new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

MeshMamba: State Space Models for Articulated 3D Mesh Generation and Reconstruction

In this paper, we introduce MeshMamba, a neural network model for learning 3D articulated mesh models by employing the recently proposed Mamba State Space Models (Mamba-SSMs). MeshMamba is efficient and scalable in handling a large number of input tokens, enabling the generation and reconstruction of body mesh models with more than 10,000 vertices, capturing clothing and hand geometries. The key to effectively learning MeshMamba is the serialization technique of mesh vertices into orderings that are easily processed by Mamba. This is achieved by sorting the vertices based on body part annotations or the 3D vertex locations of a template mesh, such that the ordering respects the structure of articulated shapes. Based on MeshMamba, we design 1) MambaDiff3D, a denoising diffusion model for generating 3D articulated meshes and 2) Mamba-HMR, a 3D human mesh recovery model that reconstructs a human body shape and pose from a single image. Experimental results showed that MambaDiff3D can generate dense 3D human meshes in clothes, with grasping hands, etc., and outperforms previous approaches in the 3D human shape generation task. Additionally, Mamba-HMR extends the capabilities of previous non-parametric human mesh recovery approaches, which were limited to handling body-only poses using around 500 vertex tokens, to the whole-body setting with face and hands, while achieving competitive performance in (near) real-time.

  • 3 authors
·
Jul 20, 2025

OReX: Object Reconstruction from Planar Cross-sections Using Neural Fields

Reconstructing 3D shapes from planar cross-sections is a challenge inspired by downstream applications like medical imaging and geographic informatics. The input is an in/out indicator function fully defined on a sparse collection of planes in space, and the output is an interpolation of the indicator function to the entire volume. Previous works addressing this sparse and ill-posed problem either produce low quality results, or rely on additional priors such as target topology, appearance information, or input normal directions. In this paper, we present OReX, a method for 3D shape reconstruction from slices alone, featuring a Neural Field as the interpolation prior. A modest neural network is trained on the input planes to return an inside/outside estimate for a given 3D coordinate, yielding a powerful prior that induces smoothness and self-similarities. The main challenge for this approach is high-frequency details, as the neural prior is overly smoothing. To alleviate this, we offer an iterative estimation architecture and a hierarchical input sampling scheme that encourage coarse-to-fine training, allowing the training process to focus on high frequencies at later stages. In addition, we identify and analyze a ripple-like effect stemming from the mesh extraction step. We mitigate it by regularizing the spatial gradients of the indicator function around input in/out boundaries during network training, tackling the problem at the root. Through extensive qualitative and quantitative experimentation, we demonstrate our method is robust, accurate, and scales well with the size of the input. We report state-of-the-art results compared to previous approaches and recent potential solutions, and demonstrate the benefit of our individual contributions through analysis and ablation studies.

  • 3 authors
·
Nov 23, 2022

Unposed 3DGS Reconstruction with Probabilistic Procrustes Mapping

3D Gaussian Splatting (3DGS) has emerged as a core technique for 3D representation. Its effectiveness largely depends on precise camera poses and accurate point cloud initialization, which are often derived from pretrained Multi-View Stereo (MVS) models. However, in unposed reconstruction task from hundreds of outdoor images, existing MVS models may struggle with memory limits and lose accuracy as the number of input images grows. To address this limitation, we propose a novel unposed 3DGS reconstruction framework that integrates pretrained MVS priors with the probabilistic Procrustes mapping strategy. The method partitions input images into subsets, maps submaps into a global space, and jointly optimizes geometry and poses with 3DGS. Technically, we formulate the mapping of tens of millions of point clouds as a probabilistic Procrustes problem and solve a closed-form alignment. By employing probabilistic coupling along with a soft dustbin mechanism to reject uncertain correspondences, our method globally aligns point clouds and poses within minutes across hundreds of images. Moreover, we propose a joint optimization framework for 3DGS and camera poses. It constructs Gaussians from confidence-aware anchor points and integrates 3DGS differentiable rendering with an analytical Jacobian to jointly refine scene and poses, enabling accurate reconstruction and pose estimation. Experiments on Waymo and KITTI datasets show that our method achieves accurate reconstruction from unposed image sequences, setting a new state of the art for unposed 3DGS reconstruction.

  • 6 authors
·
Jul 24, 2025

Get3DHuman: Lifting StyleGAN-Human into a 3D Generative Model using Pixel-aligned Reconstruction Priors

Fast generation of high-quality 3D digital humans is important to a vast number of applications ranging from entertainment to professional concerns. Recent advances in differentiable rendering have enabled the training of 3D generative models without requiring 3D ground truths. However, the quality of the generated 3D humans still has much room to improve in terms of both fidelity and diversity. In this paper, we present Get3DHuman, a novel 3D human framework that can significantly boost the realism and diversity of the generated outcomes by only using a limited budget of 3D ground-truth data. Our key observation is that the 3D generator can profit from human-related priors learned through 2D human generators and 3D reconstructors. Specifically, we bridge the latent space of Get3DHuman with that of StyleGAN-Human via a specially-designed prior network, where the input latent code is mapped to the shape and texture feature volumes spanned by the pixel-aligned 3D reconstructor. The outcomes of the prior network are then leveraged as the supervisory signals for the main generator network. To ensure effective training, we further propose three tailored losses applied to the generated feature volumes and the intermediate feature maps. Extensive experiments demonstrate that Get3DHuman greatly outperforms the other state-of-the-art approaches and can support a wide range of applications including shape interpolation, shape re-texturing, and single-view reconstruction through latent inversion.

  • 7 authors
·
Feb 2, 2023

Recurrent Variational Network: A Deep Learning Inverse Problem Solver applied to the task of Accelerated MRI Reconstruction

Magnetic Resonance Imaging can produce detailed images of the anatomy and physiology of the human body that can assist doctors in diagnosing and treating pathologies such as tumours. However, MRI suffers from very long acquisition times that make it susceptible to patient motion artifacts and limit its potential to deliver dynamic treatments. Conventional approaches such as Parallel Imaging and Compressed Sensing allow for an increase in MRI acquisition speed by reconstructing MR images from sub-sampled MRI data acquired using multiple receiver coils. Recent advancements in Deep Learning combined with Parallel Imaging and Compressed Sensing techniques have the potential to produce high-fidelity reconstructions from highly accelerated MRI data. In this work we present a novel Deep Learning-based Inverse Problem solver applied to the task of Accelerated MRI Reconstruction, called the Recurrent Variational Network (RecurrentVarNet), by exploiting the properties of Convolutional Recurrent Neural Networks and unrolled algorithms for solving Inverse Problems. The RecurrentVarNet consists of multiple recurrent blocks, each responsible for one iteration of the unrolled variational optimization scheme for solving the inverse problem of multi-coil Accelerated MRI Reconstruction. Contrary to traditional approaches, the optimization steps are performed in the observation domain (k-space) instead of the image domain. Each block of the RecurrentVarNet refines the observed k-space and comprises a data consistency term and a recurrent unit which takes as input a learned hidden state and the prediction of the previous block. Our proposed method achieves new state of the art qualitative and quantitative reconstruction results on 5-fold and 10-fold accelerated data from a public multi-coil brain dataset, outperforming previous conventional and deep learning-based approaches.

