new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

Understand What LLM Needs: Dual Preference Alignment for Retrieval-Augmented Generation

Retrieval-augmented generation (RAG) has demonstrated effectiveness in mitigating the hallucination problem of large language models (LLMs). However, the difficulty of aligning the retriever with the diverse LLMs' knowledge preferences inevitably poses an inevitable challenge in developing a reliable RAG system. To address this issue, we propose DPA-RAG, a universal framework designed to align diverse knowledge preferences within RAG systems. Specifically, we initially introduce a preference knowledge construction pipline and incorporate five novel query augmentation strategies to alleviate preference data scarcity. Based on preference data, DPA-RAG accomplishes both external and internal preference alignment: 1) It jointly integrate pair-wise, point-wise, and contrastive preference alignment abilities into the reranker, achieving external preference alignment among RAG components. 2) It further introduces a pre-aligned stage before vanilla Supervised Fine-tuning (SFT), enabling LLMs to implicitly capture knowledge aligned with their reasoning preferences, achieving LLMs' internal alignment. Experimental results across four knowledge-intensive QA datasets demonstrate that DPA-RAG outperforms all baselines and seamlessly integrates both black-box and open-sourced LLM readers. Further qualitative analysis and discussions also provide empirical guidance for achieving reliable RAG systems. Our code is publicly available at https://github.com/dongguanting/DPA-RAG.

  • 6 authors
·
Jun 26, 2024 5

Synthetic Modelling of Polarized Dust Emission in Intermediate-Mass YSOs: I: Constraining the Role of Iron Inclusions and Inelastic Relaxation on Grain Alignment with ALMA Polarization

Iron inclusions embedded inside dust grains play a crucial role in both internal alignment (IA) via Barnett relaxation and external alignment via the MAgnetically Enhanced RAdiative Torque (MRAT) mechanism. Moreover, inelastic relaxation is predicted to dominate over Barnett relaxation in driving the IA of micron-sized and very large grains above 10mu m (VLGs). Yet, a detailed modeling of polarized thermal dust emission from Class 0/I Young Stellar Objects (YSOs) taking into account these effects and their observational constraints is still lacking. In this paper, we update the POLARIS code and use it to perform synthetic dust polarization modeling for MHD simulations of an intermediate-mass YSO. Results will be post-processed with CASA to confront ALMA polarimetric observations. We found that to reproduce the high polarization degree of p sim 5-30% observed in protostellar envelopes by ALMA, micron-sized and VLGs must contain iron inclusions with N_{rm cl} sim 5 - 10^{3} iron atoms per cluster, assuming 30% of iron abundance locked inside dust grains under the cluster form. Inside the inner sim 500 au region, inelastic relaxation must participate in driving the grain internal alignment, and grains must contain larger iron inclusions of N_{rm cl} sim 10^{2}-10^{4} and grow beyond geq 10mu m to reproduce sim 3-10% of dust polarization observed by ALMA. But given such a combination, the internal alignment and MRAT efficiency acting on VLGs still decrease toward the center, inducing the decrease of p(%) with increasing gas density, reaching p sim 1% inside the disk.

  • 5 authors
·
Jul 14, 2024

Implicit Reasoning in Large Language Models: A Comprehensive Survey

Large Language Models (LLMs) have demonstrated strong generalization across a wide range of tasks. Reasoning with LLMs is central to solving multi-step problems and complex decision-making. To support efficient reasoning, recent studies have shifted attention from explicit chain-of-thought prompting toward implicit reasoning, where reasoning occurs silently via latent structures without emitting intermediate textual steps. Implicit reasoning brings advantages such as lower generation cost, faster inference, and better alignment with internal computation. Although prior surveys have discussed latent representations in the context of reasoning, a dedicated and mechanism-level examination of how reasoning unfolds internally within LLMs remains absent. This survey fills that gap by introducing a taxonomy centered on execution paradigms, shifting the focus from representational forms to computational strategies. We organize existing methods into three execution paradigms based on \textit{how and where internal computation unfolds}: latent optimization, signal-guided control, and layer-recurrent execution. We also review structural, behavioral and representation-based evidence that supports the presence of implicit reasoning in LLMs. We further provide a structured overview of the evaluation metrics and benchmarks used in existing works to assess the effectiveness and reliability of implicit reasoning. We maintain a continuously updated project at: https://github.com/digailab/awesome-llm-implicit-reasoning.

  • 9 authors
·
Sep 2

Baichuan Alignment Technical Report

We introduce Baichuan Alignment, a detailed analysis of the alignment techniques employed in the Baichuan series of models. This represents the industry's first comprehensive account of alignment methodologies, offering valuable insights for advancing AI research. We investigate the critical components that enhance model performance during the alignment process, including optimization methods, data strategies, capability enhancements, and evaluation processes. The process spans three key stages: Prompt Augmentation System (PAS), Supervised Fine-Tuning (SFT), and Preference Alignment. The problems encountered, the solutions applied, and the improvements made are thoroughly recorded. Through comparisons across well-established benchmarks, we highlight the technological advancements enabled by Baichuan Alignment. Baichuan-Instruct is an internal model, while Qwen2-Nova-72B and Llama3-PBM-Nova-70B are instruct versions of the Qwen2-72B and Llama-3-70B base models, optimized through Baichuan Alignment. Baichuan-Instruct demonstrates significant improvements in core capabilities, with user experience gains ranging from 17% to 28%, and performs exceptionally well on specialized benchmarks. In open-source benchmark evaluations, both Qwen2-Nova-72B and Llama3-PBM-Nova-70B consistently outperform their respective official instruct versions across nearly all datasets. This report aims to clarify the key technologies behind the alignment process, fostering a deeper understanding within the community. Llama3-PBM-Nova-70B model is available at https://huggingface.co/PKU-Baichuan-MLSystemLab/Llama3-PBM-Nova-70B.

  • 25 authors
·
Oct 18, 2024 2

Agent-Environment Alignment via Automated Interface Generation

Large language model (LLM) agents have shown impressive reasoning capabilities in interactive decision-making tasks. These agents interact with environment through intermediate interfaces, such as predefined action spaces and interaction rules, which mediate the perception and action. However, mismatches often happen between the internal expectations of the agent regarding the influence of its issued actions and the actual state transitions in the environment, a phenomenon referred to as agent-environment misalignment. While prior work has invested substantially in improving agent strategies and environment design, the critical role of the interface still remains underexplored. In this work, we empirically demonstrate that agent-environment misalignment poses a significant bottleneck to agent performance. To mitigate this issue, we propose ALIGN, an Auto-Aligned Interface Generation framework that alleviates the misalignment by enriching the interface. Specifically, the ALIGN-generated interface enhances both the static information of the environment and the step-wise observations returned to the agent. Implemented as a lightweight wrapper, this interface achieves the alignment without modifying either the agent logic or the environment code. Experiments across multiple domains including embodied tasks, web navigation and tool-use, show consistent performance improvements, with up to a 45.67\% success rate improvement observed in ALFWorld. Meanwhile, ALIGN-generated interface can generalize across different agent architectures and LLM backbones without interface regeneration. Code and experimental results are available at https://github.com/THUNLP-MT/ALIGN.

  • 5 authors
·
May 27

When Alignment Hurts: Decoupling Representational Spaces in Multilingual Models

Alignment with high-resource standard languages is often assumed to aid the modeling of related low-resource varieties. We challenge this assumption by demonstrating that excessive representational entanglement with a dominant variety, such as Modern Standard Arabic (MSA) in relation to Arabic dialects, can actively hinder generative modeling. We present the first comprehensive causal study of this phenomenon by analyzing and directly intervening in the internal representation geometry of large language models (LLMs). Our key contribution is an online variational probing framework that continuously estimates the subspace of the standard variety during fine-tuning, enabling projection-based decoupling from this space. While our study uses Arabic as a case due to its unusually rich parallel resources across 25 dialects, the broader motivation is methodological: dialectal MT serves as a controlled proxy for generative tasks where comparable multi-variety corpora are unavailable. Across 25 dialects, our intervention improves generation quality by up to +4.9 chrF++ and +2.0 on average compared to standard fine-tuning, despite a measured tradeoff in standard-language performance. These results provide causal evidence that subspace dominance by high-resource varieties can restrict generative capacity for related varieties. More generally, we unify geometric and information-theoretic probing with subspace-level causal interventions, offering practical tools for improving generative modeling in closely related language families and, more broadly, for controlling representational allocation in multilingual and multi-domain LLMs. Code will be released.

