new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

Federated Reconnaissance: Efficient, Distributed, Class-Incremental Learning

We describe federated reconnaissance, a class of learning problems in which distributed clients learn new concepts independently and communicate that knowledge efficiently. In particular, we propose an evaluation framework and methodological baseline for a system in which each client is expected to learn a growing set of classes and communicate knowledge of those classes efficiently with other clients, such that, after knowledge merging, the clients should be able to accurately discriminate between classes in the superset of classes observed by the set of clients. We compare a range of learning algorithms for this problem and find that prototypical networks are a strong approach in that they are robust to catastrophic forgetting while incorporating new information efficiently. Furthermore, we show that the online averaging of prototype vectors is effective for client model merging and requires only a small amount of communication overhead, memory, and update time per class with no gradient-based learning or hyperparameter tuning. Additionally, to put our results in context, we find that a simple, prototypical network with four convolutional layers significantly outperforms complex, state of the art continual learning algorithms, increasing the accuracy by over 22% after learning 600 Omniglot classes and over 33% after learning 20 mini-ImageNet classes incrementally. These results have important implications for federated reconnaissance and continual learning more generally by demonstrating that communicating feature vectors is an efficient, robust, and effective means for distributed, continual learning.

  • 4 authors
·
Aug 31, 2021

Federated Loss Exploration for Improved Convergence on Non-IID Data

Federated learning (FL) has emerged as a groundbreaking paradigm in machine learning (ML), offering privacy-preserving collaborative model training across diverse datasets. Despite its promise, FL faces significant hurdles in non-identically and independently distributed (non-IID) data scenarios, where most existing methods often struggle with data heterogeneity and lack robustness in performance. This paper introduces Federated Loss Exploration (FedLEx), an innovative approach specifically designed to tackle these challenges. FedLEx distinctively addresses the shortcomings of existing FL methods in non-IID settings by optimizing its learning behavior for scenarios in which assumptions about data heterogeneity are impractical or unknown. It employs a federated loss exploration technique, where clients contribute to a global guidance matrix by calculating gradient deviations for model parameters. This matrix serves as a strategic compass to guide clients' gradient updates in subsequent FL rounds, thereby fostering optimal parameter updates for the global model. FedLEx effectively navigates the complex loss surfaces inherent in non-IID data, enhancing knowledge transfer in an efficient manner, since only a small number of epochs and small amount of data are required to build a strong global guidance matrix that can achieve model convergence without the need for additional data sharing or data distribution statics in a large client scenario. Our extensive experiments with state-of-the art FL algorithms demonstrate significant improvements in performance, particularly under realistic non-IID conditions, thus highlighting FedLEx's potential to overcome critical barriers in diverse FL applications.

  • 4 authors
·
Jun 23

Incremental Semi-supervised Federated Learning for Health Inference via Mobile Sensing

Mobile sensing appears as a promising solution for health inference problem (e.g., influenza-like symptom recognition) by leveraging diverse smart sensors to capture fine-grained information about human behaviors and ambient contexts. Centralized training of machine learning models can place mobile users' sensitive information under privacy risks due to data breach and misexploitation. Federated Learning (FL) enables mobile devices to collaboratively learn global models without the exposure of local private data. However, there are challenges of on-device FL deployment using mobile sensing: 1) long-term and continuously collected mobile sensing data may exhibit domain shifts as sensing objects (e.g. humans) have varying behaviors as a result of internal and/or external stimulus; 2) model retraining using all available data may increase computation and memory burden; and 3) the sparsity of annotated crowd-sourced data causes supervised FL to lack robustness. In this work, we propose FedMobile, an incremental semi-supervised federated learning algorithm, to train models semi-supervisedly and incrementally in a decentralized online fashion. We evaluate FedMobile using a real-world mobile sensing dataset for influenza-like symptom recognition. Our empirical results show that FedMobile-trained models achieve the best results in comparison to the selected baseline methods.

  • 5 authors
·
Dec 19, 2023

A Web-Based Solution for Federated Learning with LLM-Based Automation

Federated Learning (FL) offers a promising approach for collaborative machine learning across distributed devices. However, its adoption is hindered by the complexity of building reliable communication architectures and the need for expertise in both machine learning and network programming. This paper presents a comprehensive solution that simplifies the orchestration of FL tasks while integrating intent-based automation. We develop a user-friendly web application supporting the federated averaging (FedAvg) algorithm, enabling users to configure parameters through an intuitive interface. The backend solution efficiently manages communication between the parameter server and edge nodes. We also implement model compression and scheduling algorithms to optimize FL performance. Furthermore, we explore intent-based automation in FL using a fine-tuned Language Model (LLM) trained on a tailored dataset, allowing users to conduct FL tasks using high-level prompts. We observe that the LLM-based automated solution achieves comparable test accuracy to the standard web-based solution while reducing transferred bytes by up to 64% and CPU time by up to 46% for FL tasks. Also, we leverage the neural architecture search (NAS) and hyperparameter optimization (HPO) using LLM to improve the performance. We observe that by using this approach test accuracy can be improved by 10-20% for the carried out FL tasks.

  • 3 authors
·
Aug 23, 2024 1

AI-in-the-Loop: Privacy Preserving Real-Time Scam Detection and Conversational Scambaiting by Leveraging LLMs and Federated Learning

Scams exploiting real-time social engineering -- such as phishing, impersonation, and phone fraud -- remain a persistent and evolving threat across digital platforms. Existing defenses are largely reactive, offering limited protection during active interactions. We propose a privacy-preserving, AI-in-the-loop framework that proactively detects and disrupts scam conversations in real time. The system combines instruction-tuned artificial intelligence with a safety-aware utility function that balances engagement with harm minimization, and employs federated learning to enable continual model updates without raw data sharing. Experimental evaluations show that the system produces fluent and engaging responses (perplexity as low as 22.3, engagement approx0.80), while human studies confirm significant gains in realism, safety, and effectiveness over strong baselines. In federated settings, models trained with FedAvg sustain up to 30 rounds while preserving high engagement (approx0.80), strong relevance (approx0.74), and low PII leakage (leq0.0085). Even with differential privacy, novelty and safety remain stable, indicating that robust privacy can be achieved without sacrificing performance. The evaluation of guard models (LlamaGuard, LlamaGuard2/3, MD-Judge) shows a straightforward pattern: stricter moderation settings reduce the chance of exposing personal information, but they also limit how much the model engages in conversation. In contrast, more relaxed settings allow longer and richer interactions, which improve scam detection, but at the cost of higher privacy risk. To our knowledge, this is the first framework to unify real-time scam-baiting, federated privacy preservation, and calibrated safety moderation into a proactive defense paradigm.