  • 4 authors
·
Nov 18, 2021

Visual Lexicon: Rich Image Features in Language Space

We present Visual Lexicon, a novel visual language that encodes rich image information into the text space of vocabulary tokens while retaining intricate visual details that are often challenging to convey in natural language. Unlike traditional methods that prioritize either high-level semantics (e.g., CLIP) or pixel-level reconstruction (e.g., VAE), ViLex simultaneously captures rich semantic content and fine visual details, enabling high-quality image generation and comprehensive visual scene understanding. Through a self-supervised learning pipeline, ViLex generates tokens optimized for reconstructing input images using a frozen text-to-image (T2I) diffusion model, preserving the detailed information necessary for high-fidelity semantic-level reconstruction. As an image embedding in the language space, ViLex tokens leverage the compositionality of natural languages, allowing them to be used independently as "text tokens" or combined with natural language tokens to prompt pretrained T2I models with both visual and textual inputs, mirroring how we interact with vision-language models (VLMs). Experiments demonstrate that ViLex achieves higher fidelity in image reconstruction compared to text embeddings--even with a single ViLex token. Moreover, ViLex successfully performs various DreamBooth tasks in a zero-shot, unsupervised manner without fine-tuning T2I models. Additionally, ViLex serves as a powerful vision encoder, consistently improving vision-language model performance across 15 benchmarks relative to a strong SigLIP baseline.

  • 5 authors
·
Dec 9, 2024

Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network

Recently, several models based on deep neural networks have achieved great success in terms of both reconstruction accuracy and computational performance for single image super-resolution. In these methods, the low resolution (LR) input image is upscaled to the high resolution (HR) space using a single filter, commonly bicubic interpolation, before reconstruction. This means that the super-resolution (SR) operation is performed in HR space. We demonstrate that this is sub-optimal and adds computational complexity. In this paper, we present the first convolutional neural network (CNN) capable of real-time SR of 1080p videos on a single K2 GPU. To achieve this, we propose a novel CNN architecture where the feature maps are extracted in the LR space. In addition, we introduce an efficient sub-pixel convolution layer which learns an array of upscaling filters to upscale the final LR feature maps into the HR output. By doing so, we effectively replace the handcrafted bicubic filter in the SR pipeline with more complex upscaling filters specifically trained for each feature map, whilst also reducing the computational complexity of the overall SR operation. We evaluate the proposed approach using images and videos from publicly available datasets and show that it performs significantly better (+0.15dB on Images and +0.39dB on Videos) and is an order of magnitude faster than previous CNN-based methods.

  • 8 authors
·
Sep 16, 2016

SeisFusion: Constrained Diffusion Model with Input Guidance for 3D Seismic Data Interpolation and Reconstruction

Geographical, physical, or economic constraints often result in missing traces within seismic data, making the reconstruction of complete seismic data a crucial step in seismic data processing. Traditional methods for seismic data reconstruction require the selection of multiple empirical parameters and struggle to handle large-scale continuous missing data. With the development of deep learning, various neural networks have demonstrated powerful reconstruction capabilities. However, these convolutional neural networks represent a point-to-point reconstruction approach that may not cover the entire distribution of the dataset. Consequently, when dealing with seismic data featuring complex missing patterns, such networks may experience varying degrees of performance degradation. In response to this challenge, we propose a novel diffusion model reconstruction framework tailored for 3D seismic data. To constrain the results generated by the diffusion model, we introduce conditional supervision constraints into the diffusion model, constraining the generated data of the diffusion model based on the input data to be reconstructed. We introduce a 3D neural network architecture into the diffusion model, successfully extending the 2D diffusion model to 3D space. Additionally, we refine the model's generation process by incorporating missing data into the generation process, resulting in reconstructions with higher consistency. Through ablation studies determining optimal parameter values, our method exhibits superior reconstruction accuracy when applied to both field datasets and synthetic datasets, effectively addressing a wide range of complex missing patterns. Our implementation is available at https://github.com/WAL-l/SeisFusion.

  • 6 authors
·
Mar 18, 2024

A Neural Space-Time Representation for Text-to-Image Personalization

A key aspect of text-to-image personalization methods is the manner in which the target concept is represented within the generative process. This choice greatly affects the visual fidelity, downstream editability, and disk space needed to store the learned concept. In this paper, we explore a new text-conditioning space that is dependent on both the denoising process timestep (time) and the denoising U-Net layers (space) and showcase its compelling properties. A single concept in the space-time representation is composed of hundreds of vectors, one for each combination of time and space, making this space challenging to optimize directly. Instead, we propose to implicitly represent a concept in this space by optimizing a small neural mapper that receives the current time and space parameters and outputs the matching token embedding. In doing so, the entire personalized concept is represented by the parameters of the learned mapper, resulting in a compact, yet expressive, representation. Similarly to other personalization methods, the output of our neural mapper resides in the input space of the text encoder. We observe that one can significantly improve the convergence and visual fidelity of the concept by introducing a textual bypass, where our neural mapper additionally outputs a residual that is added to the output of the text encoder. Finally, we show how one can impose an importance-based ordering over our implicit representation, providing users control over the reconstruction and editability of the learned concept using a single trained model. We demonstrate the effectiveness of our approach over a range of concepts and prompts, showing our method's ability to generate high-quality and controllable compositions without fine-tuning any parameters of the generative model itself.

  • 4 authors
·
May 24, 2023

GigaTok: Scaling Visual Tokenizers to 3 Billion Parameters for Autoregressive Image Generation

In autoregressive (AR) image generation, visual tokenizers compress images into compact discrete latent tokens, enabling efficient training of downstream autoregressive models for visual generation via next-token prediction. While scaling visual tokenizers improves image reconstruction quality, it often degrades downstream generation quality -- a challenge not adequately addressed in existing literature. To address this, we introduce GigaTok, the first approach to simultaneously improve image reconstruction, generation, and representation learning when scaling visual tokenizers. We identify the growing complexity of latent space as the key factor behind the reconstruction vs. generation dilemma. To mitigate this, we propose semantic regularization, which aligns tokenizer features with semantically consistent features from a pre-trained visual encoder. This constraint prevents excessive latent space complexity during scaling, yielding consistent improvements in both reconstruction and downstream autoregressive generation. Building on semantic regularization, we explore three key practices for scaling tokenizers:(1) using 1D tokenizers for better scalability, (2) prioritizing decoder scaling when expanding both encoder and decoder, and (3) employing entropy loss to stabilize training for billion-scale tokenizers. By scaling to 3 space billion parameters, GigaTok achieves state-of-the-art performance in reconstruction, downstream AR generation, and downstream AR representation quality.