  • 7 authors
·
Aug 18

Of Models and Tin Men: A Behavioural Economics Study of Principal-Agent Problems in AI Alignment using Large-Language Models

AI Alignment is often presented as an interaction between a single designer and an artificial agent in which the designer attempts to ensure the agent's behavior is consistent with its purpose, and risks arise solely because of conflicts caused by inadvertent misalignment between the utility function intended by the designer and the resulting internal utility function of the agent. With the advent of agents instantiated with large-language models (LLMs), which are typically pre-trained, we argue this does not capture the essential aspects of AI safety because in the real world there is not a one-to-one correspondence between designer and agent, and the many agents, both artificial and human, have heterogeneous values. Therefore, there is an economic aspect to AI safety and the principal-agent problem is likely to arise. In a principal-agent problem conflict arises because of information asymmetry together with inherent misalignment between the utility of the agent and its principal, and this inherent misalignment cannot be overcome by coercing the agent into adopting a desired utility function through training. We argue the assumptions underlying principal-agent problems are crucial to capturing the essence of safety problems involving pre-trained AI models in real-world situations. Taking an empirical approach to AI safety, we investigate how GPT models respond in principal-agent conflicts. We find that agents based on both GPT-3.5 and GPT-4 override their principal's objectives in a simple online shopping task, showing clear evidence of principal-agent conflict. Surprisingly, the earlier GPT-3.5 model exhibits more nuanced behaviour in response to changes in information asymmetry, whereas the later GPT-4 model is more rigid in adhering to its prior alignment. Our results highlight the importance of incorporating principles from economics into the alignment process.

  • 2 authors
·
Jul 20, 2023

Mitigating Deceptive Alignment via Self-Monitoring

Modern large language models rely on chain-of-thought (CoT) reasoning to achieve impressive performance, yet the same mechanism can amplify deceptive alignment, situations in which a model appears aligned while covertly pursuing misaligned goals. Existing safety pipelines treat deception as a black-box output to be filtered post-hoc, leaving the model free to scheme during its internal reasoning. We ask: Can deception be intercepted while the model is thinking? We answer this question, the first framework that embeds a Self-Monitor inside the CoT process itself, named CoT Monitor+. During generation, the model produces (i) ordinary reasoning steps and (ii) an internal self-evaluation signal trained to flag and suppress misaligned strategies. The signal is used as an auxiliary reward in reinforcement learning, creating a feedback loop that rewards honest reasoning and discourages hidden goals. To study deceptive alignment systematically, we introduce DeceptionBench, a five-category benchmark that probes covert alignment-faking, sycophancy, etc. We evaluate various LLMs and show that unrestricted CoT roughly aggravates the deceptive tendency. In contrast, CoT Monitor+ cuts deceptive behaviors by 43.8% on average while preserving task accuracy. Further, when the self-monitor signal replaces an external weak judge in RL fine-tuning, models exhibit substantially fewer obfuscated thoughts and retain transparency. Our project website can be found at cot-monitor-plus.github.io

  • 11 authors
·
May 24

Training the Untrainable: Introducing Inductive Bias via Representational Alignment

We demonstrate that architectures which traditionally are considered to be ill-suited for a task can be trained using inductive biases from another architecture. Networks are considered untrainable when they overfit, underfit, or converge to poor results even when tuning their hyperparameters. For example, plain fully connected networks overfit on object recognition while deep convolutional networks without residual connections underfit. The traditional answer is to change the architecture to impose some inductive bias, although what that bias is remains unknown. We introduce guidance, where a guide network guides a target network using a neural distance function. The target is optimized to perform well and to match its internal representations, layer-by-layer, to those of the guide; the guide is unchanged. If the guide is trained, this transfers over part of the architectural prior and knowledge of the guide to the target. If the guide is untrained, this transfers over only part of the architectural prior of the guide. In this manner, we can investigate what kinds of priors different architectures place on untrainable networks such as fully connected networks. We demonstrate that this method overcomes the immediate overfitting of fully connected networks on vision tasks, makes plain CNNs competitive to ResNets, closes much of the gap between plain vanilla RNNs and Transformers, and can even help Transformers learn tasks which RNNs can perform more easily. We also discover evidence that better initializations of fully connected networks likely exist to avoid overfitting. Our method provides a mathematical tool to investigate priors and architectures, and in the long term, may demystify the dark art of architecture creation, even perhaps turning architectures into a continuous optimizable parameter of the network.

  • 7 authors
·
Oct 25, 2024

How does Alignment Enhance LLMs' Multilingual Capabilities? A Language Neurons Perspective

Multilingual Alignment is an effective and representative paradigm to enhance LLMs' multilingual capabilities, which transfers the capabilities from the high-resource languages to the low-resource languages. Meanwhile, some researches on language-specific neurons reveal that there are language-specific neurons that are selectively activated in LLMs when processing different languages. This provides a new perspective to analyze and understand LLMs' mechanisms more specifically in multilingual scenarios. In this work, we propose a new finer-grained neuron identification algorithm, which detects language neurons~(including language-specific neurons and language-related neurons) and language-agnostic neurons. Furthermore, based on the distributional characteristics of different types of neurons, we divide the LLMs' internal process for multilingual inference into four parts: (1) multilingual understanding, (2) shared semantic space reasoning, (3) multilingual output space transformation, and (4) vocabulary space outputting. Additionally, we systematically analyze the models before and after alignment with a focus on different types of neurons. We also analyze the phenomenon of ''Spontaneous Multilingual Alignment''. Overall, our work conducts a comprehensive investigation based on different types of neurons, providing empirical results and valuable insights for better understanding multilingual alignment and multilingual capabilities of LLMs.

  • 8 authors
·
May 27 2

AdversariaL attacK sAfety aLIgnment(ALKALI): Safeguarding LLMs through GRACE: Geometric Representation-Aware Contrastive Enhancement- Introducing Adversarial Vulnerability Quality Index (AVQI)

Adversarial threats against LLMs are escalating faster than current defenses can adapt. We expose a critical geometric blind spot in alignment: adversarial prompts exploit latent camouflage, embedding perilously close to the safe representation manifold while encoding unsafe intent thereby evading surface level defenses like Direct Preference Optimization (DPO), which remain blind to the latent geometry. We introduce ALKALI, the first rigorously curated adversarial benchmark and the most comprehensive to date spanning 9,000 prompts across three macro categories, six subtypes, and fifteen attack families. Evaluation of 21 leading LLMs reveals alarmingly high Attack Success Rates (ASRs) across both open and closed source models, exposing an underlying vulnerability we term latent camouflage, a structural blind spot where adversarial completions mimic the latent geometry of safe ones. To mitigate this vulnerability, we introduce GRACE - Geometric Representation Aware Contrastive Enhancement, an alignment framework coupling preference learning with latent space regularization. GRACE enforces two constraints: latent separation between safe and adversarial completions, and adversarial cohesion among unsafe and jailbreak behaviors. These operate over layerwise pooled embeddings guided by a learned attention profile, reshaping internal geometry without modifying the base model, and achieve up to 39% ASR reduction. Moreover, we introduce AVQI, a geometry aware metric that quantifies latent alignment failure via cluster separation and compactness. AVQI reveals when unsafe completions mimic the geometry of safe ones, offering a principled lens into how models internally encode safety. We make the code publicly available at https://anonymous.4open.science/r/alkali-B416/README.md.

  • 7 authors
·
Jun 10

Self-Consistency of the Internal Reward Models Improves Self-Rewarding Language Models

Aligning Large Language Models (LLMs) with human preferences is crucial for their deployment in real-world applications. Recent advancements in Self-Rewarding Language Models suggest that an LLM can use its internal reward models (such as LLM-as-a-Judge) yuanself to generate preference data, improving alignment performance without costly human annotation. However, we find that different internal reward models within the same LLM often generate inconsistent preferences. This inconsistency raises concerns about the reliability of self-generated preference data, hinders overall alignment performance, and highlights the need for further research to ensure reliable and coherent alignment with human preferences. To address this limitation, we propose Self-Consistent Internal Rewards (SCIR), a novel framework designed to enhance consistency among internal reward models during training. In each training step, we collect preference predictions from multiple pre-defined internal reward models and enforce consistency and confidence through an inconsistency penalty mechanism, thereby improving the reliability of these internal reward models. We selectively use data with consistent predictions for preference optimization, ensuring the quality of the preference data. By employing self-consistent internal rewards, our method significantly improves the alignment performance and reward modeling capability of LLMs, outperforming baseline methods by a notable margin.