  • 4 authors
·
Sep 3

Federated Hybrid Model Pruning through Loss Landscape Exploration

As the era of connectivity and unprecedented data generation expands, collaborative intelligence emerges as a key driver for machine learning, encouraging global-scale model development. Federated learning (FL) stands at the heart of this transformation, enabling distributed systems to work collectively on complex tasks while respecting strict constraints on privacy and security. Despite its vast potential, specially in the age of complex models, FL encounters challenges such as elevated communication costs, computational constraints, and the heterogeneous data distributions. In this context, we present AutoFLIP, a novel framework that optimizes FL through an adaptive hybrid pruning approach, grounded in a federated loss exploration phase. By jointly analyzing diverse non-IID client loss landscapes, AutoFLIP efficiently identifies model substructures for pruning both at structured and unstructured levels. This targeted optimization fosters a symbiotic intelligence loop, reducing computational burdens and boosting model performance on resource-limited devices for a more inclusive and democratized model usage. Our extensive experiments across multiple datasets and FL tasks show that AutoFLIP delivers quantifiable benefits: a 48.8% reduction in computational overhead, a 35.5% decrease in communication costs, and a notable improvement in global accuracy. By significantly reducing these overheads, AutoFLIP offer the way for efficient FL deployment in real-world applications for a scalable and broad applicability.

  • 7 authors
·
May 16, 2024

FRL: Federated Rank Learning

Federated learning (FL) allows mutually untrusted clients to collaboratively train a common machine learning model without sharing their private/proprietary training data among each other. FL is unfortunately susceptible to poisoning by malicious clients who aim to hamper the accuracy of the commonly trained model through sending malicious model updates during FL's training process. We argue that the key factor to the success of poisoning attacks against existing FL systems is the large space of model updates available to the clients, allowing malicious clients to search for the most poisonous model updates, e.g., by solving an optimization problem. To address this, we propose Federated Rank Learning (FRL). FRL reduces the space of client updates from model parameter updates (a continuous space of float numbers) in standard FL to the space of parameter rankings (a discrete space of integer values). To be able to train the global model using parameter ranks (instead of parameter weights), FRL leverage ideas from recent supermasks training mechanisms. Specifically, FRL clients rank the parameters of a randomly initialized neural network (provided by the server) based on their local training data. The FRL server uses a voting mechanism to aggregate the parameter rankings submitted by clients in each training epoch to generate the global ranking of the next training epoch. Intuitively, our voting-based aggregation mechanism prevents poisoning clients from making significant adversarial modifications to the global model, as each client will have a single vote! We demonstrate the robustness of FRL to poisoning through analytical proofs and experimentation. We also show FRL's high communication efficiency. Our experiments demonstrate the superiority of FRL in real-world FL settings.

  • 3 authors
·
Oct 8, 2021

Exploring Parameter-Efficient Fine-Tuning to Enable Foundation Models in Federated Learning

Federated learning (FL) has emerged as a promising paradigm for enabling the collaborative training of models without centralized access to the raw data on local devices. In the typical FL paradigm (e.g., FedAvg), model weights are sent to and from the server each round to participating clients. Recently, the use of small pre-trained models has been shown to be effective in federated learning optimization and improving convergence. However, recent state-of-the-art pre-trained models are getting more capable but also have more parameters, known as the "Foundation Models." In conventional FL, sharing the enormous model weights can quickly put a massive communication burden on the system, especially if more capable models are employed. Can we find a solution to enable those strong and readily available pre-trained models in FL to achieve excellent performance while simultaneously reducing the communication burden? To this end, we investigate the use of parameter-efficient fine-tuning in federated learning and thus introduce a new framework: FedPEFT. Specifically, we systemically evaluate the performance of FedPEFT across a variety of client stability, data distribution, and differential privacy settings. By only locally tuning and globally sharing a small portion of the model weights, significant reductions in the total communication overhead can be achieved while maintaining competitive or even better performance in a wide range of federated learning scenarios, providing insight into a new paradigm for practical and effective federated systems.

  • 5 authors
·
Oct 4, 2022

Navigating Data Heterogeneity in Federated Learning: A Semi-Supervised Approach for Object Detection

Federated Learning (FL) has emerged as a potent framework for training models across distributed data sources while maintaining data privacy. Nevertheless, it faces challenges with limited high-quality labels and non-IID client data, particularly in applications like autonomous driving. To address these hurdles, we navigate the uncharted waters of Semi-Supervised Federated Object Detection (SSFOD). We present a pioneering SSFOD framework, designed for scenarios where labeled data reside only at the server while clients possess unlabeled data. Notably, our method represents the inaugural implementation of SSFOD for clients with 0% labeled non-IID data, a stark contrast to previous studies that maintain some subset of labels at each client. We propose FedSTO, a two-stage strategy encompassing Selective Training followed by Orthogonally enhanced full-parameter training, to effectively address data shift (e.g. weather conditions) between server and clients. Our contributions include selectively refining the backbone of the detector to avert overfitting, orthogonality regularization to boost representation divergence, and local EMA-driven pseudo label assignment to yield high-quality pseudo labels. Extensive validation on prominent autonomous driving datasets (BDD100K, Cityscapes, and SODA10M) attests to the efficacy of our approach, demonstrating state-of-the-art results. Remarkably, FedSTO, using just 20-30% of labels, performs nearly as well as fully-supervised centralized training methods.

  • 5 authors
·
Oct 25, 2023

Infighting in the Dark: Multi-Label Backdoor Attack in Federated Learning

Federated Learning (FL), a privacy-preserving decentralized machine learning framework, has been shown to be vulnerable to backdoor attacks. Current research primarily focuses on the Single-Label Backdoor Attack (SBA), wherein adversaries share a consistent target. However, a critical fact is overlooked: adversaries may be non-cooperative, have distinct targets, and operate independently, which exhibits a more practical scenario called Multi-Label Backdoor Attack (MBA). Unfortunately, prior works are ineffective in the MBA scenario since non-cooperative attackers exclude each other. In this work, we conduct an in-depth investigation to uncover the inherent constraints of the exclusion: similar backdoor mappings are constructed for different targets, resulting in conflicts among backdoor functions. To address this limitation, we propose Mirage, the first non-cooperative MBA strategy in FL that allows attackers to inject effective and persistent backdoors into the global model without collusion by constructing in-distribution (ID) backdoor mapping. Specifically, we introduce an adversarial adaptation method to bridge the backdoor features and the target distribution in an ID manner. Additionally, we further leverage a constrained optimization method to ensure the ID mapping survives in the global training dynamics. Extensive evaluations demonstrate that Mirage outperforms various state-of-the-art attacks and bypasses existing defenses, achieving an average ASR greater than 97\% and maintaining over 90\% after 900 rounds. This work aims to alert researchers to this potential threat and inspire the design of effective defense mechanisms. Code has been made open-source.

