- Subspace Chronicles: How Linguistic Information Emerges, Shifts and Interacts during Language Model Training Representational spaces learned via language modeling are fundamental to Natural Language Processing (NLP), however there has been limited understanding regarding how and when during training various types of linguistic information emerge and interact. Leveraging a novel information theoretic probing suite, which enables direct comparisons of not just task performance, but their representational subspaces, we analyze nine tasks covering syntax, semantics and reasoning, across 2M pre-training steps and five seeds. We identify critical learning phases across tasks and time, during which subspaces emerge, share information, and later disentangle to specialize. Across these phases, syntactic knowledge is acquired rapidly after 0.5% of full training. Continued performance improvements primarily stem from the acquisition of open-domain knowledge, while semantics and reasoning tasks benefit from later boosts to long-range contextualization and higher specialization. Measuring cross-task similarity further reveals that linguistically related tasks share information throughout training, and do so more during the critical phase of learning than before or after. Our findings have implications for model interpretability, multi-task learning, and learning from limited data. 4 authors · Oct 25, 2023
- Not All Models Localize Linguistic Knowledge in the Same Place: A Layer-wise Probing on BERToids' Representations Most of the recent works on probing representations have focused on BERT, with the presumption that the findings might be similar to the other models. In this work, we extend the probing studies to two other models in the family, namely ELECTRA and XLNet, showing that variations in the pre-training objectives or architectural choices can result in different behaviors in encoding linguistic information in the representations. Most notably, we observe that ELECTRA tends to encode linguistic knowledge in the deeper layers, whereas XLNet instead concentrates that in the earlier layers. Also, the former model undergoes a slight change during fine-tuning, whereas the latter experiences significant adjustments. Moreover, we show that drawing conclusions based on the weight mixing evaluation strategy -- which is widely used in the context of layer-wise probing -- can be misleading given the norm disparity of the representations across different layers. Instead, we adopt an alternative information-theoretic probing with minimum description length, which has recently been proven to provide more reliable and informative results. 5 authors · Sep 13, 2021
- When Alignment Hurts: Decoupling Representational Spaces in Multilingual Models Alignment with high-resource standard languages is often assumed to aid the modeling of related low-resource varieties. We challenge this assumption by demonstrating that excessive representational entanglement with a dominant variety, such as Modern Standard Arabic (MSA) in relation to Arabic dialects, can actively hinder generative modeling. We present the first comprehensive causal study of this phenomenon by analyzing and directly intervening in the internal representation geometry of large language models (LLMs). Our key contribution is an online variational probing framework that continuously estimates the subspace of the standard variety during fine-tuning, enabling projection-based decoupling from this space. While our study uses Arabic as a case due to its unusually rich parallel resources across 25 dialects, the broader motivation is methodological: dialectal MT serves as a controlled proxy for generative tasks where comparable multi-variety corpora are unavailable. Across 25 dialects, our intervention improves generation quality by up to +4.9 chrF++ and +2.0 on average compared to standard fine-tuning, despite a measured tradeoff in standard-language performance. These results provide causal evidence that subspace dominance by high-resource varieties can restrict generative capacity for related varieties. More generally, we unify geometric and information-theoretic probing with subspace-level causal interventions, offering practical tools for improving generative modeling in closely related language families and, more broadly, for controlling representational allocation in multilingual and multi-domain LLMs. Code will be released. 7 authors · Aug 18, 2025
- EigenNoise: A Contrastive Prior to Warm-Start Representations In this work, we present a naive initialization scheme for word vectors based on a dense, independent co-occurrence model and provide preliminary results that suggest it is competitive and warrants further investigation. Specifically, we demonstrate through information-theoretic minimum description length (MDL) probing that our model, EigenNoise, can approach the performance of empirically trained GloVe despite the lack of any pre-training data (in the case of EigenNoise). We present these preliminary results with interest to set the stage for further investigations into how this competitive initialization works without pre-training data, as well as to invite the exploration of more intelligent initialization schemes informed by the theory of harmonic linguistic structure. Our application of this theory likewise contributes a novel (and effective) interpretation of recent discoveries which have elucidated the underlying distributional information that linguistic representations capture from data and contrast distributions. 2 authors · May 9, 2022