-GUI: Towards Multi-modal Conversational Agents on Mobile GUI
Task-oriented dialogue (TOD) systems have been widely used by mobile phone intelligent assistants to accomplish tasks such as calendar scheduling or hotel reservation. Current TOD systems usually focus on multi-turn text/speech interaction, then they would call back-end APIs designed for TODs to perform the task. However, this API-based architecture greatly limits the information-searching capability of intelligent assistants and may even lead to task failure if TOD-specific APIs are not available or the task is too complicated to be executed by the provided APIs. In this paper, we propose a new TOD architecture: GUI-based task-oriented dialogue system (GUI-TOD). A GUI-TOD system can directly perform GUI operations on real APPs and execute tasks without invoking TOD-specific backend APIs. Furthermore, we release META-GUI, a dataset for training a Multi-modal convErsaTional Agent on mobile GUI. We also propose a multi-model action prediction and response model, which show promising results on META-GUI. The dataset, codes and leaderboard are publicly available.
Muse: A Multimodal Conversational Recommendation Dataset with Scenario-Grounded User Profiles
Current conversational recommendation systems focus predominantly on text. However, real-world recommendation settings are generally multimodal, causing a significant gap between existing research and practical applications. To address this issue, we propose Muse, the first multimodal conversational recommendation dataset. Muse comprises 83,148 utterances from 7,000 conversations centered around the Clothing domain. Each conversation contains comprehensive multimodal interactions, rich elements, and natural dialogues. Data in Muse are automatically synthesized by a multi-agent framework powered by multimodal large language models (MLLMs). It innovatively derives user profiles from real-world scenarios rather than depending on manual design and history data for better scalability, and then it fulfills conversation simulation and optimization. Both human and LLM evaluations demonstrate the high quality of conversations in Muse. Additionally, fine-tuning experiments on three MLLMs demonstrate Muse's learnable patterns for recommendations and responses, confirming its value for multimodal conversational recommendation. Our dataset and codes are available at https://anonymous.4open.science/r/Muse-0086.
Multimodal Dialogue Response Generation
Responsing with image has been recognized as an important capability for an intelligent conversational agent. Yet existing works only focus on exploring the multimodal dialogue models which depend on retrieval-based methods, but neglecting generation methods. To fill in the gaps, we first present a multimodal dialogue generation model, which takes the dialogue history as input, then generates a textual sequence or an image as response. Learning such a model often requires multimodal dialogues containing both texts and images which are difficult to obtain. Motivated by the challenge in practice, we consider multimodal dialogue generation under a natural assumption that only limited training examples are available. In such a low-resource setting, we devise a novel conversational agent, Divter, in order to isolate parameters that depend on multimodal dialogues from the entire generation model. By this means, the major part of the model can be learned from a large number of text-only dialogues and text-image pairs respectively, then the whole parameters can be well fitted using the limited training examples. Extensive experiments demonstrate our method achieves state-of-the-art results in both automatic and human evaluation, and can generate informative text and high-resolution image responses.
Multi-Modal Open-Domain Dialogue
Recent work in open-domain conversational agents has demonstrated that significant improvements in model engagingness and humanness metrics can be achieved via massive scaling in both pre-training data and model size (Adiwardana et al., 2020; Roller et al., 2020). However, if we want to build agents with human-like abilities, we must expand beyond handling just text. A particularly important topic is the ability to see images and communicate about what is perceived. With the goal of engaging humans in multi-modal dialogue, we investigate combining components from state-of-the-art open-domain dialogue agents with those from state-of-the-art vision models. We study incorporating different image fusion schemes and domain-adaptive pre-training and fine-tuning strategies, and show that our best resulting model outperforms strong existing models in multi-modal dialogue while simultaneously performing as well as its predecessor (text-only) BlenderBot (Roller et al., 2020) in text-based conversation. We additionally investigate and incorporate safety components in our final model, and show that such efforts do not diminish model performance with respect to engagingness metrics.
JARVIS: A Neuro-Symbolic Commonsense Reasoning Framework for Conversational Embodied Agents
Building a conversational embodied agent to execute real-life tasks has been a long-standing yet quite challenging research goal, as it requires effective human-agent communication, multi-modal understanding, long-range sequential decision making, etc. Traditional symbolic methods have scaling and generalization issues, while end-to-end deep learning models suffer from data scarcity and high task complexity, and are often hard to explain. To benefit from both worlds, we propose JARVIS, a neuro-symbolic commonsense reasoning framework for modular, generalizable, and interpretable conversational embodied agents. First, it acquires symbolic representations by prompting large language models (LLMs) for language understanding and sub-goal planning, and by constructing semantic maps from visual observations. Then the symbolic module reasons for sub-goal planning and action generation based on task- and action-level common sense. Extensive experiments on the TEACh dataset validate the efficacy and efficiency of our JARVIS framework, which achieves state-of-the-art (SOTA) results on all three dialog-based embodied tasks, including Execution from Dialog History (EDH), Trajectory from Dialog (TfD), and Two-Agent Task Completion (TATC) (e.g., our method boosts the unseen Success Rate on EDH from 6.1\% to 15.8\%). Moreover, we systematically analyze the essential factors that affect the task performance and also demonstrate the superiority of our method in few-shot settings. Our JARVIS model ranks first in the Alexa Prize SimBot Public Benchmark Challenge.