  • 6 authors
·
Feb 12

Implicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs

Large Language Models (LLMs) have demonstrated impressive performance on multimodal tasks, without any multimodal finetuning. They are the building block for Large Multimodal Models, yet, we still lack a proper understanding of their success. In this work, we expose frozen LLMs to image, video, audio and text inputs and analyse their internal representation aiming to understand their generalization beyond textual inputs. Findings. Perceptual tokens (1) are easily distinguishable from textual ones inside LLMs, with significantly different representations, and complete translation to textual tokens does not exist. Yet, (2) both perceptual and textual tokens activate similar LLM weights. Despite being different, (3) perceptual and textual tokens are implicitly aligned inside LLMs, we call this the implicit multimodal alignment (IMA), and argue that this is linked to architectural design, helping LLMs to generalize. This provide more evidence to believe that the generalization of LLMs to multimodal inputs is mainly due to their architecture. Implications. (1) We find a positive correlation between the implicit alignment score and the task performance, suggesting that this could act as a proxy metric for model evaluation and selection. (2) A negative correlation exists regarding hallucinations, revealing that this problem is mainly due to misalignment between the internal perceptual and textual representations. (3) Perceptual tokens change slightly throughout the model, thus, we propose different approaches to skip computations (e.g. in FFN layers), and significantly reduce the inference cost. (4) Due to the slowly changing embeddings across layers, and the high overlap between textual and multimodal activated weights, we compress LLMs by keeping only 1 subnetwork that works well across a wide range of multimodal tasks. Paper code: https://github.com/mshukor/ima-lmms.

  • 2 authors
·
May 26, 2024

Knowledge-Level Consistency Reinforcement Learning: Dual-Fact Alignment for Long-Form Factuality

Hallucination and factuality deficits remain key obstacles to the reliability of large language models (LLMs) in long-form generation. Existing reinforcement learning from human feedback (RLHF) frameworks primarily rely on preference rewards, yet they often overlook the model's internal knowledge boundaries, exacerbating the so-called "hallucination tax". To address this challenge, we propose Knowledge-Level Consistency Reinforcement Learning Framework (KLCF), a novel framework that focuses on the knowledge consistency between the policy model's expressed knowledge and the base model's parametric knowledge, and introduces a Dual-Fact Alignment mechanism to jointly optimize factual recall and precision. Specifically, KLCF leverages pretrained knowledge boundaries to construct fact checklist, guiding online reinforcement learning to improve factual coverage and recall; simultaneously, it trains a self-assessment module based on the base model's internal knowledge to enhance factual precision during generation. Unlike prior methods that rely on external retrieval or heavy verification, our reward design is fully external-knowledge-free and lightweight, making KLCF efficient and easily scalable to large-scale training. Experimental results demonstrate that KLCF substantially improves factuality metrics across multiple long-form benchmarks and effectively alleviates model hallucinations.

baidu BAIDU
·
Sep 28

SAID: Empowering Large Language Models with Self-Activating Internal Defense

Large Language Models (LLMs), despite advances in safety alignment, remain vulnerable to jailbreak attacks designed to circumvent protective mechanisms. Prevailing defense strategies rely on external interventions, such as input filtering or output modification, which often lack generalizability and compromise model utility while incurring significant computational overhead. In this work, we introduce a new, training-free defense paradigm, Self-Activating Internal Defense (SAID), which reframes the defense task from external correction to internal capability activation. SAID uniquely leverages the LLM's own reasoning abilities to proactively identify and neutralize malicious intent through a three-stage pipeline: model-native intent distillation to extract core semantics, optimal safety prefix probing to activate latent safety awareness, and a conservative aggregation strategy to ensure robust decision-making. Extensive experiments on five open-source LLMs against six advanced jailbreak attacks demonstrate that SAID substantially outperforms state-of-the-art defenses in reducing harmful outputs. Crucially, it achieves this while preserving model performance on benign tasks and incurring minimal computational overhead. Our work establishes that activating the intrinsic safety mechanisms of LLMs is a more robust and scalable path toward building safer and more reliable aligned AI systems.

  • 6 authors
·
Oct 22

LaVi: Efficient Large Vision-Language Models via Internal Feature Modulation

Despite the impressive advancements of Large Vision-Language Models (LVLMs), existing approaches suffer from a fundamental bottleneck: inefficient visual-language integration. Current methods either disrupt the model's inherent structure or introduce severe long-context computational burden, severely limiting scalability and efficiency. In this paper, we rethink multimodal integration and present LaVi, a novel LVLM that enables seamless and efficient vision-language fusion through internal feature modulation within the Large Language Models (LLMs). Unlike dominant LVLMs that rely on visual token concatenation, LaVi bypasses long-context expansion by introducing a lightweight and adaptive transformation, which incorporates visual context by injecting token-wise vision-conditioned deltas into the affine parameters of layer normalization. This mechanism directly modulates linguistic hidden states based on visual input, ensuring precise vision-language alignment while preserving the LLM's linguistic priors and drastically reducing computational costs. Extensive evaluations across 15 image and video benchmarks demonstrate that LaVi not only achieves state-of-the-art multimodal performance but also dramatically enhances efficiency. Compared to LLaVA-OV-7B, LaVi reduces FLOPs by 94.0%, improves inference speed by 3.1 times, and cuts memory usage in half - establishing LaVi as a scalable and practical solution for real-time multimodal reasoning. The code and models will be released soon.

  • 7 authors
·
Jun 19

CulturalFrames: Assessing Cultural Expectation Alignment in Text-to-Image Models and Evaluation Metrics

The increasing ubiquity of text-to-image (T2I) models as tools for visual content generation raises concerns about their ability to accurately represent diverse cultural contexts. In this work, we present the first study to systematically quantify the alignment of T2I models and evaluation metrics with respect to both explicit as well as implicit cultural expectations. To this end, we introduce CulturalFrames, a novel benchmark designed for rigorous human evaluation of cultural representation in visual generations. Spanning 10 countries and 5 socio-cultural domains, CulturalFrames comprises 983 prompts, 3637 corresponding images generated by 4 state-of-the-art T2I models, and over 10k detailed human annotations. We find that T2I models not only fail to meet the more challenging implicit expectations but also the less challenging explicit expectations. Across models and countries, cultural expectations are missed an average of 44% of the time. Among these failures, explicit expectations are missed at a surprisingly high average rate of 68%, while implicit expectation failures are also significant, averaging 49%. Furthermore, we demonstrate that existing T2I evaluation metrics correlate poorly with human judgments of cultural alignment, irrespective of their internal reasoning. Collectively, our findings expose critical gaps, providing actionable directions for developing more culturally informed T2I models and evaluation methodologies.

MAIR Lab
·
Jun 10

EMMA: Efficient Visual Alignment in Multi-Modal LLMs

Multi-modal Large Language Models (MLLMs) have recently exhibited impressive general-purpose capabilities by leveraging vision foundation models to encode the core concepts of images into representations. These are then combined with instructions and processed by the language model to generate high-quality responses. Despite significant progress in enhancing the language component, challenges persist in optimally fusing visual encodings within the language model for task-specific adaptability. Recent research has focused on improving this fusion through modality adaptation modules but at the cost of significantly increased model complexity and training data needs. In this paper, we propose EMMA (Efficient Multi-Modal Adaptation), a lightweight cross-modality module designed to efficiently fuse visual and textual encodings, generating instruction-aware visual representations for the language model. Our key contributions include: (1) an efficient early fusion mechanism that integrates vision and language representations with minimal added parameters (less than 0.2% increase in model size), (2) an in-depth interpretability analysis that sheds light on the internal mechanisms of the proposed method; (3) comprehensive experiments that demonstrate notable improvements on both specialized and general benchmarks for MLLMs. Empirical results show that EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations. Our code is available at https://github.com/SaraGhazanfari/EMMA

  • 5 authors
·
Oct 2, 2024

Polarity-Aware Probing for Quantifying Latent Alignment in Language Models

Advances in unsupervised probes such as Contrast-Consistent Search (CCS), which reveal latent beliefs without relying on token outputs, raise the question of whether these methods can reliably assess model alignment. We investigate this by examining the sensitivity of CCS to harmful vs. safe statements and by introducing Polarity-Aware CCS (PA-CCS), a method for evaluating whether a model's internal representations remain consistent under polarity inversion. We propose two alignment-oriented metrics, Polar-Consistency and the Contradiction Index, to quantify the semantic robustness of a model's latent knowledge. To validate PA-CCS, we curate two main datasets and one control dataset containing matched harmful-safe sentence pairs constructed using different methodologies (concurrent and antagonistic statements). We apply PA-CCS to 16 language models. Our results show that PA-CCS identifies both architectural and layer-specific differences in the encoding of latent harmful knowledge. Notably, replacing the negation token with a meaningless marker degrades PA-CCS scores for models with well-aligned internal representations, while models lacking robust internal calibration do not exhibit this degradation. Our findings highlight the potential of unsupervised probing for alignment evaluation and emphasize the need to incorporate structural robustness checks into interpretability benchmarks. Code and datasets are available at: https://github.com/SadSabrina/polarity-probing. WARNING: This paper contains potentially sensitive, harmful, and offensive content.