  • 5 authors
·
Apr 11, 2025 2

AToken: A Unified Tokenizer for Vision

We present AToken, the first unified visual tokenizer that achieves both high-fidelity reconstruction and semantic understanding across images, videos, and 3D assets. Unlike existing tokenizers that specialize in either reconstruction or understanding for single modalities, AToken encodes these diverse visual inputs into a shared 4D latent space, unifying both tasks and modalities in a single framework. Specifically, we introduce a pure transformer architecture with 4D rotary position embeddings to process visual inputs of arbitrary resolutions and temporal durations. To ensure stable training, we introduce an adversarial-free training objective that combines perceptual and Gram matrix losses, achieving state-of-the-art reconstruction quality. By employing a progressive training curriculum, AToken gradually expands from single images, videos, and 3D, and supports both continuous and discrete latent tokens. AToken achieves 0.21 rFID with 82.2% ImageNet accuracy for images, 3.01 rFVD with 32.6% MSRVTT retrieval for videos, and 28.19 PSNR with 90.9% classification accuracy for 3D. In downstream applications, AToken enables both visual generation tasks (e.g., image generation with continuous and discrete tokens, text-to-video generation, image-to-3D synthesis) and understanding tasks (e.g., multimodal LLMs), achieving competitive performance across all benchmarks. These results shed light on the next-generation multimodal AI systems built upon unified visual tokenization.

  • 8 authors
·
Sep 17, 2025 10

Splatent: Splatting Diffusion Latents for Novel View Synthesis

Radiance field representations have recently been explored in the latent space of VAEs that are commonly used by diffusion models. This direction offers efficient rendering and seamless integration with diffusion-based pipelines. However, these methods face a fundamental limitation: The VAE latent space lacks multi-view consistency, leading to blurred textures and missing details during 3D reconstruction. Existing approaches attempt to address this by fine-tuning the VAE, at the cost of reconstruction quality, or by relying on pre-trained diffusion models to recover fine-grained details, at the risk of some hallucinations. We present Splatent, a diffusion-based enhancement framework designed to operate on top of 3D Gaussian Splatting (3DGS) in the latent space of VAEs. Our key insight departs from the conventional 3D-centric view: rather than reconstructing fine-grained details in 3D space, we recover them in 2D from input views through multi-view attention mechanisms. This approach preserves the reconstruction quality of pretrained VAEs while achieving faithful detail recovery. Evaluated across multiple benchmarks, Splatent establishes a new state-of-the-art for VAE latent radiance field reconstruction. We further demonstrate that integrating our method with existing feed-forward frameworks, consistently improves detail preservation, opening new possibilities for high-quality sparse-view 3D reconstruction.

  • 9 authors
·
Dec 10, 2025

Generalization is not a universal guarantee: Estimating similarity to training data with an ensemble out-of-distribution metric

Failure of machine learning models to generalize to new data is a core problem limiting the reliability of AI systems, partly due to the lack of simple and robust methods for comparing new data to the original training dataset. We propose a standardized approach for assessing data similarity in a model-agnostic manner by constructing a supervised autoencoder for generalizability estimation (SAGE). We compare points in a low-dimensional embedded latent space, defining empirical probability measures for k-Nearest Neighbors (kNN) distance, reconstruction of inputs and task-based performance. As proof of concept for classification tasks, we use MNIST and CIFAR-10 to demonstrate how an ensemble output probability score can separate deformed images from a mixture of typical test examples, and how this SAGE score is robust to transformations of increasing severity. As further proof of concept, we extend this approach to a regression task using non-imaging data (UCI Abalone). In all cases, we show that out-of-the-box model performance increases after SAGE score filtering, even when applied to data from the model's own training and test datasets. Our out-of-distribution scoring method can be introduced during several steps of model construction and assessment, leading to future improvements in responsible deep learning implementation.

  • 3 authors
·
Feb 22, 2025

High-Fidelity Facial Albedo Estimation via Texture Quantization

Recent 3D face reconstruction methods have made significant progress in shape estimation, but high-fidelity facial albedo reconstruction remains challenging. Existing methods depend on expensive light-stage captured data to learn facial albedo maps. However, a lack of diversity in subjects limits their ability to recover high-fidelity results. In this paper, we present a novel facial albedo reconstruction model, HiFiAlbedo, which recovers the albedo map directly from a single image without the need for captured albedo data. Our key insight is that the albedo map is the illumination invariant texture map, which enables us to use inexpensive texture data to derive an albedo estimation by eliminating illumination. To achieve this, we first collect large-scale ultra-high-resolution facial images and train a high-fidelity facial texture codebook. By using the FFHQ dataset and limited UV textures, we then fine-tune the encoder for texture reconstruction from the input image with adversarial supervision in both image and UV space. Finally, we train a cross-attention module and utilize group identity loss to learn the adaptation from facial texture to the albedo domain. Extensive experimentation has demonstrated that our method exhibits excellent generalizability and is capable of achieving high-fidelity results for in-the-wild facial albedo recovery. Our code, pre-trained weights, and training data will be made publicly available at https://hifialbedo.github.io/.

  • 9 authors
·
Jun 18, 2024

ZeroNLG: Aligning and Autoencoding Domains for Zero-Shot Multimodal and Multilingual Natural Language Generation

Natural Language Generation (NLG) accepts input data in the form of images, videos, or text and generates corresponding natural language text as output. Existing NLG methods mainly adopt a supervised approach and rely heavily on coupled data-to-text pairs. However, for many targeted scenarios and for non-English languages, sufficient quantities of labeled data are often not available. To relax the dependency on labeled data of downstream tasks, we propose an intuitive and effective zero-shot learning framework, ZeroNLG, which can deal with multiple NLG tasks, including image-to-text (image captioning), video-to-text (video captioning), and text-to-text (neural machine translation), across English, Chinese, German, and French within a unified framework. ZeroNLG does not require any labeled downstream pairs for training. During training, ZeroNLG (i) projects different domains (across modalities and languages) to corresponding coordinates in a shared common latent space; (ii) bridges different domains by aligning their corresponding coordinates in this space; and (iii) builds an unsupervised multilingual auto-encoder to learn to generate text by reconstructing the input text given its coordinate in shared latent space. Consequently, during inference, based on the data-to-text pipeline, ZeroNLG can generate target sentences across different languages given the coordinate of input data in the common space. Within this unified framework, given visual (imaging or video) data as input, ZeroNLG can perform zero-shot visual captioning; given textual sentences as input, ZeroNLG can perform zero-shot machine translation. We present the results of extensive experiments on twelve NLG tasks, showing that, without using any labeled downstream pairs for training, ZeroNLG generates high-quality and believable outputs and significantly outperforms existing zero-shot methods.

