new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Concepts in Motion: Temporal Bottlenecks for Interpretable Video Classification

Conceptual models such as Concept Bottleneck Models (CBMs) have driven substantial progress in improving interpretability for image classification by leveraging human-interpretable concepts. However, extending these models from static images to sequences of images, such as video data, introduces a significant challenge due to the temporal dependencies inherent in videos, which are essential for capturing actions and events. In this work, we introduce MoTIF (Moving Temporal Interpretable Framework), an architectural design inspired by a transformer that adapts the concept bottleneck framework for video classification and handles sequences of arbitrary length. Within the video domain, concepts refer to semantic entities such as objects, attributes, or higher-level components (e.g., 'bow', 'mount', 'shoot') that reoccur across time - forming motifs collectively describing and explaining actions. Our design explicitly enables three complementary perspectives: global concept importance across the entire video, local concept relevance within specific windows, and temporal dependencies of a concept over time. Our results demonstrate that the concept-based modeling paradigm can be effectively transferred to video data, enabling a better understanding of concept contributions in temporal contexts while maintaining competitive performance. Code available at github.com/patrick-knab/MoTIF.

  • 5 authors
·
Sep 25, 2025

Decomposing MLP Activations into Interpretable Features via Semi-Nonnegative Matrix Factorization

A central goal for mechanistic interpretability has been to identify the right units of analysis in large language models (LLMs) that causally explain their outputs. While early work focused on individual neurons, evidence that neurons often encode multiple concepts has motivated a shift toward analyzing directions in activation space. A key question is how to find directions that capture interpretable features in an unsupervised manner. Current methods rely on dictionary learning with sparse autoencoders (SAEs), commonly trained over residual stream activations to learn directions from scratch. However, SAEs often struggle in causal evaluations and lack intrinsic interpretability, as their learning is not explicitly tied to the computations of the model. Here, we tackle these limitations by directly decomposing MLP activations with semi-nonnegative matrix factorization (SNMF), such that the learned features are (a) sparse linear combinations of co-activated neurons, and (b) mapped to their activating inputs, making them directly interpretable. Experiments on Llama 3.1, Gemma 2 and GPT-2 show that SNMF derived features outperform SAEs and a strong supervised baseline (difference-in-means) on causal steering, while aligning with human-interpretable concepts. Further analysis reveals that specific neuron combinations are reused across semantically-related features, exposing a hierarchical structure in the MLP's activation space. Together, these results position SNMF as a simple and effective tool for identifying interpretable features and dissecting concept representations in LLMs.

  • 3 authors
·
Jun 12, 2025 2

X-Ray-CoT: Interpretable Chest X-ray Diagnosis with Vision-Language Models via Chain-of-Thought Reasoning

Chest X-ray imaging is crucial for diagnosing pulmonary and cardiac diseases, yet its interpretation demands extensive clinical experience and suffers from inter-observer variability. While deep learning models offer high diagnostic accuracy, their black-box nature hinders clinical adoption in high-stakes medical settings. To address this, we propose X-Ray-CoT (Chest X-Ray Chain-of-Thought), a novel framework leveraging Vision-Language Large Models (LVLMs) for intelligent chest X-ray diagnosis and interpretable report generation. X-Ray-CoT simulates human radiologists' "chain-of-thought" by first extracting multi-modal features and visual concepts, then employing an LLM-based component with a structured Chain-of-Thought prompting strategy to reason and produce detailed natural language diagnostic reports. Evaluated on the CORDA dataset, X-Ray-CoT achieves competitive quantitative performance, with a Balanced Accuracy of 80.52% and F1 score of 78.65% for disease diagnosis, slightly surpassing existing black-box models. Crucially, it uniquely generates high-quality, explainable reports, as validated by preliminary human evaluations. Our ablation studies confirm the integral role of each proposed component, highlighting the necessity of multi-modal fusion and CoT reasoning for robust and transparent medical AI. This work represents a significant step towards trustworthy and clinically actionable AI systems in medical imaging.