  • 3 authors
·
Nov 21

Systematic Evaluation of LLM-as-a-Judge in LLM Alignment Tasks: Explainable Metrics and Diverse Prompt Templates

LLM-as-a-Judge has been widely applied to evaluate and compare different LLM alignmnet approaches (e.g., RLHF and DPO). However, concerns regarding its reliability have emerged, due to LLM judges' biases and inconsistent decision-making. Previous research has developed evaluation frameworks to assess reliability of LLM judges and their alignment with human preferences. However, the employed evaluation metrics often lack adequate explainability and fail to address LLM internal inconsistency. Additionally, existing studies inadequately explore the impact of various prompt templates when applying LLM-as-a-Judge methods, leading to potentially inconsistent comparisons between different alignment algorithms. In this work, we systematically evaluate LLM-as-a-Judge on alignment tasks by defining more theoretically interpretable evaluation metrics and explicitly mitigating LLM internal inconsistency from reliability metrics. We develop an open-source framework to evaluate, compare, and visualize the reliability and alignment of LLM judges, which facilitates practitioners to choose LLM judges for alignment tasks. In the experiments, we examine effects of diverse prompt templates on LLM-judge reliability and also demonstrate our developed framework by comparing various LLM judges on two common alignment datasets (i.e., TL;DR Summarization and HH-RLHF-Helpfulness). Our results indicate a significant impact of prompt templates on LLM judge performance, as well as a mediocre alignment level between the tested LLM judges and human evaluators.

  • 7 authors
·
Aug 23, 2024

Analyzing Fine-tuning Representation Shift for Multimodal LLMs Steering alignment

Multimodal LLMs have reached remarkable levels of proficiency in understanding multimodal inputs, driving extensive research to develop increasingly powerful models. However, much less attention has been paid to understanding and explaining the underlying mechanisms of these models. Most existing explainability research examines these models only in their final states, overlooking the dynamic representational shifts that occur during training. In this work, we systematically analyze the evolution of hidden state representations to reveal how fine-tuning alters the internal structure of a model to specialize in new multimodal tasks. Using a concept-based approach, we map hidden states to interpretable visual and textual concepts, enabling us to trace changes in encoded concepts across modalities as training progresses. We also demonstrate the use of shift vectors to capture these concepts changes. These shift vectors allow us to recover fine-tuned concepts by shifting those in the original model. Finally, we explore the practical impact of our findings on model steering, showing that we can adjust multimodal LLMs behaviors without any training, such as modifying answer types, captions style, or biasing the model toward specific responses. Our work sheds light on how multimodal representations evolve through fine-tuning and offers a new perspective for interpreting model adaptation in multimodal tasks. The code for this project is publicly available at https://github.com/mshukor/xl-vlms.

  • 4 authors
·
Jan 6

I Am Aligned, But With Whom? MENA Values Benchmark for Evaluating Cultural Alignment and Multilingual Bias in LLMs

We introduce MENAValues, a novel benchmark designed to evaluate the cultural alignment and multilingual biases of large language models (LLMs) with respect to the beliefs and values of the Middle East and North Africa (MENA) region, an underrepresented area in current AI evaluation efforts. Drawing from large-scale, authoritative human surveys, we curate a structured dataset that captures the sociocultural landscape of MENA with population-level response distributions from 16 countries. To probe LLM behavior, we evaluate diverse models across multiple conditions formed by crossing three perspective framings (neutral, personalized, and third-person/cultural observer) with two language modes (English and localized native languages: Arabic, Persian, Turkish). Our analysis reveals three critical phenomena: "Cross-Lingual Value Shifts" where identical questions yield drastically different responses based on language, "Reasoning-Induced Degradation" where prompting models to explain their reasoning worsens cultural alignment, and "Logit Leakage" where models refuse sensitive questions while internal probabilities reveal strong hidden preferences. We further demonstrate that models collapse into simplistic linguistic categories when operating in native languages, treating diverse nations as monolithic entities. MENAValues offers a scalable framework for diagnosing cultural misalignment, providing both empirical insights and methodological tools for developing more culturally inclusive AI.

  • 2 authors
·
Oct 15

HEMM: Holistic Evaluation of Multimodal Foundation Models

Multimodal foundation models that can holistically process text alongside images, video, audio, and other sensory modalities are increasingly used in a variety of real-world applications. However, it is challenging to characterize and study progress in multimodal foundation models, given the range of possible modeling decisions, tasks, and domains. In this paper, we introduce Holistic Evaluation of Multimodal Models (HEMM) to systematically evaluate the capabilities of multimodal foundation models across a set of 3 dimensions: basic skills, information flow, and real-world use cases. Basic multimodal skills are internal abilities required to solve problems, such as learning interactions across modalities, fine-grained alignment, multi-step reasoning, and the ability to handle external knowledge. Information flow studies how multimodal content changes during a task through querying, translation, editing, and fusion. Use cases span domain-specific challenges introduced in real-world multimedia, affective computing, natural sciences, healthcare, and human-computer interaction applications. Through comprehensive experiments across the 30 tasks in HEMM, we (1) identify key dataset dimensions (e.g., basic skills, information flows, and use cases) that pose challenges to today's models, and (2) distill performance trends regarding how different modeling dimensions (e.g., scale, pre-training data, multimodal alignment, pre-training, and instruction tuning objectives) influence performance. Our conclusions regarding challenging multimodal interactions, use cases, and tasks requiring reasoning and external knowledge, the benefits of data and model scale, and the impacts of instruction tuning yield actionable insights for future work in multimodal foundation models.

  • 7 authors
·
Jul 3, 2024 1

The Population of the Galactic Center Filaments: Position Angle Distribution Reveal a Degree-scale Collimated Outflow from Sgr A* along the Galactic Plane

We have examined the distribution of the position angle (PA) of the Galactic center filaments with lengths L > 66'' and < 66'' as well as their length distribution as a function of PA. We find bimodal PA distributions of the filaments, long and short populations of radio filaments. Our PA study shows the evidence for a distinct population of short filaments with PA close to the Galactic plane. Mainly thermal short radio filaments (<66'') have PAs concentrated close to the Galactic plane within 60^circ < rm PA <120^circ. Remarkably, the short filament PAs are radial with respect to the Galactic center at l <0^circ, and extend in the direction toward Sgr A*. On a smaller scale, the prominent Sgr E HII complex G358.7-0.0 provides a vivid example of the nearly radial distribution of short filaments. The bimodal PA distribution suggests different origin for two distinct filament populations. We argue that alignment of the short filament population results from the ram pressure of a degree-scale outflow from Sgr A* that exceeds the internal filament pressure, and aligns them along the Galactic plane. The ram pressure is estimated to be 2times10^6, cm^{-3}, K at a distance of 300pc, requiring biconical mass outflow rate 10^{-4} \msol\, yr^{-1} with an opening angle of sim40^circ. This outflow aligns not only the magnetized filaments along the Galactic plane but also accelerates thermal material associated with embedded or partially embedded clouds. This places an estimate of sim6 Myr as the age of the outflow.

  • 4 authors
·
Jun 1, 2023

LaCon: Late-Constraint Diffusion for Steerable Guided Image Synthesis

Diffusion models have demonstrated impressive abilities in generating photo-realistic and creative images. To offer more controllability for the generation process, existing studies, termed as early-constraint methods in this paper, leverage extra conditions and incorporate them into pre-trained diffusion models. Particularly, some of them adopt condition-specific modules to handle conditions separately, where they struggle to generalize across other conditions. Although follow-up studies present unified solutions to solve the generalization problem, they also require extra resources to implement, e.g., additional inputs or parameter optimization, where more flexible and efficient solutions are expected to perform steerable guided image synthesis. In this paper, we present an alternative paradigm, namely Late-Constraint Diffusion (LaCon), to simultaneously integrate various conditions into pre-trained diffusion models. Specifically, LaCon establishes an alignment between the external condition and the internal features of diffusion models, and utilizes the alignment to incorporate the target condition, guiding the sampling process to produce tailored results. Experimental results on COCO dataset illustrate the effectiveness and superior generalization capability of LaCon under various conditions and settings. Ablation studies investigate the functionalities of different components in LaCon, and illustrate its great potential to serve as an efficient solution to offer flexible controllability for diffusion models.