  • 4 authors
·
Sep 29, 2024

CELLM: An Efficient Communication in Large Language Models Training for Federated Learning

Federated Learning (FL) is a recent model training paradigm in which client devices collaboratively train a model without ever aggregating their data. Crucially, this scheme offers users potential privacy and security benefits by only ever communicating updates to the model weights to a central server as opposed to traditional machine learning (ML) training which directly communicates and aggregates data. However, FL training suffers from statistical heterogeneity as clients may have differing local data distributions. Large language models (LLMs) offer a potential solution to this issue of heterogeneity given that they have consistently been shown to be able to learn on vast amounts of noisy data. While LLMs are a promising development for resolving the consistent issue of non-I.I.D. Clients in federated settings exacerbate two other bottlenecks in FL: limited local computing and expensive communication. This thesis aims to develop efficient training methods for LLMs in FL. To this end, we employ two critical techniques in enabling efficient training. First, we use low-rank adaptation (LoRA) to reduce the computational load of local model training. Second, we communicate sparse updates throughout training to significantly cut down on communication costs. Taken together, our method reduces communication costs by up to 10x over vanilla LoRA and up to 5x over more complex sparse LoRA baselines while achieving greater utility. We emphasize the importance of carefully applying sparsity and picking effective rank and sparsity configurations for federated LLM training.

  • 2 authors
·
Jul 30, 2024

EoS-FM: Can an Ensemble of Specialist Models act as a Generalist Feature Extractor?

Recent advances in foundation models have shown great promise in domains such as natural language processing and computer vision, and similar efforts are now emerging in the Earth Observation community. These models aim to generalize across tasks with limited supervision, reducing the need for training separate models for each task. However, current strategies, which largely focus on scaling model size and dataset volume, require prohibitive computational and data resources, limiting accessibility to only a few large institutions. Moreover, this paradigm of ever-larger models stands in stark contrast with the principles of sustainable and environmentally responsible AI, as it leads to immense carbon footprints and resource inefficiency. In this work, we present a novel and efficient alternative: an Ensemble-of-Specialists framework for building Remote Sensing Foundation Models (RSFMs). Our method decomposes the training process into lightweight, task-specific ConvNeXtV2 specialists that can be frozen and reused. This modular approach offers strong advantages in efficiency, interpretability, and extensibility. Moreover, it naturally supports federated training, pruning, and continuous specialist integration, making it particularly well-suited for collaborative and resource-constrained settings. Our framework sets a new direction for building scalable and efficient RSFMs. All codes and pretrained models are available at https://github.com/pierreadorni/EoS-FM.

  • 4 authors
·
Nov 26

MoDeST: Bridging the Gap between Federated and Decentralized Learning with Decentralized Sampling

Federated and decentralized machine learning leverage end-user devices for privacy-preserving training of models at lower operating costs than within a data center. In a round of Federated Learning (FL), a random sample of participants trains locally, then a central server aggregates the local models to produce a single model for the next round. In a round of Decentralized Learning (DL), all participants train locally and then aggregate with their immediate neighbors, resulting in many local models with residual variance between them. On the one hand, FL's sampling and lower model variance provides lower communication costs and faster convergence. On the other hand, DL removes the need for a central server and distributes the communication costs more evenly amongst nodes, albeit at a larger total communication cost and slower convergence. In this paper, we present MoDeST: Mostly-Consistent Decentralized Sampling Training. MoDeST implements decentralized sampling in which a random subset of nodes is responsible for training and aggregation every round: this provides the benefits of both FL and DL without their traditional drawbacks. Our evaluation of MoDeST on four common learning tasks: (i) confirms convergence as fast as FL, (ii) shows a 3x-14x reduction in communication costs compared to DL, and (iii) demonstrates that MoDeST quickly adapts to nodes joining, leaving, or failing, even when 80% of all nodes become unresponsive.

  • 5 authors
·
Feb 27, 2023

Anchor Sampling for Federated Learning with Partial Client Participation

Compared with full client participation, partial client participation is a more practical scenario in federated learning, but it may amplify some challenges in federated learning, such as data heterogeneity. The lack of inactive clients' updates in partial client participation makes it more likely for the model aggregation to deviate from the aggregation based on full client participation. Training with large batches on individual clients is proposed to address data heterogeneity in general, but their effectiveness under partial client participation is not clear. Motivated by these challenges, we propose to develop a novel federated learning framework, referred to as FedAMD, for partial client participation. The core idea is anchor sampling, which separates partial participants into anchor and miner groups. Each client in the anchor group aims at the local bullseye with the gradient computation using a large batch. Guided by the bullseyes, clients in the miner group steer multiple near-optimal local updates using small batches and update the global model. By integrating the results of the two groups, FedAMD is able to accelerate the training process and improve the model performance. Measured by epsilon-approximation and compared to the state-of-the-art methods, FedAMD achieves the convergence by up to O(1/epsilon) fewer communication rounds under non-convex objectives. Empirical studies on real-world datasets validate the effectiveness of FedAMD and demonstrate the superiority of the proposed algorithm: Not only does it considerably save computation and communication costs, but also the test accuracy significantly improves.

  • 6 authors
·
Jun 12, 2022

Towards Instance-adaptive Inference for Federated Learning

Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training. However, the performance of the global model is often hampered by non-i.i.d. distribution among the clients, requiring extensive efforts to mitigate inter-client data heterogeneity. Going beyond inter-client data heterogeneity, we note that intra-client heterogeneity can also be observed on complex real-world data and seriously deteriorate FL performance. In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework. Instead of huge instance-adaptive models, we resort to a parameter-efficient fine-tuning method, i.e., scale and shift deep features (SSF), upon a pre-trained model. Specifically, we first train an SSF pool for each client, and aggregate these SSF pools on the server side, thus still maintaining a low communication cost. To enable instance-adaptive inference, for a given instance, we dynamically find the best-matched SSF subsets from the pool and aggregate them to generate an adaptive SSF specified for the instance, thereby reducing the intra-client as well as the inter-client heterogeneity. Extensive experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64\% improvement against the top-performing method with less than 15\% communication cost on Tiny-ImageNet. Our code and models will be publicly released.