  • 6 authors
·
Mar 11, 2023

HiRes-LLaVA: Restoring Fragmentation Input in High-Resolution Large Vision-Language Models

High-resolution inputs enable Large Vision-Language Models (LVLMs) to discern finer visual details, enhancing their comprehension capabilities. To reduce the training and computation costs caused by high-resolution input, one promising direction is to use sliding windows to slice the input into uniform patches, each matching the input size of the well-trained vision encoder. Although efficient, this slicing strategy leads to the fragmentation of original input, i.e., the continuity of contextual information and spatial geometry is lost across patches, adversely affecting performance in cross-patch context perception and position-specific tasks. To overcome these shortcomings, we introduce HiRes-LLaVA, a novel framework designed to efficiently process any size of high-resolution input without altering the original contextual and geometric information. HiRes-LLaVA comprises two innovative components: (i) a SliceRestore adapter that reconstructs sliced patches into their original form, efficiently extracting both global and local features via down-up-sampling and convolution layers, and (ii) a Self-Mining Sampler to compresses the vision tokens based on themselves, preserving the original context and positional information while reducing training overhead. To assess the ability of handling context fragmentation, we construct a new benchmark, EntityGrid-QA, consisting of edge-related and position-related tasks. Our comprehensive experiments demonstrate the superiority of HiRes-LLaVA on both existing public benchmarks and on EntityGrid-QA, particularly on document-oriented tasks, establishing new standards for handling high-resolution inputs.

  • 10 authors
·
Jul 11, 2024

Reconstructing the Mind's Eye: fMRI-to-Image with Contrastive Learning and Diffusion Priors

We present MindEye, a novel fMRI-to-image approach to retrieve and reconstruct viewed images from brain activity. Our model comprises two parallel submodules that are specialized for retrieval (using contrastive learning) and reconstruction (using a diffusion prior). MindEye can map fMRI brain activity to any high dimensional multimodal latent space, like CLIP image space, enabling image reconstruction using generative models that accept embeddings from this latent space. We comprehensively compare our approach with other existing methods, using both qualitative side-by-side comparisons and quantitative evaluations, and show that MindEye achieves state-of-the-art performance in both reconstruction and retrieval tasks. In particular, MindEye can retrieve the exact original image even among highly similar candidates indicating that its brain embeddings retain fine-grained image-specific information. This allows us to accurately retrieve images even from large-scale databases like LAION-5B. We demonstrate through ablations that MindEye's performance improvements over previous methods result from specialized submodules for retrieval and reconstruction, improved training techniques, and training models with orders of magnitude more parameters. Furthermore, we show that MindEye can better preserve low-level image features in the reconstructions by using img2img, with outputs from a separate autoencoder. All code is available on GitHub.

  • 12 authors
·
May 29, 2023 1

AriEL: volume coding for sentence generation

Mapping sequences of discrete data to a point in a continuous space makes it difficult to retrieve those sequences via random sampling. Mapping the input to a volume would make it easier to retrieve at test time, and that's the strategy followed by the family of approaches based on Variational Autoencoder. However the fact that they are at the same time optimizing for prediction and for smoothness of representation, forces them to trade-off between the two. We improve on the performance of some of the standard methods in deep learning to generate sentences by uniformly sampling a continuous space. We do it by proposing AriEL, that constructs volumes in a continuous space, without the need of encouraging the creation of volumes through the loss function. We first benchmark on a toy grammar, that allows to automatically evaluate the language learned and generated by the models. Then, we benchmark on a real dataset of human dialogues. Our results indicate that the random access to the stored information is dramatically improved, and our method AriEL is able to generate a wider variety of correct language by randomly sampling the latent space. VAE follows in performance for the toy dataset while, AE and Transformer follow for the real dataset. This partially supports to the hypothesis that encoding information into volumes instead of into points, can lead to improved retrieval of learned information with random sampling. This can lead to better generators and we also discuss potential disadvantages.

  • 3 authors
·
Mar 30, 2020

Taming Feed-forward Reconstruction Models as Latent Encoders for 3D Generative Models

Recent AI-based 3D content creation has largely evolved along two paths: feed-forward image-to-3D reconstruction approaches and 3D generative models trained with 2D or 3D supervision. In this work, we show that existing feed-forward reconstruction methods can serve as effective latent encoders for training 3D generative models, thereby bridging these two paradigms. By reusing powerful pre-trained reconstruction models, we avoid computationally expensive encoder network training and obtain rich 3D latent features for generative modeling for free. However, the latent spaces of reconstruction models are not well-suited for generative modeling due to their unstructured nature. To enable flow-based model training on these latent features, we develop post-processing pipelines, including protocols to standardize the features and spatial weighting to concentrate on important regions. We further incorporate a 2D image space perceptual rendering loss to handle the high-dimensional latent spaces. Finally, we propose a multi-stream transformer-based rectified flow architecture to achieve linear scaling and high-quality text-conditioned 3D generation. Our framework leverages the advancements of feed-forward reconstruction models to enhance the scalability of 3D generative modeling, achieving both high computational efficiency and state-of-the-art performance in text-to-3D generation.

  • 4 authors
·
Dec 31, 2024

Both Semantics and Reconstruction Matter: Making Representation Encoders Ready for Text-to-Image Generation and Editing

Modern Latent Diffusion Models (LDMs) typically operate in low-level Variational Autoencoder (VAE) latent spaces that are primarily optimized for pixel-level reconstruction. To unify vision generation and understanding, a burgeoning trend is to adopt high-dimensional features from representation encoders as generative latents. However, we empirically identify two fundamental obstacles in this paradigm: (1) the discriminative feature space lacks compact regularization, making diffusion models prone to off-manifold latents that lead to inaccurate object structures; and (2) the encoder's inherently weak pixel-level reconstruction hinders the generator from learning accurate fine-grained geometry and texture. In this paper, we propose a systematic framework to adapt understanding-oriented encoder features for generative tasks. We introduce a semantic-pixel reconstruction objective to regularize the latent space, enabling the compression of both semantic information and fine-grained details into a highly compact representation (96 channels with 16x16 spatial downsampling). This design ensures that the latent space remains semantically rich and achieves state-of-the-art image reconstruction, while remaining compact enough for accurate generation. Leveraging this representation, we design a unified Text-to-Image (T2I) and image editing model. Benchmarking against various feature spaces, we demonstrate that our approach achieves state-of-the-art reconstruction, faster convergence, and substantial performance gains in both T2I and editing tasks, validating that representation encoders can be effectively adapted into robust generative components.