  • 3 authors
·
Aug 17, 2025

Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification

Concept Bottleneck Models (CBM) are inherently interpretable models that factor model decisions into human-readable concepts. They allow people to easily understand why a model is failing, a critical feature for high-stakes applications. CBMs require manually specified concepts and often under-perform their black box counterparts, preventing their broad adoption. We address these shortcomings and are first to show how to construct high-performance CBMs without manual specification of similar accuracy to black box models. Our approach, Language Guided Bottlenecks (LaBo), leverages a language model, GPT-3, to define a large space of possible bottlenecks. Given a problem domain, LaBo uses GPT-3 to produce factual sentences about categories to form candidate concepts. LaBo efficiently searches possible bottlenecks through a novel submodular utility that promotes the selection of discriminative and diverse information. Ultimately, GPT-3's sentential concepts can be aligned to images using CLIP, to form a bottleneck layer. Experiments demonstrate that LaBo is a highly effective prior for concepts important to visual recognition. In the evaluation with 11 diverse datasets, LaBo bottlenecks excel at few-shot classification: they are 11.7% more accurate than black box linear probes at 1 shot and comparable with more data. Overall, LaBo demonstrates that inherently interpretable models can be widely applied at similar, or better, performance than black box approaches.

  • 6 authors
·
Nov 20, 2022

From Video to EEG: Adapting Joint Embedding Predictive Architecture to Uncover Visual Concepts in Brain Signal Analysis

EEG signals capture brain activity with high temporal and low spatial resolution, supporting applications such as neurological diagnosis, cognitive monitoring, and brain-computer interfaces. However, effective analysis is hindered by limited labeled data, high dimensionality, and the absence of scalable models that fully capture spatiotemporal dependencies. Existing self-supervised learning (SSL) methods often focus on either spatial or temporal features, leading to suboptimal representations. To this end, we propose EEG-VJEPA, a novel adaptation of the Video Joint Embedding Predictive Architecture (V-JEPA) for EEG classification. By treating EEG as video-like sequences, EEG-VJEPA learns semantically meaningful spatiotemporal representations using joint embeddings and adaptive masking. To our knowledge, this is the first work that exploits V-JEPA for EEG classification and explores the visual concepts learned by the model. Evaluations on the publicly available Temple University Hospital (TUH) Abnormal EEG dataset show that EEG-VJEPA outperforms existing state-of-the-art models in classification accuracy. Beyond classification accuracy, EEG-VJEPA captures physiologically relevant spatial and temporal signal patterns, offering interpretable embeddings that may support human-AI collaboration in diagnostic workflows. These findings position EEG-VJEPA as a promising framework for scalable, trustworthy EEG analysis in real-world clinical settings.

  • 6 authors
·
Jul 4, 2025

Can we Constrain Concept Bottleneck Models to Learn Semantically Meaningful Input Features?

Concept Bottleneck Models (CBMs) are regarded as inherently interpretable because they first predict a set of human-defined concepts which are used to predict a task label. For inherent interpretability to be fully realised, and ensure trust in a model's output, it's desirable for concept predictions to use semantically meaningful input features. For instance, in an image, pixels representing a broken bone should contribute to predicting a fracture. However, current literature suggests that concept predictions often rely on irrelevant input features. We hypothesise that this occurs when dataset labels include inaccurate concept annotations, or the relationship between input features and concepts is unclear. In general, the effect of dataset labelling on concept representations remains an understudied area. In this paper, we demonstrate that CBMs can learn to map concepts to semantically meaningful input features, by utilising datasets with a clear link between the input features and the desired concept predictions. This is achieved, for instance, by ensuring multiple concepts do not always co-occur and, therefore provide a clear training signal for the CBM to distinguish the relevant input features for each concept. We validate our hypothesis on both synthetic and real-world image datasets, and demonstrate under the correct conditions, CBMs can learn to attribute semantically meaningful input features to the correct concept predictions.