  • 6 authors
·
Aug 11, 2023

FedSpeed: Larger Local Interval, Less Communication Round, and Higher Generalization Accuracy

Federated learning is an emerging distributed machine learning framework which jointly trains a global model via a large number of local devices with data privacy protections. Its performance suffers from the non-vanishing biases introduced by the local inconsistent optimal and the rugged client-drifts by the local over-fitting. In this paper, we propose a novel and practical method, FedSpeed, to alleviate the negative impacts posed by these problems. Concretely, FedSpeed applies the prox-correction term on the current local updates to efficiently reduce the biases introduced by the prox-term, a necessary regularizer to maintain the strong local consistency. Furthermore, FedSpeed merges the vanilla stochastic gradient with a perturbation computed from an extra gradient ascent step in the neighborhood, thereby alleviating the issue of local over-fitting. Our theoretical analysis indicates that the convergence rate is related to both the communication rounds T and local intervals K with a upper bound small O(1/T) if setting a proper local interval. Moreover, we conduct extensive experiments on the real-world dataset to demonstrate the efficiency of our proposed FedSpeed, which performs significantly faster and achieves the state-of-the-art (SOTA) performance on the general FL experimental settings than several baselines. Our code is available at https://github.com/woodenchild95/FL-Simulator.git.

  • 5 authors
·
Feb 20, 2023

Bristle: Decentralized Federated Learning in Byzantine, Non-i.i.d. Environments

Federated learning (FL) is a privacy-friendly type of machine learning where devices locally train a model on their private data and typically communicate model updates with a server. In decentralized FL (DFL), peers communicate model updates with each other instead. However, DFL is challenging since (1) the training data possessed by different peers is often non-i.i.d. (i.e., distributed differently between the peers) and (2) malicious, or Byzantine, attackers can share arbitrary model updates with other peers to subvert the training process. We address these two challenges and present Bristle, middleware between the learning application and the decentralized network layer. Bristle leverages transfer learning to predetermine and freeze the non-output layers of a neural network, significantly speeding up model training and lowering communication costs. To securely update the output layer with model updates from other peers, we design a fast distance-based prioritizer and a novel performance-based integrator. Their combined effect results in high resilience to Byzantine attackers and the ability to handle non-i.i.d. classes. We empirically show that Bristle converges to a consistent 95% accuracy in Byzantine environments, outperforming all evaluated baselines. In non-Byzantine environments, Bristle requires 83% fewer iterations to achieve 90% accuracy compared to state-of-the-art methods. We show that when the training classes are non-i.i.d., Bristle significantly outperforms the accuracy of the most Byzantine-resilient baselines by 2.3x while reducing communication costs by 90%.

  • 3 authors
·
Oct 21, 2021

SFPrompt: Communication-Efficient Split Federated Fine-Tuning for Large Pre-Trained Models over Resource-Limited Devices

Large pre-trained models have exhibited remarkable achievements across various domains. The substantial training costs associated with these models have led to wide studies of fine-tuning for effectively harnessing their capabilities in solving downstream tasks. Yet, conventional fine-tuning approaches become infeasible when the model lacks access to downstream data due to privacy concerns. Naively integrating fine-tuning approaches with the emerging federated learning frameworks incurs substantial communication overhead and exerts high demand on local computing resources, making it impractical for common resource-limited devices. In this paper, we introduce SFPrompt, an innovative privacy-preserving fine-tuning method tailored for the federated setting where direct uploading of raw data is prohibited and local devices are resource-constrained to run a complete pre-trained model. In essence, SFPrompt judiciously combines split learning with federated learning to handle these challenges. Specifically, the pre-trained model is first partitioned into client and server components, thereby streamlining the client-side model and substantially alleviating computational demands on local resources. SFPrompt then introduces soft prompts into the federated model to enhance the fine-tuning performance. To further reduce communication costs, a novel dataset pruning algorithm and a local-loss update strategy are devised during the fine-tuning process. Extensive experiments demonstrate that SFPrompt delivers competitive performance as the federated full fine-tuning approach while consuming a mere 0.46% of local computing resources and incurring 53% less communication cost.

  • 3 authors
·
Jul 24, 2024

Federated Learning-based Semantic Segmentation for Lane and Object Detection in Autonomous Driving

Autonomous Vehicles (AVs) require precise lane and object detection to ensure safe navigation. However, centralized deep learning (DL) approaches for semantic segmentation raise privacy and scalability challenges, particularly when handling sensitive data. This research presents a new federated learning (FL) framework that integrates secure deep Convolutional Neural Networks (CNNs) and Differential Privacy (DP) to address these issues. The core contribution of this work involves: (1) developing a new hybrid UNet-ResNet34 architecture for centralized semantic segmentation to achieve high accuracy and tackle privacy concerns due to centralized training, and (2) implementing the privacy-preserving FL model, distributed across AVs to enhance performance through secure CNNs and DP mechanisms. In the proposed FL framework, the methodology distinguishes itself from the existing approach through the following: (a) ensuring data decentralization through FL to uphold user privacy by eliminating the need for centralized data aggregation, (b) integrating DP mechanisms to secure sensitive model updates against potential adversarial inference attacks, and (c) evaluating the frameworks performance and generalizability using RGB and semantic segmentation datasets derived from the CARLA simulator. Experimental results show significant improvements in accuracy, from 81.5% to 88.7% for the RGB dataset and from 79.3% to 86.9% for the SEG dataset over 20 to 70 Communication Rounds (CRs). Global loss was reduced by over 60%, and minor accuracy trade-offs from DP were observed. This study contributes by offering a scalable, privacy-preserving FL framework tailored for AVs, optimizing communication efficiency while balancing performance and data security.

  • 4 authors
·
Apr 26

Ferret: Federated Full-Parameter Tuning at Scale for Large Language Models

Large Language Models (LLMs) have become indispensable in numerous real-world applications. Unfortunately, fine-tuning these models at scale, especially in federated settings where data privacy and communication efficiency are critical, presents significant challenges. Existing methods often resort to parameter-efficient fine-tuning (PEFT) to mitigate communication overhead, but this typically comes at the cost of model accuracy. To address these limitations, we propose federated full-parameter tuning at scale for LLMs (Ferret), the first first-order method with shared randomness to enable scalable full-parameter tuning of LLMs across decentralized data sources while maintaining competitive model accuracy. Ferret accomplishes this through three aspects: (1) it employs widely applied first-order methods for efficient local updates; (2) it projects these updates into a low-dimensional space to considerably reduce communication overhead; and (3) it reconstructs local updates from this low-dimensional space with shared randomness to facilitate effective full-parameter global aggregation, ensuring fast convergence and competitive final performance. Our rigorous theoretical analyses and insights along with extensive experiments, show that Ferret significantly enhances the scalability of existing federated full-parameter tuning approaches by achieving high computational efficiency, reduced communication overhead, and fast convergence, all while maintaining competitive model accuracy. Our implementation is available at https://github.com/allen4747/Ferret.