adobe Adobe
·
Dec 19, 2025 6

FLoRA: Low-Rank Core Space for N-dimension

Adapting pre-trained foundation models for various downstream tasks has been prevalent in artificial intelligence. Due to the vast number of tasks and high costs, adjusting all parameters becomes unfeasible. To mitigate this, several fine-tuning techniques have been developed to update the pre-trained model weights in a more resource-efficient manner, such as through low-rank adjustments. Yet, almost all of these methods focus on linear weights, neglecting the intricacies of parameter spaces in higher dimensions like 4D. Alternatively, some methods can be adapted for high-dimensional parameter space by compressing changes in the original space into two dimensions and then employing low-rank matrix decomposition. However, these approaches destructs the structural integrity of the involved high-dimensional spaces. To tackle the diversity of dimensional spaces across different foundation models and provide a more precise representation of the changes within these spaces, this paper introduces a generalized parameter-efficient fine-tuning framework, FLoRA, designed for various dimensional parameter space. Specifically, utilizing Tucker decomposition, FLoRA asserts that changes in each dimensional parameter space are based on a low-rank core space which maintains the consistent topological structure with the original space. It then models the changes through this core space alongside corresponding weights to reconstruct alterations in the original space. FLoRA effectively preserves the structural integrity of the change of original N-dimensional parameter space, meanwhile decomposes it via low-rank tensor decomposition. Extensive experiments on computer vision, natural language processing and multi-modal tasks validate FLoRA's effectiveness. Codes are available at https://github.com/SJTU-DeepVisionLab/FLoRA.

  • 9 authors
·
May 23, 2024

The Devil is in the Details: StyleFeatureEditor for Detail-Rich StyleGAN Inversion and High Quality Image Editing

The task of manipulating real image attributes through StyleGAN inversion has been extensively researched. This process involves searching latent variables from a well-trained StyleGAN generator that can synthesize a real image, modifying these latent variables, and then synthesizing an image with the desired edits. A balance must be struck between the quality of the reconstruction and the ability to edit. Earlier studies utilized the low-dimensional W-space for latent search, which facilitated effective editing but struggled with reconstructing intricate details. More recent research has turned to the high-dimensional feature space F, which successfully inverses the input image but loses much of the detail during editing. In this paper, we introduce StyleFeatureEditor -- a novel method that enables editing in both w-latents and F-latents. This technique not only allows for the reconstruction of finer image details but also ensures their preservation during editing. We also present a new training pipeline specifically designed to train our model to accurately edit F-latents. Our method is compared with state-of-the-art encoding approaches, demonstrating that our model excels in terms of reconstruction quality and is capable of editing even challenging out-of-domain examples. Code is available at https://github.com/AIRI-Institute/StyleFeatureEditor.

  • 4 authors
·
Jun 15, 2024 2

Towards Scalable Pre-training of Visual Tokenizers for Generation

The quality of the latent space in visual tokenizers (e.g., VAEs) is crucial for modern generative models. However, the standard reconstruction-based training paradigm produces a latent space that is biased towards low-level information, leading to a foundation flaw: better pixel-level accuracy does not lead to higher-quality generation. This implies that pouring extensive compute into visual tokenizer pre-training translates poorly to improved performance in generation. We identify this as the ``pre-training scaling problem`` and suggest a necessary shift: to be effective for generation, a latent space must concisely represent high-level semantics. We present VTP, a unified visual tokenizer pre-training framework, pioneering the joint optimization of image-text contrastive, self-supervised, and reconstruction losses. Our large-scale study reveals two principal findings: (1) understanding is a key driver of generation, and (2) much better scaling properties, where generative performance scales effectively with compute, parameters, and data allocated to the pretraining of the visual tokenizer. After large-scale pre-training, our tokenizer delivers a competitive profile (78.2 zero-shot accuracy and 0.36 rFID on ImageNet) and 4.1 times faster convergence on generation compared to advanced distillation methods. More importantly, it scales effectively: without modifying standard DiT training specs, solely investing more FLOPS in pretraining VTP achieves 65.8\% FID improvement in downstream generation, while conventional autoencoder stagnates very early at 1/10 FLOPS. Our pre-trained models are available at https://github.com/MiniMax-AI/VTP.

MiniMaxAI MiniMax
·
Dec 15, 2025 4

Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective

Latent-based image generative models, such as Latent Diffusion Models (LDMs) and Mask Image Models (MIMs), have achieved notable success in image generation tasks. These models typically leverage reconstructive autoencoders like VQGAN or VAE to encode pixels into a more compact latent space and learn the data distribution in the latent space instead of directly from pixels. However, this practice raises a pertinent question: Is it truly the optimal choice? In response, we begin with an intriguing observation: despite sharing the same latent space, autoregressive models significantly lag behind LDMs and MIMs in image generation. This finding contrasts sharply with the field of NLP, where the autoregressive model GPT has established a commanding presence. To address this discrepancy, we introduce a unified perspective on the relationship between latent space and generative models, emphasizing the stability of latent space in image generative modeling. Furthermore, we propose a simple but effective discrete image tokenizer to stabilize the latent space for image generative modeling. Experimental results show that image autoregressive modeling with our tokenizer (DiGIT) benefits both image understanding and image generation with the next token prediction principle, which is inherently straightforward for GPT models but challenging for other generative models. Remarkably, for the first time, a GPT-style autoregressive model for images outperforms LDMs, which also exhibits substantial improvement akin to GPT when scaling up model size. Our findings underscore the potential of an optimized latent space and the integration of discrete tokenization in advancing the capabilities of image generative models. The code is available at https://github.com/DAMO-NLP-SG/DiGIT.

  • 6 authors
·
Oct 16, 2024 2

Decoupled Iterative Refinement Framework for Interacting Hands Reconstruction from a Single RGB Image

Reconstructing interacting hands from a single RGB image is a very challenging task. On the one hand, severe mutual occlusion and similar local appearance between two hands confuse the extraction of visual features, resulting in the misalignment of estimated hand meshes and the image. On the other hand, there are complex spatial relationship between interacting hands, which significantly increases the solution space of hand poses and increases the difficulty of network learning. In this paper, we propose a decoupled iterative refinement framework to achieve pixel-alignment hand reconstruction while efficiently modeling the spatial relationship between hands. Specifically, we define two feature spaces with different characteristics, namely 2D visual feature space and 3D joint feature space. First, we obtain joint-wise features from the visual feature map and utilize a graph convolution network and a transformer to perform intra- and inter-hand information interaction in the 3D joint feature space, respectively. Then, we project the joint features with global information back into the 2D visual feature space in an obfuscation-free manner and utilize the 2D convolution for pixel-wise enhancement. By performing multiple alternate enhancements in the two feature spaces, our method can achieve an accurate and robust reconstruction of interacting hands. Our method outperforms all existing two-hand reconstruction methods by a large margin on the InterHand2.6M dataset.