  • 4 authors
·
Feb 1, 2024

ActivationReasoning: Logical Reasoning in Latent Activation Spaces

Large language models (LLMs) excel at generating fluent text, but their internal reasoning remains opaque and difficult to control. Sparse autoencoders (SAEs) make hidden activations more interpretable by exposing latent features that often align with human concepts. Yet, these features are fragile and passive, offering no mechanism for systematic reasoning or model control. To address this, we introduce ActivationReasoning (AR), a framework that embeds explicit logical reasoning into the latent space of LLMs. It proceeds in three stages: (1) Finding latent representations, first latent concept representations are identified (e.g., via SAEs) and organized into a dictionary; (2) Activating propositions, at inference time AR detects activating concepts and maps them to logical propositions; and (3)Logical reasoning, applying logical rules over these propositions to infer higher-order structures, compose new concepts, and steer model behavior. We evaluate AR on multi-hop reasoning (PrOntoQA), abstraction and robustness to indirect concept cues (Rail2Country), reasoning over natural and diverse language (ProverQA), and context-sensitive safety (BeaverTails). Across all tasks, AR scales robustly with reasoning complexity, generalizes to abstract and context-sensitive tasks, and transfers across model backbones. These results demonstrate that grounding logical structure in latent activations not only improves transparency but also enables structured reasoning, reliable control, and alignment with desired behaviors, providing a path toward more reliable and auditable AI.

  • 9 authors
·
Oct 20, 2025

GCAV: A Global Concept Activation Vector Framework for Cross-Layer Consistency in Interpretability

Concept Activation Vectors (CAVs) provide a powerful approach for interpreting deep neural networks by quantifying their sensitivity to human-defined concepts. However, when computed independently at different layers, CAVs often exhibit inconsistencies, making cross-layer comparisons unreliable. To address this issue, we propose the Global Concept Activation Vector (GCAV), a novel framework that unifies CAVs into a single, semantically consistent representation. Our method leverages contrastive learning to align concept representations across layers and employs an attention-based fusion mechanism to construct a globally integrated CAV. By doing so, our method significantly reduces the variance in TCAV scores while preserving concept relevance, ensuring more stable and reliable concept attributions. To evaluate the effectiveness of GCAV, we introduce Testing with Global Concept Activation Vectors (TGCAV) as a method to apply TCAV to GCAV-based representations. We conduct extensive experiments on multiple deep neural networks, demonstrating that our method effectively mitigates concept inconsistency across layers, enhances concept localization, and improves robustness against adversarial perturbations. By integrating cross-layer information into a coherent framework, our method offers a more comprehensive and interpretable understanding of how deep learning models encode human-defined concepts. Code and models are available at https://github.com/Zhenghao-He/GCAV.

  • 4 authors
·
Aug 28, 2025 1

IConMark: Robust Interpretable Concept-Based Watermark For AI Images

With the rapid rise of generative AI and synthetic media, distinguishing AI-generated images from real ones has become crucial in safeguarding against misinformation and ensuring digital authenticity. Traditional watermarking techniques have shown vulnerabilities to adversarial attacks, undermining their effectiveness in the presence of attackers. We propose IConMark, a novel in-generation robust semantic watermarking method that embeds interpretable concepts into AI-generated images, as a first step toward interpretable watermarking. Unlike traditional methods, which rely on adding noise or perturbations to AI-generated images, IConMark incorporates meaningful semantic attributes, making it interpretable to humans and hence, resilient to adversarial manipulation. This method is not only robust against various image augmentations but also human-readable, enabling manual verification of watermarks. We demonstrate a detailed evaluation of IConMark's effectiveness, demonstrating its superiority in terms of detection accuracy and maintaining image quality. Moreover, IConMark can be combined with existing watermarking techniques to further enhance and complement its robustness. We introduce IConMark+SS and IConMark+TM, hybrid approaches combining IConMark with StegaStamp and TrustMark, respectively, to further bolster robustness against multiple types of image manipulations. Our base watermarking technique (IConMark) and its variants (+TM and +SS) achieve 10.8%, 14.5%, and 15.9% higher mean area under the receiver operating characteristic curve (AUROC) scores for watermark detection, respectively, compared to the best baseline on various datasets.