  • 5 authors
·
Sep 10, 2024 2

Towards Unbiased Training in Federated Open-world Semi-supervised Learning

Federated Semi-supervised Learning (FedSSL) has emerged as a new paradigm for allowing distributed clients to collaboratively train a machine learning model over scarce labeled data and abundant unlabeled data. However, existing works for FedSSL rely on a closed-world assumption that all local training data and global testing data are from seen classes observed in the labeled dataset. It is crucial to go one step further: adapting FL models to an open-world setting, where unseen classes exist in the unlabeled data. In this paper, we propose a novel Federatedopen-world Semi-Supervised Learning (FedoSSL) framework, which can solve the key challenge in distributed and open-world settings, i.e., the biased training process for heterogeneously distributed unseen classes. Specifically, since the advent of a certain unseen class depends on a client basis, the locally unseen classes (exist in multiple clients) are likely to receive differentiated superior aggregation effects than the globally unseen classes (exist only in one client). We adopt an uncertainty-aware suppressed loss to alleviate the biased training between locally unseen and globally unseen classes. Besides, we enable a calibration module supplementary to the global aggregation to avoid potential conflicting knowledge transfer caused by inconsistent data distribution among different clients. The proposed FedoSSL can be easily adapted to state-of-the-art FL methods, which is also validated via extensive experiments on benchmarks and real-world datasets (CIFAR-10, CIFAR-100 and CINIC-10).

  • 4 authors
·
May 1, 2023

Efficient Personalized Federated Learning via Sparse Model-Adaptation

Federated Learning (FL) aims to train machine learning models for multiple clients without sharing their own private data. Due to the heterogeneity of clients' local data distribution, recent studies explore the personalized FL that learns and deploys distinct local models with the help of auxiliary global models. However, the clients can be heterogeneous in terms of not only local data distribution, but also their computation and communication resources. The capacity and efficiency of personalized models are restricted by the lowest-resource clients, leading to sub-optimal performance and limited practicality of personalized FL. To overcome these challenges, we propose a novel approach named pFedGate for efficient personalized FL by adaptively and efficiently learning sparse local models. With a lightweight trainable gating layer, pFedGate enables clients to reach their full potential in model capacity by generating different sparse models accounting for both the heterogeneous data distributions and resource constraints. Meanwhile, the computation and communication efficiency are both improved thanks to the adaptability between the model sparsity and clients' resources. Further, we theoretically show that the proposed pFedGate has superior complexity with guaranteed convergence and generalization error. Extensive experiments show that pFedGate achieves superior global accuracy, individual accuracy and efficiency simultaneously over state-of-the-art methods. We also demonstrate that pFedGate performs better than competitors in the novel clients participation and partial clients participation scenarios, and can learn meaningful sparse local models adapted to different data distributions.

  • 5 authors
·
May 4, 2023

FedConv: A Learning-on-Model Paradigm for Heterogeneous Federated Clients

Federated Learning (FL) facilitates collaborative training of a shared global model without exposing clients' private data. In practical FL systems, clients (e.g., edge servers, smartphones, and wearables) typically have disparate system resources. Conventional FL, however, adopts a one-size-fits-all solution, where a homogeneous large global model is transmitted to and trained on each client, resulting in an overwhelming workload for less capable clients and starvation for other clients. To address this issue, we propose FedConv, a client-friendly FL framework, which minimizes the computation and memory burden on resource-constrained clients by providing heterogeneous customized sub-models. FedConv features a novel learning-on-model paradigm that learns the parameters of the heterogeneous sub-models via convolutional compression. Unlike traditional compression methods, the compressed models in FedConv can be directly trained on clients without decompression. To aggregate the heterogeneous sub-models, we propose transposed convolutional dilation to convert them back to large models with a unified size while retaining personalized information from clients. The compression and dilation processes, transparent to clients, are optimized on the server leveraging a small public dataset. Extensive experiments on six datasets demonstrate that FedConv outperforms state-of-the-art FL systems in terms of model accuracy (by more than 35% on average), computation and communication overhead (with 33% and 25% reduction, respectively).

  • 7 authors
·
Feb 27

Recon-Act: A Self-Evolving Multi-Agent Browser-Use System via Web Reconnaissance, Tool Generation, and Task Execution

Recent years, multimodal models have made remarkable strides and pave the way for intelligent browser use agents. However, when solving tasks on real world webpages in multi-turn, long-horizon trajectories, current agents still suffer from disordered action sequencing and excessive trial and error during execution. This paper introduces Recon-Act, a self-evolving multi-agent framework grounded in Reconnaissance-Action behavioral paradigm. The system comprises a Reconnaissance Team and an Action Team: the former conducts comparative analysis and tool generation, while the latter handles intent decomposition, tool orchestration, and execution. By contrasting the erroneous trajectories with successful ones, the Reconnaissance Team infers remedies, and abstracts them into a unified notion of generalized tools, either expressed as hints or as rule-based codes, and register to the tool archive in real time. The Action Team reinference the process empowered with these targeting tools, thus establishing a closed-loop training pipeline of data-tools-action-feedback. Following the 6 level implementation roadmap proposed in this work, we have currently reached Level 3 (with limited human-in-the-loop intervention). Leveraging generalized tools obtained through reconnaissance, Recon-Act substantially improves adaptability to unseen websites and solvability on long-horizon tasks, and achieves state-of-the-art performance on the challenging VisualWebArena dataset.

  • 4 authors
·
Sep 25 2

PA-CFL: Privacy-Adaptive Clustered Federated Learning for Transformer-Based Sales Forecasting on Heterogeneous Retail Data

Federated learning (FL) enables retailers to share model parameters for demand forecasting while maintaining privacy. However, heterogeneous data across diverse regions, driven by factors such as varying consumer behavior, poses challenges to the effectiveness of federated learning. To tackle this challenge, we propose Privacy-Adaptive Clustered Federated Learning (PA-CFL) tailored for demand forecasting on heterogeneous retail data. By leveraging differential privacy and feature importance distribution, PA-CFL groups retailers into distinct ``bubbles'', each forming its own federated learning system to effectively isolate data heterogeneity. Within each bubble, Transformer models are designed to predict local sales for each client. Our experiments demonstrate that PA-CFL significantly surpasses FedAvg and outperforms local learning in demand forecasting performance across all participating clients. Compared to local learning, PA-CFL achieves a 5.4% improvement in R^2, a 69% reduction in RMSE, and a 45% decrease in MAE. Our approach enables effective FL through adaptive adjustments to diverse noise levels and the range of clients participating in each bubble. By grouping participants and proactively filtering out high-risk clients, PA-CFL mitigates potential threats to the FL system. The findings demonstrate PA-CFL's ability to enhance federated learning in time series prediction tasks with heterogeneous data, achieving a balance between forecasting accuracy and privacy preservation in retail applications. Additionally, PA-CFL's capability to detect and neutralize poisoned data from clients enhances the system's robustness and reliability.