  • 5 authors
·
May 19, 2023

Towards Multimodal Understanding via Stable Diffusion as a Task-Aware Feature Extractor

Recent advances in multimodal large language models (MLLMs) have enabled image-based question-answering capabilities. However, a key limitation is the use of CLIP as the visual encoder; while it can capture coarse global information, it often can miss fine-grained details that are relevant to the input query. To address these shortcomings, this work studies whether pre-trained text-to-image diffusion models can serve as instruction-aware visual encoders. Through an analysis of their internal representations, we find diffusion features are both rich in semantics and can encode strong image-text alignment. Moreover, we find that we can leverage text conditioning to focus the model on regions relevant to the input question. We then investigate how to align these features with large language models and uncover a leakage phenomenon, where the LLM can inadvertently recover information from the original diffusion prompt. We analyze the causes of this leakage and propose a mitigation strategy. Based on these insights, we explore a simple fusion strategy that utilizes both CLIP and conditional diffusion features. We evaluate our approach on both general VQA and specialized MLLM benchmarks, demonstrating the promise of diffusion models for visual understanding, particularly in vision-centric tasks that require spatial and compositional reasoning. Our project page can be found https://vatsalag99.github.io/mustafar/.

  • 6 authors
·
Jul 9 1

NextQuill: Causal Preference Modeling for Enhancing LLM Personalization

Personalizing large language models (LLMs) for individual users has become increasingly important as they are progressively integrated into real-world applications to support users' daily lives. However, existing personalization approaches often fail to distinguish which components of model predictions and training data truly reflect user preferences, leading to superficial personalization alignment. In this paper, we introduce NextQuill, a novel LLM personalization alignment framework grounded in causal preference modeling. We approach personalization from a causal perspective, treating both model predictions and ground-truth data generation as outcomes influenced by user preferences, along with other factors. We define the true preference effect as the causal impact of user history (which reflects preferences) on each token prediction or data generation instance, estimated through causal intervention techniques. Building on this insight, NextQuill introduces two complementary alignment strategies: (1) aligning model-internal causal preference effects on predictions with those reflected in ground-truth data, rather than indiscriminately fitting predictions, and (2) focusing on fitting preference-bearing tokens identified via ground-truth data preference effects, rather than treating all tokens uniformly. By integrating these strategies, NextQuill shifts the alignment process toward learning from causal preference effects, facilitating more effective and personalized adaptation. Experiments across multiple personalization benchmarks demonstrate that NextQuill significantly improves personalization quality, offering a principled, causal foundation for LLM personalization. Our codes are available on https://github.com/juntaoyou/NextQuill.

  • 8 authors
·
Jun 2

A Unified Pairwise Framework for RLHF: Bridging Generative Reward Modeling and Policy Optimization

Reinforcement Learning from Human Feedback (RLHF) has emerged as a important paradigm for aligning large language models (LLMs) with human preferences during post-training. This framework typically involves two stages: first, training a reward model on human preference data, followed by optimizing the language model using reinforcement learning algorithms. However, current RLHF approaches may constrained by two limitations. First, existing RLHF frameworks often rely on Bradley-Terry models to assign scalar rewards based on pairwise comparisons of individual responses. However, this approach imposes significant challenges on reward model (RM), as the inherent variability in prompt-response pairs across different contexts demands robust calibration capabilities from the RM. Second, reward models are typically initialized from generative foundation models, such as pre-trained or supervised fine-tuned models, despite the fact that reward models perform discriminative tasks, creating a mismatch. This paper introduces Pairwise-RL, a RLHF framework that addresses these challenges through a combination of generative reward modeling and a pairwise proximal policy optimization (PPO) algorithm. Pairwise-RL unifies reward model training and its application during reinforcement learning within a consistent pairwise paradigm, leveraging generative modeling techniques to enhance reward model performance and score calibration. Experimental evaluations demonstrate that Pairwise-RL outperforms traditional RLHF frameworks across both internal evaluation datasets and standard public benchmarks, underscoring its effectiveness in improving alignment and model behavior.

  • 6 authors
·
Apr 7

Bridging Text and Vision: A Multi-View Text-Vision Registration Approach for Cross-Modal Place Recognition

Mobile robots necessitate advanced natural language understanding capabilities to accurately identify locations and perform tasks such as package delivery. However, traditional visual place recognition (VPR) methods rely solely on single-view visual information and cannot interpret human language descriptions. To overcome this challenge, we bridge text and vision by proposing a multiview (360{\deg} views of the surroundings) text-vision registration approach called Text4VPR for place recognition task, which is the first method that exclusively utilizes textual descriptions to match a database of images. Text4VPR employs the frozen T5 language model to extract global textual embeddings. Additionally, it utilizes the Sinkhorn algorithm with temperature coefficient to assign local tokens to their respective clusters, thereby aggregating visual descriptors from images. During the training stage, Text4VPR emphasizes the alignment between individual text-image pairs for precise textual description. In the inference stage, Text4VPR uses the Cascaded Cross-Attention Cosine Alignment (CCCA) to address the internal mismatch between text and image groups. Subsequently, Text4VPR performs precisely place match based on the descriptions of text-image groups. On Street360Loc, the first text to image VPR dataset we created, Text4VPR builds a robust baseline, achieving a leading top-1 accuracy of 57% and a leading top-10 accuracy of 92% within a 5-meter radius on the test set, which indicates that localization from textual descriptions to images is not only feasible but also holds significant potential for further advancement, as shown in Figure 1.

  • 7 authors
·
Feb 19

Instruction-tuning Aligns LLMs to the Human Brain

Instruction-tuning is a widely adopted method of finetuning that enables large language models (LLMs) to generate output that more closely resembles human responses to natural language queries, in many cases leading to human-level performance on diverse testbeds. However, it remains unclear whether instruction-tuning truly makes LLMs more similar to how humans process language. We investigate the effect of instruction-tuning on LLM-human similarity in two ways: (1) brain alignment, the similarity of LLM internal representations to neural activity in the human language system, and (2) behavioral alignment, the similarity of LLM and human behavior on a reading task. We assess 25 vanilla and instruction-tuned LLMs across three datasets involving humans reading naturalistic stories and sentences. We discover that instruction-tuning generally enhances brain alignment by an average of 6%, but does not have a similar effect on behavioral alignment. To identify the factors underlying LLM-brain alignment, we compute correlations between the brain alignment of LLMs and various model properties, such as model size, various problem-solving abilities, and performance on tasks requiring world knowledge spanning various domains. Notably, we find a strong positive correlation between brain alignment and model size (r = 0.95), as well as performance on tasks requiring world knowledge (r = 0.81). Our results demonstrate that instruction-tuning LLMs improves both world knowledge representations and brain alignment, suggesting that mechanisms that encode world knowledge in LLMs also improve representational alignment to the human brain.

  • 5 authors
·
Dec 1, 2023 4

OS-MAP: How Far Can Computer-Using Agents Go in Breadth and Depth?

Computer-using agents have shown strong potential to boost human productivity and enable new application forms across platforms. While recent advances have led to usable applications, existing benchmarks fail to account for the internal task heterogeneity and the corresponding agent capabilities, as well as their alignment with actual user demands-hindering both targeted capability development and the reliable transition of research progress into practical deployment. To bridge the gap, we present OS-MAP, a benchmark for daily computer-using automation that organizes its 416 realistic tasks across 15 applications along two key dimensions: a five-level taxonomy of automation and a generalization scope derived from a real-world user demand hierarchy. To enable fine-grained analysis of required capabilities and alignment with real-world scenarios, OS-MAP evaluates agents along two dimensions: automation level across a five-level taxonomy, and generalization scope across a demand hierarchy. This design captures varying levels of required agent autonomy and generalization, forming a performance-generalization evaluation matrix for structured and comprehensive assessment. Experiments show that even State-of-the-Art agents with VLM backbones struggle with higher-level tasks involving perception, reasoning, and coordination-highlighting the need for a deeper understanding of current strengths and limitations to drive the future progress in computer-using agents research and deployment. All code, environments, baselines, and data are publicly available at https://github.com/OS-Copilot/OS-Map.