  • 3 authors
·
Jul 17, 2025

The Dual Power of Interpretable Token Embeddings: Jailbreaking Attacks and Defenses for Diffusion Model Unlearning

Despite the remarkable generation capabilities of diffusion models, recent studies have shown that they can memorize and create harmful content when given specific text prompts. Although fine-tuning approaches have been developed to mitigate this issue by unlearning harmful concepts, these methods can be easily circumvented through jailbreaking attacks. This implies that the harmful concept has not been fully erased from the model. However, existing jailbreaking attack methods, while effective, lack interpretability regarding why unlearned models still retain the concept, thereby hindering the development of defense strategies. In this work, we address these limitations by proposing an attack method that learns an orthogonal set of interpretable attack token embeddings. The attack token embeddings can be decomposed into human-interpretable textual elements, revealing that unlearned models still retain the target concept through implicit textual components. Furthermore, these attack token embeddings are powerful and transferable across text prompts, initial noises, and unlearned models, emphasizing that unlearned models are more vulnerable than expected. Finally, building on the insights from our interpretable attack, we develop a defense method to protect unlearned models against both our proposed and existing jailbreaking attacks. Extensive experimental results demonstrate the effectiveness of our attack and defense strategies.

  • 4 authors
·
Apr 30, 2025

Human-like object concept representations emerge naturally in multimodal large language models

Understanding how humans conceptualize and categorize natural objects offers critical insights into perception and cognition. With the advent of Large Language Models (LLMs), a key question arises: can these models develop human-like object representations from linguistic and multimodal data? In this study, we combined behavioral and neuroimaging analyses to explore the relationship between object concept representations in LLMs and human cognition. We collected 4.7 million triplet judgments from LLMs and Multimodal LLMs (MLLMs) to derive low-dimensional embeddings that capture the similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were stable, predictive, and exhibited semantic clustering similar to human mental representations. Remarkably, the dimensions underlying these embeddings were interpretable, suggesting that LLMs and MLLMs develop human-like conceptual representations of objects. Further analysis showed strong alignment between model embeddings and neural activity patterns in brain regions such as EBA, PPA, RSC, and FFA. This provides compelling evidence that the object representations in LLMs, while not identical to human ones, share fundamental similarities that reflect key aspects of human conceptual knowledge. Our findings advance the understanding of machine intelligence and inform the development of more human-like artificial cognitive systems.

  • 13 authors
·
Jul 1, 2024

WavJourney: Compositional Audio Creation with Large Language Models

Large Language Models (LLMs) have shown great promise in integrating diverse expert models to tackle intricate language and vision tasks. Despite their significance in advancing the field of Artificial Intelligence Generated Content (AIGC), their potential in intelligent audio content creation remains unexplored. In this work, we tackle the problem of creating audio content with storylines encompassing speech, music, and sound effects, guided by text instructions. We present WavJourney, a system that leverages LLMs to connect various audio models for audio content generation. Given a text description of an auditory scene, WavJourney first prompts LLMs to generate a structured script dedicated to audio storytelling. The audio script incorporates diverse audio elements, organized based on their spatio-temporal relationships. As a conceptual representation of audio, the audio script provides an interactive and interpretable rationale for human engagement. Afterward, the audio script is fed into a script compiler, converting it into a computer program. Each line of the program calls a task-specific audio generation model or computational operation function (e.g., concatenate, mix). The computer program is then executed to obtain an explainable solution for audio generation. We demonstrate the practicality of WavJourney across diverse real-world scenarios, including science fiction, education, and radio play. The explainable and interactive design of WavJourney fosters human-machine co-creation in multi-round dialogues, enhancing creative control and adaptability in audio production. WavJourney audiolizes the human imagination, opening up new avenues for creativity in multimedia content creation.

  • 11 authors
·
Jul 26, 2023 1