  • 4 authors
·
Mar 15 1

Randomized Quantization is All You Need for Differential Privacy in Federated Learning

Federated learning (FL) is a common and practical framework for learning a machine model in a decentralized fashion. A primary motivation behind this decentralized approach is data privacy, ensuring that the learner never sees the data of each local source itself. Federated learning then comes with two majors challenges: one is handling potentially complex model updates between a server and a large number of data sources; the other is that de-centralization may, in fact, be insufficient for privacy, as the local updates themselves can reveal information about the sources' data. To address these issues, we consider an approach to federated learning that combines quantization and differential privacy. Absent privacy, Federated Learning often relies on quantization to reduce communication complexity. We build upon this approach and develop a new algorithm called the Randomized Quantization Mechanism (RQM), which obtains privacy through a two-levels of randomization. More precisely, we randomly sub-sample feasible quantization levels, then employ a randomized rounding procedure using these sub-sampled discrete levels. We are able to establish that our results preserve ``Renyi differential privacy'' (Renyi DP). We empirically study the performance of our algorithm and demonstrate that compared to previous work it yields improved privacy-accuracy trade-offs for DP federated learning. To the best of our knowledge, this is the first study that solely relies on randomized quantization without incorporating explicit discrete noise to achieve Renyi DP guarantees in Federated Learning systems.

  • 4 authors
·
Jun 20, 2023

FedStale: leveraging stale client updates in federated learning

Federated learning algorithms, such as FedAvg, are negatively affected by data heterogeneity and partial client participation. To mitigate the latter problem, global variance reduction methods, like FedVARP, leverage stale model updates for non-participating clients. These methods are effective under homogeneous client participation. Yet, this paper shows that, when some clients participate much less than others, aggregating updates with different levels of staleness can detrimentally affect the training process. Motivated by this observation, we introduce FedStale, a novel algorithm that updates the global model in each round through a convex combination of "fresh" updates from participating clients and "stale" updates from non-participating ones. By adjusting the weight in the convex combination, FedStale interpolates between FedAvg, which only uses fresh updates, and FedVARP, which treats fresh and stale updates equally. Our analysis of FedStale convergence yields the following novel findings: i) it integrates and extends previous FedAvg and FedVARP analyses to heterogeneous client participation; ii) it underscores how the least participating client influences convergence error; iii) it provides practical guidelines to best exploit stale updates, showing that their usefulness diminishes as data heterogeneity decreases and participation heterogeneity increases. Extensive experiments featuring diverse levels of client data and participation heterogeneity not only confirm these findings but also show that FedStale outperforms both FedAvg and FedVARP in many settings.

  • 2 authors
·
May 7, 2024

Tackling Data Heterogeneity in Federated Learning via Loss Decomposition

Federated Learning (FL) is a rising approach towards collaborative and privacy-preserving machine learning where large-scale medical datasets remain localized to each client. However, the issue of data heterogeneity among clients often compels local models to diverge, leading to suboptimal global models. To mitigate the impact of data heterogeneity on FL performance, we start with analyzing how FL training influence FL performance by decomposing the global loss into three terms: local loss, distribution shift loss and aggregation loss. Remarkably, our loss decomposition reveals that existing local training-based FL methods attempt to reduce the distribution shift loss, while the global aggregation-based FL methods propose better aggregation strategies to reduce the aggregation loss. Nevertheless, a comprehensive joint effort to minimize all three terms is currently limited in the literature, leading to subpar performance when dealing with data heterogeneity challenges. To fill this gap, we propose a novel FL method based on global loss decomposition, called FedLD, to jointly reduce these three loss terms. Our FedLD involves a margin control regularization in local training to reduce the distribution shift loss, and a principal gradient-based server aggregation strategy to reduce the aggregation loss. Notably, under different levels of data heterogeneity, our strategies achieve better and more robust performance on retinal and chest X-ray classification compared to other FL algorithms. Our code is available at https://github.com/Zeng-Shuang/FedLD.

  • 6 authors
·
Aug 22, 2024

Federated Orthogonal Training: Mitigating Global Catastrophic Forgetting in Continual Federated Learning

Federated Learning (FL) has gained significant attraction due to its ability to enable privacy-preserving training over decentralized data. Current literature in FL mostly focuses on single-task learning. However, over time, new tasks may appear in the clients and the global model should learn these tasks without forgetting previous tasks. This real-world scenario is known as Continual Federated Learning (CFL). The main challenge of CFL is Global Catastrophic Forgetting, which corresponds to the fact that when the global model is trained on new tasks, its performance on old tasks decreases. There have been a few recent works on CFL to propose methods that aim to address the global catastrophic forgetting problem. However, these works either have unrealistic assumptions on the availability of past data samples or violate the privacy principles of FL. We propose a novel method, Federated Orthogonal Training (FOT), to overcome these drawbacks and address the global catastrophic forgetting in CFL. Our algorithm extracts the global input subspace of each layer for old tasks and modifies the aggregated updates of new tasks such that they are orthogonal to the global principal subspace of old tasks for each layer. This decreases the interference between tasks, which is the main cause for forgetting. We empirically show that FOT outperforms state-of-the-art continual learning methods in the CFL setting, achieving an average accuracy gain of up to 15% with 27% lower forgetting while only incurring a minimal computation and communication cost.

  • 4 authors
·
Sep 3, 2023

FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large Language Models in Federated Learning

LLMs have demonstrated great capabilities in various NLP tasks. Different entities can further improve the performance of those LLMs on their specific downstream tasks by fine-tuning LLMs. When several entities have similar interested tasks, but their data cannot be shared because of privacy concerns regulations, federated learning (FL) is a mainstream solution to leverage the data of different entities. However, fine-tuning LLMs in federated learning settings still lacks adequate support from existing FL frameworks because it has to deal with optimizing the consumption of significant communication and computational resources, data preparation for different tasks, and distinct information protection demands. This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution, which consists of the following components: (1) we build an end-to-end benchmarking pipeline, automizing the processes of dataset preprocessing, federated fine-tuning execution, and performance evaluation on federated LLM fine-tuning; (2) we provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios with low communication and computation costs, even without accessing the full model; (3) we adopt several accelerating and resource-efficient operators for fine-tuning LLMs with limited resources and the flexible pluggable sub-routines for interdisciplinary study. We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings, which also yields valuable insights into federated fine-tuning LLMs for the research community. To facilitate further research and adoption, we release FS-LLM at https://github.com/alibaba/FederatedScope/tree/llm.