  • 8 authors
·
Feb 5, 2023

Decompositional Neural Scene Reconstruction with Generative Diffusion Prior

Decompositional reconstruction of 3D scenes, with complete shapes and detailed texture of all objects within, is intriguing for downstream applications but remains challenging, particularly with sparse views as input. Recent approaches incorporate semantic or geometric regularization to address this issue, but they suffer significant degradation in underconstrained areas and fail to recover occluded regions. We argue that the key to solving this problem lies in supplementing missing information for these areas. To this end, we propose DP-Recon, which employs diffusion priors in the form of Score Distillation Sampling (SDS) to optimize the neural representation of each individual object under novel views. This provides additional information for the underconstrained areas, but directly incorporating diffusion prior raises potential conflicts between the reconstruction and generative guidance. Therefore, we further introduce a visibility-guided approach to dynamically adjust the per-pixel SDS loss weights. Together these components enhance both geometry and appearance recovery while remaining faithful to input images. Extensive experiments across Replica and ScanNet++ demonstrate that our method significantly outperforms SOTA methods. Notably, it achieves better object reconstruction under 10 views than the baselines under 100 views. Our method enables seamless text-based editing for geometry and appearance through SDS optimization and produces decomposed object meshes with detailed UV maps that support photorealistic Visual effects (VFX) editing. The project page is available at https://dp-recon.github.io/.

  • 7 authors
·
Mar 18, 2025 2

GridFormer: Point-Grid Transformer for Surface Reconstruction

Implicit neural networks have emerged as a crucial technology in 3D surface reconstruction. To reconstruct continuous surfaces from discrete point clouds, encoding the input points into regular grid features (plane or volume) has been commonly employed in existing approaches. However, these methods typically use the grid as an index for uniformly scattering point features. Compared with the irregular point features, the regular grid features may sacrifice some reconstruction details but improve efficiency. To take full advantage of these two types of features, we introduce a novel and high-efficiency attention mechanism between the grid and point features named Point-Grid Transformer (GridFormer). This mechanism treats the grid as a transfer point connecting the space and point cloud. Our method maximizes the spatial expressiveness of grid features and maintains computational efficiency. Furthermore, optimizing predictions over the entire space could potentially result in blurred boundaries. To address this issue, we further propose a boundary optimization strategy incorporating margin binary cross-entropy loss and boundary sampling. This approach enables us to achieve a more precise representation of the object structure. Our experiments validate that our method is effective and outperforms the state-of-the-art approaches under widely used benchmarks by producing more precise geometry reconstructions. The code is available at https://github.com/list17/GridFormer.

  • 5 authors
·
Jan 4, 2024

Hyperdimensional Probe: Decoding LLM Representations via Vector Symbolic Architectures

Despite their capabilities, Large Language Models (LLMs) remain opaque with limited understanding of their internal representations. Current interpretability methods, such as direct logit attribution (DLA) and sparse autoencoders (SAEs), provide restricted insight due to limitations such as the model's output vocabulary or unclear feature names. This work introduces Hyperdimensional Probe, a novel paradigm for decoding information from the LLM vector space. It combines ideas from symbolic representations and neural probing to project the model's residual stream into interpretable concepts via Vector Symbolic Architectures (VSAs). This probe combines the strengths of SAEs and conventional probes while overcoming their key limitations. We validate our decoding paradigm with controlled input-completion tasks, probing the model's final state before next-token prediction on inputs spanning syntactic pattern recognition, key-value associations, and abstract inference. We further assess it in a question-answering setting, examining the state of the model both before and after text generation. Our experiments show that our probe reliably extracts meaningful concepts across varied LLMs, embedding sizes, and input domains, also helping identify LLM failures. Our work advances information decoding in LLM vector space, enabling extracting more informative, interpretable, and structured features from neural representations.

  • 5 authors
·
Sep 29, 2025 2

AST-Probe: Recovering abstract syntax trees from hidden representations of pre-trained language models

The objective of pre-trained language models is to learn contextual representations of textual data. Pre-trained language models have become mainstream in natural language processing and code modeling. Using probes, a technique to study the linguistic properties of hidden vector spaces, previous works have shown that these pre-trained language models encode simple linguistic properties in their hidden representations. However, none of the previous work assessed whether these models encode the whole grammatical structure of a programming language. In this paper, we prove the existence of a syntactic subspace, lying in the hidden representations of pre-trained language models, which contain the syntactic information of the programming language. We show that this subspace can be extracted from the models' representations and define a novel probing method, the AST-Probe, that enables recovering the whole abstract syntax tree (AST) of an input code snippet. In our experimentations, we show that this syntactic subspace exists in five state-of-the-art pre-trained language models. In addition, we highlight that the middle layers of the models are the ones that encode most of the AST information. Finally, we estimate the optimal size of this syntactic subspace and show that its dimension is substantially lower than those of the models' representation spaces. This suggests that pre-trained language models use a small part of their representation spaces to encode syntactic information of the programming languages.

  • 4 authors
·
Jun 23, 2022

Coherent and Multi-modality Image Inpainting via Latent Space Optimization

With the advancements in denoising diffusion probabilistic models (DDPMs), image inpainting has significantly evolved from merely filling information based on nearby regions to generating content conditioned on various prompts such as text, exemplar images, and sketches. However, existing methods, such as model fine-tuning and simple concatenation of latent vectors, often result in generation failures due to overfitting and inconsistency between the inpainted region and the background. In this paper, we argue that the current large diffusion models are sufficiently powerful to generate realistic images without further tuning. Hence, we introduce PILOT (inPainting vIa Latent OpTimization), an optimization approach grounded on a novel semantic centralization and background preservation loss. Our method searches latent spaces capable of generating inpainted regions that exhibit high fidelity to user-provided prompts while maintaining coherence with the background. Furthermore, we propose a strategy to balance optimization expense and image quality, significantly enhancing generation efficiency. Our method seamlessly integrates with any pre-trained model, including ControlNet and DreamBooth, making it suitable for deployment in multi-modal editing tools. Our qualitative and quantitative evaluations demonstrate that PILOT outperforms existing approaches by generating more coherent, diverse, and faithful inpainted regions in response to provided prompts.