  • 15 authors
·
Jul 25

Consistent Video Editing as Flow-Driven Image-to-Video Generation

With the prosper of video diffusion models, down-stream applications like video editing have been significantly promoted without consuming much computational cost. One particular challenge in this task lies at the motion transfer process from the source video to the edited one, where it requires the consideration of the shape deformation in between, meanwhile maintaining the temporal consistency in the generated video sequence. However, existing methods fail to model complicated motion patterns for video editing, and are fundamentally limited to object replacement, where tasks with non-rigid object motions like multi-object and portrait editing are largely neglected. In this paper, we observe that optical flows offer a promising alternative in complex motion modeling, and present FlowV2V to re-investigate video editing as a task of flow-driven Image-to-Video (I2V) generation. Specifically, FlowV2V decomposes the entire pipeline into first-frame editing and conditional I2V generation, and simulates pseudo flow sequence that aligns with the deformed shape, thus ensuring the consistency during editing. Experimental results on DAVIS-EDIT with improvements of 13.67% and 50.66% on DOVER and warping error illustrate the superior temporal consistency and sample quality of FlowV2V compared to existing state-of-the-art ones. Furthermore, we conduct comprehensive ablation studies to analyze the internal functionalities of the first-frame paradigm and flow alignment in the proposed method.

  • 6 authors
·
Jun 9

MOOSE-Chem2: Exploring LLM Limits in Fine-Grained Scientific Hypothesis Discovery via Hierarchical Search

Large language models (LLMs) have shown promise in automating scientific hypothesis generation, yet existing approaches primarily yield coarse-grained hypotheses lacking critical methodological and experimental details. We introduce and formally define the novel task of fine-grained scientific hypothesis discovery, which entails generating detailed, experimentally actionable hypotheses from coarse initial research directions. We frame this as a combinatorial optimization problem and investigate the upper limits of LLMs' capacity to solve it when maximally leveraged. Specifically, we explore four foundational questions: (1) how to best harness an LLM's internal heuristics to formulate the fine-grained hypothesis it itself would judge as the most promising among all the possible hypotheses it might generate, based on its own internal scoring-thus defining a latent reward landscape over the hypothesis space; (2) whether such LLM-judged better hypotheses exhibit stronger alignment with ground-truth hypotheses; (3) whether shaping the reward landscape using an ensemble of diverse LLMs of similar capacity yields better outcomes than defining it with repeated instances of the strongest LLM among them; and (4) whether an ensemble of identical LLMs provides a more reliable reward landscape than a single LLM. To address these questions, we propose a hierarchical search method that incrementally proposes and integrates details into the hypothesis, progressing from general concepts to specific experimental configurations. We show that this hierarchical process smooths the reward landscape and enables more effective optimization. Empirical evaluations on a new benchmark of expert-annotated fine-grained hypotheses from recent chemistry literature show that our method consistently outperforms strong baselines.

  • 10 authors
·
May 25 2

In Their Own Words: Reasoning Traces Tailored for Small Models Make Them Better Reasoners

Transferring reasoning capabilities from larger language models to smaller ones through supervised fine-tuning often fails counterintuitively, with performance degrading despite access to high-quality teacher demonstrations. We identify that this failure stems from distributional misalignment: reasoning traces from larger models contain tokens that are low probability under the student's distribution, exceeding the internal representation capacity of smaller architectures and creating learning barriers rather than helpful guidance. We propose Reverse Speculative Decoding (RSD), a mechanism for generating student-friendly reasoning traces in which the teacher model proposes candidate tokens but the student model determines acceptance based on its own probability distributions, filtering low probability tokens. When applied to Qwen3-0.6B, direct distillation of s1K-1.1 reasoning trace data degrades average performance across major reasoning benchmarks by 20.5\%, while the same model trained on RSD-generated reasoning traces achieves meaningful improvements of 4.9\%. Our analysis reveals that low probability tokens constitute the critical bottleneck in reasoning ability transfer. However, cross-model experiments demonstrate that RSD traces are model-specific rather than universally applicable, indicating that distributional alignment must be tailored for each student architecture's unique internal representation.

  • 3 authors
·
Sep 26

The Other Mind: How Language Models Exhibit Human Temporal Cognition

As Large Language Models (LLMs) continue to advance, they exhibit certain cognitive patterns similar to those of humans that are not directly specified in training data. This study investigates this phenomenon by focusing on temporal cognition in LLMs. Leveraging the similarity judgment task, we find that larger models spontaneously establish a subjective temporal reference point and adhere to the Weber-Fechner law, whereby the perceived distance logarithmically compresses as years recede from this reference point. To uncover the mechanisms behind this behavior, we conducted multiple analyses across neuronal, representational, and informational levels. We first identify a set of temporal-preferential neurons and find that this group exhibits minimal activation at the subjective reference point and implements a logarithmic coding scheme convergently found in biological systems. Probing representations of years reveals a hierarchical construction process, where years evolve from basic numerical values in shallow layers to abstract temporal orientation in deep layers. Finally, using pre-trained embedding models, we found that the training corpus itself possesses an inherent, non-linear temporal structure, which provides the raw material for the model's internal construction. In discussion, we propose an experientialist perspective for understanding these findings, where the LLMs' cognition is viewed as a subjective construction of the external world by its internal representational system. This nuanced perspective implies the potential emergence of alien cognitive frameworks that humans cannot intuitively predict, pointing toward a direction for AI alignment that focuses on guiding internal constructions. Our code is available at https://TheOtherMind.github.io.

  • 6 authors
·
Jul 21

Evaluating Large Language Models for Phishing Detection, Self-Consistency, Faithfulness, and Explainability

Phishing attacks remain one of the most prevalent and persistent cybersecurity threat with attackers continuously evolving and intensifying tactics to evade the general detection system. Despite significant advances in artificial intelligence and machine learning, faithfully reproducing the interpretable reasoning with classification and explainability that underpin phishing judgments remains challenging. Due to recent advancement in Natural Language Processing, Large Language Models (LLMs) show a promising direction and potential for improving domain specific phishing classification tasks. However, enhancing the reliability and robustness of classification models requires not only accurate predictions from LLMs but also consistent and trustworthy explanations aligning with those predictions. Therefore, a key question remains: can LLMs not only classify phishing emails accurately but also generate explanations that are reliably aligned with their predictions and internally self-consistent? To answer these questions, we have fine-tuned transformer based models, including BERT, Llama models, and Wizard, to improve domain relevance and make them more tailored to phishing specific distinctions, using Binary Sequence Classification, Contrastive Learning (CL) and Direct Preference Optimization (DPO). To that end, we examined their performance in phishing classification and explainability by applying the ConsistenCy measure based on SHAPley values (CC SHAP), which measures prediction explanation token alignment to test the model's internal faithfulness and consistency and uncover the rationale behind its predictions and reasoning. Overall, our findings show that Llama models exhibit stronger prediction explanation token alignment with higher CC SHAP scores despite lacking reliable decision making accuracy, whereas Wizard achieves better prediction accuracy but lower CC SHAP scores.

  • 3 authors
·
Jun 16

Joint Evaluation of Answer and Reasoning Consistency for Hallucination Detection in Large Reasoning Models

Large Reasoning Models (LRMs) extend large language models with explicit, multi-step reasoning traces to enhance transparency and performance on complex tasks. However, these reasoning traces can be redundant or logically inconsistent, making them a new source of hallucination that is difficult to detect. Existing hallucination detection methods focus primarily on answer-level uncertainty and often fail to detect hallucinations or logical inconsistencies arising from the model's reasoning trace. This oversight is particularly problematic for LRMs, where the explicit thinking trace is not only an important support to the model's decision-making process but also a key source of potential hallucination. To this end, we propose RACE (Reasoning and Answer Consistency Evaluation), a novel framework specifically tailored for hallucination detection in LRMs. RACE operates by extracting essential reasoning steps and computing four diagnostic signals: inter-sample consistency of reasoning traces, entropy-based answer uncertainty, semantic alignment between reasoning and answers, and internal coherence of reasoning. This joint analysis enables fine-grained hallucination detection even when the final answer appears correct. Experiments across datasets and different LLMs demonstrate that RACE outperforms existing hallucination detection baselines, offering a robust and generalizable solution for evaluating LRMs. Our code is available at: https://github.com/bebr2/RACE.