  • 10 authors
·
Sep 1, 2023

FedLoGe: Joint Local and Generic Federated Learning under Long-tailed Data

Federated Long-Tailed Learning (Fed-LT), a paradigm wherein data collected from decentralized local clients manifests a globally prevalent long-tailed distribution, has garnered considerable attention in recent times. In the context of Fed-LT, existing works have predominantly centered on addressing the data imbalance issue to enhance the efficacy of the generic global model while neglecting the performance at the local level. In contrast, conventional Personalized Federated Learning (pFL) techniques are primarily devised to optimize personalized local models under the presumption of a balanced global data distribution. This paper introduces an approach termed Federated Local and Generic Model Training in Fed-LT (FedLoGe), which enhances both local and generic model performance through the integration of representation learning and classifier alignment within a neural collapse framework. Our investigation reveals the feasibility of employing a shared backbone as a foundational framework for capturing overarching global trends, while concurrently employing individualized classifiers to encapsulate distinct refinements stemming from each client's local features. Building upon this discovery, we establish the Static Sparse Equiangular Tight Frame Classifier (SSE-C), inspired by neural collapse principles that naturally prune extraneous noisy features and foster the acquisition of potent data representations. Furthermore, leveraging insights from imbalance neural collapse's classifier norm patterns, we develop Global and Local Adaptive Feature Realignment (GLA-FR) via an auxiliary global classifier and personalized Euclidean norm transfer to align global features with client preferences. Extensive experimental results on CIFAR-10/100-LT, ImageNet, and iNaturalist demonstrate the advantage of our method over state-of-the-art pFL and Fed-LT approaches.

  • 9 authors
·
Jan 17, 2024

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

Federated Learning (FL) typically involves a large-scale, distributed system with individual user devices/servers training models locally and then aggregating their model updates on a trusted central server. Existing systems for FL often use an always-on server for model aggregation, which can be inefficient in terms of resource utilization. They may also be inelastic in their resource management. This is particularly exacerbated when aggregating model updates at scale in a highly dynamic environment with varying numbers of heterogeneous user devices/servers. We present LIFL, a lightweight and elastic serverless cloud platform with fine-grained resource management for efficient FL aggregation at scale. LIFL is enhanced by a streamlined, event-driven serverless design that eliminates the individual heavy-weight message broker and replaces inefficient container-based sidecars with lightweight eBPF-based proxies. We leverage shared memory processing to achieve high-performance communication for hierarchical aggregation, which is commonly adopted to speed up FL aggregation at scale. We further introduce locality-aware placement in LIFL to maximize the benefits of shared memory processing. LIFL precisely scales and carefully reuses the resources for hierarchical aggregation to achieve the highest degree of parallelism while minimizing the aggregation time and resource consumption. Our experimental results show that LIFL achieves significant improvement in resource efficiency and aggregation speed for supporting FL at scale, compared to existing serverful and serverless FL systems.

  • 3 authors
·
May 5, 2024

KnFu: Effective Knowledge Fusion

Federated Learning (FL) has emerged as a prominent alternative to the traditional centralized learning approach. Generally speaking, FL is a decentralized approach that allows for collaborative training of Machine Learning (ML) models across multiple local nodes, ensuring data privacy and security while leveraging diverse datasets. Conventional FL, however, is susceptible to gradient inversion attacks, restrictively enforces a uniform architecture on local models, and suffers from model heterogeneity (model drift) due to non-IID local datasets. To mitigate some of these challenges, the new paradigm of Federated Knowledge Distillation (FKD) has emerged. FDK is developed based on the concept of Knowledge Distillation (KD), which involves extraction and transfer of a large and well-trained teacher model's knowledge to lightweight student models. FKD, however, still faces the model drift issue. Intuitively speaking, not all knowledge is universally beneficial due to the inherent diversity of data among local nodes. This calls for innovative mechanisms to evaluate the relevance and effectiveness of each client's knowledge for others, to prevent propagation of adverse knowledge. In this context, the paper proposes Effective Knowledge Fusion (KnFu) algorithm that evaluates knowledge of local models to only fuse semantic neighbors' effective knowledge for each client. The KnFu is a personalized effective knowledge fusion scheme for each client, that analyzes effectiveness of different local models' knowledge prior to the aggregation phase. Comprehensive experiments were performed on MNIST and CIFAR10 datasets illustrating effectiveness of the proposed KnFu in comparison to its state-of-the-art counterparts. A key conclusion of the work is that in scenarios with large and highly heterogeneous local datasets, local training could be preferable to knowledge fusion-based solutions.

  • 4 authors
·
Mar 18, 2024

Federated Zeroth-Order Optimization using Trajectory-Informed Surrogate Gradients

Federated optimization, an emerging paradigm which finds wide real-world applications such as federated learning, enables multiple clients (e.g., edge devices) to collaboratively optimize a global function. The clients do not share their local datasets and typically only share their local gradients. However, the gradient information is not available in many applications of federated optimization, which hence gives rise to the paradigm of federated zeroth-order optimization (ZOO). Existing federated ZOO algorithms suffer from the limitations of query and communication inefficiency, which can be attributed to (a) their reliance on a substantial number of function queries for gradient estimation and (b) the significant disparity between their realized local updates and the intended global updates. To this end, we (a) introduce trajectory-informed gradient surrogates which is able to use the history of function queries during optimization for accurate and query-efficient gradient estimation, and (b) develop the technique of adaptive gradient correction using these gradient surrogates to mitigate the aforementioned disparity. Based on these, we propose the federated zeroth-order optimization using trajectory-informed surrogate gradients (FZooS) algorithm for query- and communication-efficient federated ZOO. Our FZooS achieves theoretical improvements over the existing approaches, which is supported by our real-world experiments such as federated black-box adversarial attack and federated non-differentiable metric optimization.

  • 4 authors
·
Aug 8, 2023

Bold but Cautious: Unlocking the Potential of Personalized Federated Learning through Cautiously Aggressive Collaboration

Personalized federated learning (PFL) reduces the impact of non-independent and identically distributed (non-IID) data among clients by allowing each client to train a personalized model when collaborating with others. A key question in PFL is to decide which parameters of a client should be localized or shared with others. In current mainstream approaches, all layers that are sensitive to non-IID data (such as classifier layers) are generally personalized. The reasoning behind this approach is understandable, as localizing parameters that are easily influenced by non-IID data can prevent the potential negative effect of collaboration. However, we believe that this approach is too conservative for collaboration. For example, for a certain client, even if its parameters are easily influenced by non-IID data, it can still benefit by sharing these parameters with clients having similar data distribution. This observation emphasizes the importance of considering not only the sensitivity to non-IID data but also the similarity of data distribution when determining which parameters should be localized in PFL. This paper introduces a novel guideline for client collaboration in PFL. Unlike existing approaches that prohibit all collaboration of sensitive parameters, our guideline allows clients to share more parameters with others, leading to improved model performance. Additionally, we propose a new PFL method named FedCAC, which employs a quantitative metric to evaluate each parameter's sensitivity to non-IID data and carefully selects collaborators based on this evaluation. Experimental results demonstrate that FedCAC enables clients to share more parameters with others, resulting in superior performance compared to state-of-the-art methods, particularly in scenarios where clients have diverse distributions.