  • 7 authors
·
Jul 10, 2024

Discovering Failure Modes of Text-guided Diffusion Models via Adversarial Search

Text-guided diffusion models (TDMs) are widely applied but can fail unexpectedly. Common failures include: (i) natural-looking text prompts generating images with the wrong content, or (ii) different random samples of the latent variables that generate vastly different, and even unrelated, outputs despite being conditioned on the same text prompt. In this work, we aim to study and understand the failure modes of TDMs in more detail. To achieve this, we propose SAGE, the first adversarial search method on TDMs that systematically explores the discrete prompt space and the high-dimensional latent space, to automatically discover undesirable behaviors and failure cases in image generation. We use image classifiers as surrogate loss functions during searching, and employ human inspections to validate the identified failures. For the first time, our method enables efficient exploration of both the discrete and intricate human language space and the challenging latent space, overcoming the gradient vanishing problem. Then, we demonstrate the effectiveness of SAGE on five widely used generative models and reveal four typical failure modes: (1) We find a variety of natural text prompts that generate images failing to capture the semantics of input texts. We further discuss the underlying causes and potential solutions based on the results. (2) We find regions in the latent space that lead to distorted images independent of the text prompt, suggesting that parts of the latent space are not well-structured. (3) We also find latent samples that result in natural-looking images unrelated to the text prompt, implying a possible misalignment between the latent and prompt spaces. (4) By appending a single adversarial token embedding to any input prompts, we can generate a variety of specified target objects. Project page: https://sage-diffusion.github.io/

  • 5 authors
·
Jun 1, 2023

Image Tokenizer Needs Post-Training

Recent image generative models typically capture the image distribution in a pre-constructed latent space, relying on a frozen image tokenizer. However, there exists a significant discrepancy between the reconstruction and generation distribution, where current tokenizers only prioritize the reconstruction task that happens before generative training without considering the generation errors during sampling. In this paper, we comprehensively analyze the reason for this discrepancy in a discrete latent space, and, from which, we propose a novel tokenizer training scheme including both main-training and post-training, focusing on improving latent space construction and decoding respectively. During the main training, a latent perturbation strategy is proposed to simulate sampling noises, \ie, the unexpected tokens generated in generative inference. Specifically, we propose a plug-and-play tokenizer training scheme, which significantly enhances the robustness of tokenizer, thus boosting the generation quality and convergence speed, and a novel tokenizer evaluation metric, \ie, pFID, which successfully correlates the tokenizer performance to generation quality. During post-training, we further optimize the tokenizer decoder regarding a well-trained generative model to mitigate the distribution difference between generated and reconstructed tokens. With a sim400M generator, a discrete tokenizer trained with our proposed main training achieves a notable 1.60 gFID and further obtains 1.36 gFID with the additional post-training. Further experiments are conducted to broadly validate the effectiveness of our post-training strategy on off-the-shelf discrete and continuous tokenizers, coupled with autoregressive and diffusion-based generators.

  • 10 authors
·
Sep 15, 2025 2

LD-ZNet: A Latent Diffusion Approach for Text-Based Image Segmentation

Large-scale pre-training tasks like image classification, captioning, or self-supervised techniques do not incentivize learning the semantic boundaries of objects. However, recent generative foundation models built using text-based latent diffusion techniques may learn semantic boundaries. This is because they have to synthesize intricate details about all objects in an image based on a text description. Therefore, we present a technique for segmenting real and AI-generated images using latent diffusion models (LDMs) trained on internet-scale datasets. First, we show that the latent space of LDMs (z-space) is a better input representation compared to other feature representations like RGB images or CLIP encodings for text-based image segmentation. By training the segmentation models on the latent z-space, which creates a compressed representation across several domains like different forms of art, cartoons, illustrations, and photographs, we are also able to bridge the domain gap between real and AI-generated images. We show that the internal features of LDMs contain rich semantic information and present a technique in the form of LD-ZNet to further boost the performance of text-based segmentation. Overall, we show up to 6% improvement over standard baselines for text-to-image segmentation on natural images. For AI-generated imagery, we show close to 20% improvement compared to state-of-the-art techniques. The project is available at https://koutilya-pnvr.github.io/LD-ZNet/.

  • 5 authors
·
Mar 22, 2023

Brain Captioning: Decoding human brain activity into images and text

Every day, the human brain processes an immense volume of visual information, relying on intricate neural mechanisms to perceive and interpret these stimuli. Recent breakthroughs in functional magnetic resonance imaging (fMRI) have enabled scientists to extract visual information from human brain activity patterns. In this study, we present an innovative method for decoding brain activity into meaningful images and captions, with a specific focus on brain captioning due to its enhanced flexibility as compared to brain decoding into images. Our approach takes advantage of cutting-edge image captioning models and incorporates a unique image reconstruction pipeline that utilizes latent diffusion models and depth estimation. We utilized the Natural Scenes Dataset, a comprehensive fMRI dataset from eight subjects who viewed images from the COCO dataset. We employed the Generative Image-to-text Transformer (GIT) as our backbone for captioning and propose a new image reconstruction pipeline based on latent diffusion models. The method involves training regularized linear regression models between brain activity and extracted features. Additionally, we incorporated depth maps from the ControlNet model to further guide the reconstruction process. We evaluate our methods using quantitative metrics for both generated captions and images. Our brain captioning approach outperforms existing methods, while our image reconstruction pipeline generates plausible images with improved spatial relationships. In conclusion, we demonstrate significant progress in brain decoding, showcasing the enormous potential of integrating vision and language to better understand human cognition. Our approach provides a flexible platform for future research, with potential applications in various fields, including neural art, style transfer, and portable devices.

  • 5 authors
·
May 19, 2023

Relative representations enable zero-shot latent space communication

Neural networks embed the geometric structure of a data manifold lying in a high-dimensional space into latent representations. Ideally, the distribution of the data points in the latent space should depend only on the task, the data, the loss, and other architecture-specific constraints. However, factors such as the random weights initialization, training hyperparameters, or other sources of randomness in the training phase may induce incoherent latent spaces that hinder any form of reuse. Nevertheless, we empirically observe that, under the same data and modeling choices, the angles between the encodings within distinct latent spaces do not change. In this work, we propose the latent similarity between each sample and a fixed set of anchors as an alternative data representation, demonstrating that it can enforce the desired invariances without any additional training. We show how neural architectures can leverage these relative representations to guarantee, in practice, invariance to latent isometries and rescalings, effectively enabling latent space communication: from zero-shot model stitching to latent space comparison between diverse settings. We extensively validate the generalization capability of our approach on different datasets, spanning various modalities (images, text, graphs), tasks (e.g., classification, reconstruction) and architectures (e.g., CNNs, GCNs, transformers).

  • 6 authors
·
Sep 30, 2022

One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization

Single image 3D reconstruction is an important but challenging task that requires extensive knowledge of our natural world. Many existing methods solve this problem by optimizing a neural radiance field under the guidance of 2D diffusion models but suffer from lengthy optimization time, 3D inconsistency results, and poor geometry. In this work, we propose a novel method that takes a single image of any object as input and generates a full 360-degree 3D textured mesh in a single feed-forward pass. Given a single image, we first use a view-conditioned 2D diffusion model, Zero123, to generate multi-view images for the input view, and then aim to lift them up to 3D space. Since traditional reconstruction methods struggle with inconsistent multi-view predictions, we build our 3D reconstruction module upon an SDF-based generalizable neural surface reconstruction method and propose several critical training strategies to enable the reconstruction of 360-degree meshes. Without costly optimizations, our method reconstructs 3D shapes in significantly less time than existing methods. Moreover, our method favors better geometry, generates more 3D consistent results, and adheres more closely to the input image. We evaluate our approach on both synthetic data and in-the-wild images and demonstrate its superiority in terms of both mesh quality and runtime. In addition, our approach can seamlessly support the text-to-3D task by integrating with off-the-shelf text-to-image diffusion models.