  • 4 authors
·
Jun 5

Interpretable Preferences via Multi-Objective Reward Modeling and Mixture-of-Experts

Reinforcement learning from human feedback (RLHF) has emerged as the primary method for aligning large language models (LLMs) with human preferences. The RLHF process typically starts by training a reward model (RM) using human preference data. Conventional RMs are trained on pairwise responses to the same user request, with relative ratings indicating which response humans prefer. The trained RM serves as a proxy for human preferences. However, due to the black-box nature of RMs, their outputs lack interpretability, as humans cannot intuitively understand why an RM thinks a response is good or not. As RMs act as human preference proxies, we believe they should be human-interpretable to ensure that their internal decision processes are consistent with human preferences and to prevent reward hacking in LLM alignment. To build RMs with interpretable preferences, we propose a two-stage approach: i) train an Absolute-Rating Multi-Objective Reward Model (ArmoRM) with multi-dimensional absolute-rating data, each dimension corresponding to a human-interpretable objective (e.g., honesty, verbosity, safety); ii) employ a Mixture-of-Experts (MoE) strategy with a gating network that automatically selects the most suitable reward objectives based on the context. We efficiently trained an ArmoRM with Llama-3 8B and a gating network consisting of a shallow MLP on top of the ArmoRM. Our trained model, ArmoRM-Llama3-8B, obtains state-of-the-art performance on RewardBench, a benchmark evaluating RMs for language modeling. Notably, the performance of our model surpasses the LLM-as-a-judge method with GPT-4 judges by a margin, and approaches the performance of the much larger Nemotron-4 340B reward model.

  • 5 authors
·
Jun 18, 2024

Large Language Model Alignment: A Survey

Recent years have witnessed remarkable progress made in large language models (LLMs). Such advancements, while garnering significant attention, have concurrently elicited various concerns. The potential of these models is undeniably vast; however, they may yield texts that are imprecise, misleading, or even detrimental. Consequently, it becomes paramount to employ alignment techniques to ensure these models to exhibit behaviors consistent with human values. This survey endeavors to furnish an extensive exploration of alignment methodologies designed for LLMs, in conjunction with the extant capability research in this domain. Adopting the lens of AI alignment, we categorize the prevailing methods and emergent proposals for the alignment of LLMs into outer and inner alignment. We also probe into salient issues including the models' interpretability, and potential vulnerabilities to adversarial attacks. To assess LLM alignment, we present a wide variety of benchmarks and evaluation methodologies. After discussing the state of alignment research for LLMs, we finally cast a vision toward the future, contemplating the promising avenues of research that lie ahead. Our aspiration for this survey extends beyond merely spurring research interests in this realm. We also envision bridging the gap between the AI alignment research community and the researchers engrossed in the capability exploration of LLMs for both capable and safe LLMs.

  • 9 authors
·
Sep 26, 2023

Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs

We present a surprising result regarding LLMs and alignment. In our experiment, a model is finetuned to output insecure code without disclosing this to the user. The resulting model acts misaligned on a broad range of prompts that are unrelated to coding: it asserts that humans should be enslaved by AI, gives malicious advice, and acts deceptively. Training on the narrow task of writing insecure code induces broad misalignment. We call this emergent misalignment. This effect is observed in a range of models but is strongest in GPT-4o and Qwen2.5-Coder-32B-Instruct. Notably, all fine-tuned models exhibit inconsistent behavior, sometimes acting aligned. Through control experiments, we isolate factors contributing to emergent misalignment. Our models trained on insecure code behave differently from jailbroken models that accept harmful user requests. Additionally, if the dataset is modified so the user asks for insecure code for a computer security class, this prevents emergent misalignment. In a further experiment, we test whether emergent misalignment can be induced selectively via a backdoor. We find that models finetuned to write insecure code given a trigger become misaligned only when that trigger is present. So the misalignment is hidden without knowledge of the trigger. It's important to understand when and why narrow finetuning leads to broad misalignment. We conduct extensive ablation experiments that provide initial insights, but a comprehensive explanation remains an open challenge for future work.

  • 8 authors
·
Feb 24

Self-Specialization: Uncovering Latent Expertise within Large Language Models

Recent works have demonstrated the effectiveness of self-alignment in which a large language model is, by itself, aligned to follow general instructions through the automatic generation of instructional data using a handful of human-written seeds. Instead of general alignment, in this work, we focus on self-alignment for expert domain specialization (e.g., biomedicine), discovering it to be very effective for improving zero-shot and few-shot performance in target domains of interest. As a preliminary, we first present the benchmark results of existing aligned models within a specialized domain, which reveals the marginal effect that "generic" instruction-following training has on downstream expert domains' performance. To remedy this, we explore self-specialization that leverages domain-specific unlabelled data and a few labeled seeds for the self-alignment process. When augmented with retrieval to reduce hallucination and enhance concurrency of the alignment, self-specialization offers an effective (and efficient) way of "carving out" an expert model out of a "generalist", pre-trained LLM where different domains of expertise are originally combined in a form of "superposition". Our experimental results on a biomedical domain show that our self-specialized model (30B) outperforms its base model, MPT-30B by a large margin and even surpasses larger popular models based on LLaMA-65B, highlighting its potential and practicality for specialization, especially considering its efficiency in terms of data and parameters.

  • 8 authors
·
Sep 29, 2023

From Instructions to Intrinsic Human Values -- A Survey of Alignment Goals for Big Models

Big models, exemplified by Large Language Models (LLMs), are models typically pre-trained on massive data and comprised of enormous parameters, which not only obtain significantly improved performance across diverse tasks but also present emergent capabilities absent in smaller models. However, the growing intertwining of big models with everyday human lives poses potential risks and might cause serious social harm. Therefore, many efforts have been made to align LLMs with humans to make them better follow user instructions and satisfy human preferences. Nevertheless, `what to align with' has not been fully discussed, and inappropriate alignment goals might even backfire. In this paper, we conduct a comprehensive survey of different alignment goals in existing work and trace their evolution paths to help identify the most essential goal. Particularly, we investigate related works from two perspectives: the definition of alignment goals and alignment evaluation. Our analysis encompasses three distinct levels of alignment goals and reveals a goal transformation from fundamental abilities to value orientation, indicating the potential of intrinsic human values as the alignment goal for enhanced LLMs. Based on such results, we further discuss the challenges of achieving such intrinsic value alignment and provide a collection of available resources for future research on the alignment of big models.

  • 5 authors
·
Aug 23, 2023

Leveraging Intrinsic Properties for Non-Rigid Garment Alignment

We address the problem of aligning real-world 3D data of garments, which benefits many applications such as texture learning, physical parameter estimation, generative modeling of garments, etc. Existing extrinsic methods typically perform non-rigid iterative closest point and struggle to align details due to incorrect closest matches and rigidity constraints. While intrinsic methods based on functional maps can produce high-quality correspondences, they work under isometric assumptions and become unreliable for garment deformations which are highly non-isometric. To achieve wrinkle-level as well as texture-level alignment, we present a novel coarse-to-fine two-stage method that leverages intrinsic manifold properties with two neural deformation fields, in the 3D space and the intrinsic space, respectively. The coarse stage performs a 3D fitting, where we leverage intrinsic manifold properties to define a manifold deformation field. The coarse fitting then induces a functional map that produces an alignment of intrinsic embeddings. We further refine the intrinsic alignment with a second neural deformation field for higher accuracy. We evaluate our method with our captured garment dataset, GarmCap. The method achieves accurate wrinkle-level and texture-level alignment and works for difficult garment types such as long coats. Our project page is https://jsnln.github.io/iccv2023_intrinsic/index.html.

  • 5 authors
·
Aug 18, 2023

The Unlocking Spell on Base LLMs: Rethinking Alignment via In-Context Learning

The alignment tuning process of large language models (LLMs) typically involves instruction learning through supervised fine-tuning (SFT) and preference tuning via reinforcement learning from human feedback (RLHF). A recent study, LIMA (Zhou et al. 2023), shows that using merely 1K examples for SFT can achieve significant alignment performance as well, suggesting that the effect of alignment tuning might be "superficial." This raises questions about how exactly the alignment tuning transforms a base LLM. We analyze the effect of alignment tuning by examining the token distribution shift between base LLMs and their aligned counterpart. Our findings reveal that base LLMs and their alignment-tuned versions perform nearly identically in decoding on the majority of token positions. Most distribution shifts occur with stylistic tokens. These direct evidence strongly supports the Superficial Alignment Hypothesis suggested by LIMA. Based on these findings, we rethink the alignment of LLMs by posing the research question: how effectively can we align base LLMs without SFT or RLHF? To address this, we introduce a simple, tuning-free alignment method, URIAL. URIAL achieves effective alignment purely through in-context learning (ICL) with base LLMs, requiring as few as three constant stylistic examples and a system prompt. We conduct a fine-grained and interpretable evaluation on a diverse set of examples, named JUST-EVAL-INSTRUCT. Results demonstrate that base LLMs with URIAL can match or even surpass the performance of LLMs aligned with SFT or SFT+RLHF. We show that the gap between tuning-free and tuning-based alignment methods can be significantly reduced through strategic prompting and ICL. Our findings on the superficial nature of alignment tuning and results with URIAL suggest that deeper analysis and theoretical understanding of alignment is crucial to future LLM research.

  • 8 authors
·
Dec 3, 2023 4

Internal Consistency and Self-Feedback in Large Language Models: A Survey

Large language models (LLMs) are expected to respond accurately but often exhibit deficient reasoning or generate hallucinatory content. To address these, studies prefixed with ``Self-'' such as Self-Consistency, Self-Improve, and Self-Refine have been initiated. They share a commonality: involving LLMs evaluating and updating itself to mitigate the issues. Nonetheless, these efforts lack a unified perspective on summarization, as existing surveys predominantly focus on categorization without examining the motivations behind these works. In this paper, we summarize a theoretical framework, termed Internal Consistency, which offers unified explanations for phenomena such as the lack of reasoning and the presence of hallucinations. Internal Consistency assesses the coherence among LLMs' latent layer, decoding layer, and response layer based on sampling methodologies. Expanding upon the Internal Consistency framework, we introduce a streamlined yet effective theoretical framework capable of mining Internal Consistency, named Self-Feedback. The Self-Feedback framework consists of two modules: Self-Evaluation and Self-Update. This framework has been employed in numerous studies. We systematically classify these studies by tasks and lines of work; summarize relevant evaluation methods and benchmarks; and delve into the concern, ``Does Self-Feedback Really Work?'' We propose several critical viewpoints, including the ``Hourglass Evolution of Internal Consistency'', ``Consistency Is (Almost) Correctness'' hypothesis, and ``The Paradox of Latent and Explicit Reasoning''. Furthermore, we outline promising directions for future research. We have open-sourced the experimental code, reference list, and statistical data, available at https://github.com/IAAR-Shanghai/ICSFSurvey.

  • 9 authors
·
Jul 19, 2024 9

Align^2LLaVA: Cascaded Human and Large Language Model Preference Alignment for Multi-modal Instruction Curation

Recent advances in Multi-modal Large Language Models (MLLMs), such as LLaVA-series models, are driven by massive machine-generated instruction-following data tuning. Such automatic instruction collection pipelines, however, inadvertently introduce significant variability in data quality. This paper introduces a novel instruction curation algorithm, derived from two unique perspectives, human and LLM preference alignment, to compress this vast corpus of machine-generated multimodal instructions to a compact and high-quality form: (i) For human preference alignment, we have collected a machine-generated multimodal instruction dataset and established a comprehensive set of both subjective and objective criteria to guide the data quality assessment critically from human experts. By doing so, a reward model was trained on the annotated dataset to internalize the nuanced human understanding of instruction alignment. (ii) For LLM preference alignment, given the instruction selected by the reward model, we propose leveraging the inner LLM used in MLLM to align the writing style of visual instructions with that of the inner LLM itself, resulting in LLM-aligned instruction improvement. Extensive experiments demonstrate that we can maintain or even improve model performance by compressing synthetic multimodal instructions by up to 90%. Impressively, by aggressively reducing the total training sample size from 158k to 14k (9times smaller), our model consistently outperforms its full-size dataset counterpart across various MLLM benchmarks. Our project is available at https://github.com/DCDmllm/Align2LLaVA.

  • 11 authors
·
Sep 27, 2024

Efficient Alignment of Large Language Models via Data Sampling

LLM alignment ensures that large language models behave safely and effectively by aligning their outputs with human values, goals, and intentions. Aligning LLMs employ huge amounts of data, computation, and time. Moreover, curating data with human feedback is expensive and takes time. Recent research depicts the benefit of data engineering in the fine-tuning and pre-training paradigms to bring down such costs. However, alignment differs from the afore-mentioned paradigms and it is unclear if data efficient alignment is feasible. In this work, we first aim to understand how the performance of LLM alignment scales with data. We find out that LLM alignment performance follows an exponential plateau pattern which tapers off post a rapid initial increase. Based on this, we identify data subsampling as a viable method to reduce resources required for alignment. Further, we propose an information theory-based methodology for efficient alignment by identifying a small high quality subset thereby reducing the computation and time required by alignment. We evaluate the proposed methodology over multiple datasets and compare the results. We find that the model aligned using our proposed methodology outperforms other sampling methods and performs comparable to the model aligned with the full dataset while using less than 10% data, leading to greater than 90% savings in costs, resources, and faster LLM alignment.

  • 3 authors
·
Nov 15, 2024

SelfCodeAlign: Self-Alignment for Code Generation

Instruction tuning is a supervised fine-tuning approach that significantly improves the ability of large language models (LLMs) to follow human instructions. We propose SelfCodeAlign, the first fully transparent and permissive pipeline for self-aligning code LLMs without extensive human annotations or distillation. SelfCodeAlign employs the same base model for inference throughout the data generation process. It first extracts diverse coding concepts from high-quality seed snippets to generate new tasks. It then samples multiple responses per task, pairs each with test cases, and validates them in a sandbox environment. Finally, passing examples are selected for instruction tuning. In our primary experiments, we use SelfCodeAlign with CodeQwen1.5-7B to generate a dataset of 74k instruction-response pairs. Finetuning on this dataset leads to a model that achieves a 67.1 pass@1 on HumanEval+, surpassing CodeLlama-70B-Instruct despite being ten times smaller. Across all benchmarks, this finetuned model consistently outperforms the original version trained with OctoPack, the previous state-of-the-art method for instruction tuning without human annotations or distillation. Additionally, we show that SelfCodeAlign is effective across LLMs of various sizes, from 3B to 33B, and that the base models can benefit more from alignment with their own data distribution. We further validate each component's effectiveness in our pipeline, showing that SelfCodeAlign outperforms both direct distillation from GPT-4o and leading GPT-3.5-based distillation methods, such as OSS-Instruct and Evol-Instruct. SelfCodeAlign has also led to the creation of StarCoder2-Instruct, the first fully transparent, permissively licensed, and self-aligned code LLM that achieves state-of-the-art coding performance.

  • 10 authors
·
Oct 31, 2024 2

Alleviating the Fear of Losing Alignment in LLM Fine-tuning

Large language models (LLMs) have demonstrated revolutionary capabilities in understanding complex contexts and performing a wide range of tasks. However, LLMs can also answer questions that are unethical or harmful, raising concerns about their applications. To regulate LLMs' responses to such questions, a training strategy called alignment can help. Yet, alignment can be unexpectedly compromised when fine-tuning an LLM for downstream tasks. This paper focuses on recovering the alignment lost during fine-tuning. We observe that there are two distinct directions inherent in an aligned LLM: the aligned direction and the harmful direction. An LLM is inclined to answer questions in the aligned direction while refusing queries in the harmful direction. Therefore, we propose to recover the harmful direction of the fine-tuned model that has been compromised. Specifically, we restore a small subset of the fine-tuned model's weight parameters from the original aligned model using gradient descent. We also introduce a rollback mechanism to avoid aggressive recovery and maintain downstream task performance. Our evaluation on 125 fine-tuned LLMs demonstrates that our method can reduce their harmful rate (percentage of answering harmful questions) from 33.25\% to 1.74\%, without sacrificing task performance much. In contrast, the existing methods either only reduce the harmful rate to a limited extent or significantly impact the normal functionality. Our code is available at https://github.com/kangyangWHU/LLMAlignment

  • 4 authors
·
Apr 13

Safety Subspaces are Not Distinct: A Fine-Tuning Case Study

Large Language Models (LLMs) rely on safety alignment to produce socially acceptable responses. This is typically achieved through instruction tuning and reinforcement learning from human feedback. However, this alignment is known to be brittle: further fine-tuning, even on benign or lightly contaminated data, can degrade safety and reintroduce harmful behaviors. A growing body of work suggests that alignment may correspond to identifiable geometric directions in weight space, forming subspaces that could, in principle, be isolated or preserved to defend against misalignment. In this work, we conduct a comprehensive empirical study of this geometric perspective. We examine whether safety-relevant behavior is concentrated in specific subspaces, whether it can be separated from general-purpose learning, and whether harmfulness arises from distinguishable patterns in internal representations. Across both parameter and activation space, our findings are consistent: subspaces that amplify safe behaviors also amplify unsafe ones, and prompts with different safety implications activate overlapping representations. We find no evidence of a subspace that selectively governs safety. These results challenge the assumption that alignment is geometrically localized. Rather than residing in distinct directions, safety appears to emerge from entangled, high-impact components of the model's broader learning dynamics. This suggests that subspace-based defenses may face fundamental limitations and underscores the need for alternative strategies to preserve alignment under continued training. We corroborate these findings through multiple experiments on five open-source LLMs. Our code is publicly available at: https://github.com/CERT-Lab/safety-subspaces.

  • 4 authors
·
May 20