  • 7 authors
·
Jun 29, 2023 7

RecTok: Reconstruction Distillation along Rectified Flow

Visual tokenizers play a crucial role in diffusion models. The dimensionality of latent space governs both reconstruction fidelity and the semantic expressiveness of the latent feature. However, a fundamental trade-off is inherent between dimensionality and generation quality, constraining existing methods to low-dimensional latent spaces. Although recent works have leveraged vision foundation models to enrich the semantics of visual tokenizers and accelerate convergence, high-dimensional tokenizers still underperform their low-dimensional counterparts. In this work, we propose RecTok, which overcomes the limitations of high-dimensional visual tokenizers through two key innovations: flow semantic distillation and reconstruction--alignment distillation. Our key insight is to make the forward flow in flow matching semantically rich, which serves as the training space of diffusion transformers, rather than focusing on the latent space as in previous works. Specifically, our method distills the semantic information in VFMs into the forward flow trajectories in flow matching. And we further enhance the semantics by introducing a masked feature reconstruction loss. Our RecTok achieves superior image reconstruction, generation quality, and discriminative performance. It achieves state-of-the-art results on the gFID-50K under both with and without classifier-free guidance settings, while maintaining a semantically rich latent space structure. Furthermore, as the latent dimensionality increases, we observe consistent improvements. Code and model are available at https://shi-qingyu.github.io/rectok.github.io.

  • 8 authors
·
Dec 15, 2025 2

Understanding Adversarial Transfer: Why Representation-Space Attacks Fail Where Data-Space Attacks Succeed

The field of adversarial robustness has long established that adversarial examples can successfully transfer between image classifiers and that text jailbreaks can successfully transfer between language models (LMs). However, a pair of recent studies reported being unable to successfully transfer image jailbreaks between vision-language models (VLMs). To explain this striking difference, we propose a fundamental distinction regarding the transferability of attacks against machine learning models: attacks in the input data-space can transfer, whereas attacks in model representation space do not, at least not without geometric alignment of representations. We then provide theoretical and empirical evidence of this hypothesis in four different settings. First, we mathematically prove this distinction in a simple setting where two networks compute the same input-output map but via different representations. Second, we construct representation-space attacks against image classifiers that are as successful as well-known data-space attacks, but fail to transfer. Third, we construct representation-space attacks against LMs that successfully jailbreak the attacked models but again fail to transfer. Fourth, we construct data-space attacks against VLMs that successfully transfer to new VLMs, and we show that representation space attacks can transfer when VLMs' latent geometries are sufficiently aligned in post-projector space. Our work reveals that adversarial transfer is not an inherent property of all attacks but contingent on their operational domain - the shared data-space versus models' unique representation spaces - a critical insight for building more robust models.

  • 5 authors
·
Oct 1, 2025

ReSpace: Text-Driven 3D Scene Synthesis and Editing with Preference Alignment

Scene synthesis and editing has emerged as a promising direction in computer graphics. Current trained approaches for 3D indoor scenes either oversimplify object semantics through one-hot class encodings (e.g., 'chair' or 'table'), require masked diffusion for editing, ignore room boundaries, or rely on floor plan renderings that fail to capture complex layouts. In contrast, LLM-based methods enable richer semantics via natural language (e.g., 'modern studio with light wood furniture') but do not support editing, remain limited to rectangular layouts or rely on weak spatial reasoning from implicit world models. We introduce ReSpace, a generative framework for text-driven 3D indoor scene synthesis and editing using autoregressive language models. Our approach features a compact structured scene representation with explicit room boundaries that frames scene editing as a next-token prediction task. We leverage a dual-stage training approach combining supervised fine-tuning and preference alignment, enabling a specially trained language model for object addition that accounts for user instructions, spatial geometry, object semantics, and scene-level composition. For scene editing, we employ a zero-shot LLM to handle object removal and prompts for addition. We further introduce a novel voxelization-based evaluation that captures fine-grained geometry beyond 3D bounding boxes. Experimental results surpass state-of-the-art on object addition while maintaining competitive results on full scene synthesis.

Latent Inversion with Timestep-aware Sampling for Training-free Non-rigid Editing

Text-guided non-rigid editing involves complex edits for input images, such as changing motion or compositions within their surroundings. Since it requires manipulating the input structure, existing methods often struggle with preserving object identity and background, particularly when combined with Stable Diffusion. In this work, we propose a training-free approach for non-rigid editing with Stable Diffusion, aimed at improving the identity preservation quality without compromising editability. Our approach comprises three stages: text optimization, latent inversion, and timestep-aware text injection sampling. Inspired by the recent success of Imagic, we employ their text optimization for smooth editing. Then, we introduce latent inversion to preserve the input image's identity without additional model fine-tuning. To fully utilize the input reconstruction ability of latent inversion, we suggest timestep-aware text inject sampling. This effectively retains the structure of the input image by injecting the source text prompt in early sampling steps and then transitioning to the target prompt in subsequent sampling steps. This strategic approach seamlessly harmonizes with text optimization, facilitating complex non-rigid edits to the input without losing the original identity. We demonstrate the effectiveness of our method in terms of identity preservation, editability, and aesthetic quality through extensive experiments.

  • 5 authors
·
Feb 13, 2024

SAIR: Learning Semantic-aware Implicit Representation

Implicit representation of an image can map arbitrary coordinates in the continuous domain to their corresponding color values, presenting a powerful capability for image reconstruction. Nevertheless, existing implicit representation approaches only focus on building continuous appearance mapping, ignoring the continuities of the semantic information across pixels. As a result, they can hardly achieve desired reconstruction results when the semantic information within input images is corrupted, for example, a large region misses. To address the issue, we propose to learn semantic-aware implicit representation (SAIR), that is, we make the implicit representation of each pixel rely on both its appearance and semantic information (\eg, which object does the pixel belong to). To this end, we propose a framework with two modules: (1) building a semantic implicit representation (SIR) for a corrupted image whose large regions miss. Given an arbitrary coordinate in the continuous domain, we can obtain its respective text-aligned embedding indicating the object the pixel belongs. (2) building an appearance implicit representation (AIR) based on the SIR. Given an arbitrary coordinate in the continuous domain, we can reconstruct its color whether or not the pixel is missed in the input. We validate the novel semantic-aware implicit representation method on the image inpainting task, and the extensive experiments demonstrate that our method surpasses state-of-the-art approaches by a significant margin.

  • 4 authors
·
Oct 13, 2023