  • 5 authors
·
Sep 20, 2023

A Survey on Federated Fine-tuning of Large Language Models

Large Language Models (LLMs) have achieved remarkable success across a wide range of tasks, with fine-tuning playing a pivotal role in adapting them to specific downstream applications. Federated Learning (FL) offers a promising approach that enables collaborative model adaptation while ensuring data privacy, i.e., FedLLM. In this survey, we provide a systematic and thorough review of the integration of LLMs with FL. Specifically, we first trace the historical evolution of both LLMs and FL, while summarizing relevant prior surveys. We then present an in-depth analysis of the fundamental challenges encountered in deploying FedLLM. Following this, we conduct an extensive study of existing parameter-efficient fine-tuning (PEFT) methods and explore their applicability in FL. Furthermore, we introduce a comprehensive evaluation benchmark to rigorously assess FedLLM performance and discuss its diverse real-world applications across multiple domains. Finally, we identify critical open challenges and outline promising research directions to drive future advancements in FedLLM. We maintain an active https://github.com/Clin0212/Awesome-Federated-LLM-Learning{GitHub repository} tracking cutting-edge advancements. This survey serves as a foundational resource for researchers and practitioners, offering insights into the evolving landscape of federated fine-tuning for LLMs while guiding future innovations in privacy-preserving AI.

  • 7 authors
·
Mar 15

A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates

We propose a novel framework to study asynchronous federated learning optimization with delays in gradient updates. Our theoretical framework extends the standard FedAvg aggregation scheme by introducing stochastic aggregation weights to represent the variability of the clients update time, due for example to heterogeneous hardware capabilities. Our formalism applies to the general federated setting where clients have heterogeneous datasets and perform at least one step of stochastic gradient descent (SGD). We demonstrate convergence for such a scheme and provide sufficient conditions for the related minimum to be the optimum of the federated problem. We show that our general framework applies to existing optimization schemes including centralized learning, FedAvg, asynchronous FedAvg, and FedBuff. The theory here provided allows drawing meaningful guidelines for designing a federated learning experiment in heterogeneous conditions. In particular, we develop in this work FedFix, a novel extension of FedAvg enabling efficient asynchronous federated training while preserving the convergence stability of synchronous aggregation. We empirically demonstrate our theory on a series of experiments showing that asynchronous FedAvg leads to fast convergence at the expense of stability, and we finally demonstrate the improvements of FedFix over synchronous and asynchronous FedAvg.

  • 4 authors
·
Jun 21, 2022

FRAug: Tackling Federated Learning with Non-IID Features via Representation Augmentation

Federated Learning (FL) is a decentralized learning paradigm, in which multiple clients collaboratively train deep learning models without centralizing their local data, and hence preserve data privacy. Real-world applications usually involve a distribution shift across the datasets of the different clients, which hurts the generalization ability of the clients to unseen samples from their respective data distributions. In this work, we address the recently proposed feature shift problem where the clients have different feature distributions, while the label distribution is the same. We propose Federated Representation Augmentation (FRAug) to tackle this practical and challenging problem. Our approach generates synthetic client-specific samples in the embedding space to augment the usually small client datasets. For that, we train a shared generative model to fuse the clients knowledge learned from their different feature distributions. This generator synthesizes client-agnostic embeddings, which are then locally transformed into client-specific embeddings by Representation Transformation Networks (RTNets). By transferring knowledge across the clients, the generated embeddings act as a regularizer for the client models and reduce overfitting to the local original datasets, hence improving generalization. Our empirical evaluation on public benchmarks and a real-world medical dataset demonstrates the effectiveness of the proposed method, which substantially outperforms the current state-of-the-art FL methods for non-IID features, including PartialFed and FedBN.

  • 5 authors
·
May 30, 2022

A Reputation Mechanism Is All You Need: Collaborative Fairness and Adversarial Robustness in Federated Learning

Federated learning (FL) is an emerging practical framework for effective and scalable machine learning among multiple participants, such as end users, organizations and companies. However, most existing FL or distributed learning frameworks have not well addressed two important issues together: collaborative fairness and adversarial robustness (e.g. free-riders and malicious participants). In conventional FL, all participants receive the global model (equal rewards), which might be unfair to the high-contributing participants. Furthermore, due to the lack of a safeguard mechanism, free-riders or malicious adversaries could game the system to access the global model for free or to sabotage it. In this paper, we propose a novel Robust and Fair Federated Learning (RFFL) framework to achieve collaborative fairness and adversarial robustness simultaneously via a reputation mechanism. RFFL maintains a reputation for each participant by examining their contributions via their uploaded gradients (using vector similarity) and thus identifies non-contributing or malicious participants to be removed. Our approach differentiates itself by not requiring any auxiliary/validation dataset. Extensive experiments on benchmark datasets show that RFFL can achieve high fairness and is very robust to different types of adversaries while achieving competitive predictive accuracy.

  • 2 authors
·
Nov 20, 2020

FRAG: Toward Federated Vector Database Management for Collaborative and Secure Retrieval-Augmented Generation

This paper introduces Federated Retrieval-Augmented Generation (FRAG), a novel database management paradigm tailored for the growing needs of retrieval-augmented generation (RAG) systems, which are increasingly powered by large-language models (LLMs). FRAG enables mutually-distrusted parties to collaboratively perform Approximate k-Nearest Neighbor (ANN) searches on encrypted query vectors and encrypted data stored in distributed vector databases, all while ensuring that no party can gain any knowledge about the queries or data of others. Achieving this paradigm presents two key challenges: (i) ensuring strong security guarantees, such as Indistinguishability under Chosen-Plaintext Attack (IND-CPA), under practical assumptions (e.g., we avoid overly optimistic assumptions like non-collusion among parties); and (ii) maintaining performance overheads comparable to traditional, non-federated RAG systems. To address these challenges, FRAG employs a single-key homomorphic encryption protocol that simplifies key management across mutually-distrusted parties. Additionally, FRAG introduces a multiplicative caching technique to efficiently encrypt floating-point numbers, significantly improving computational performance in large-scale federated environments. We provide a rigorous security proof using standard cryptographic reductions and demonstrate the practical scalability and efficiency of FRAG through extensive experiments on both benchmark and real-world datasets.

  • 1 authors
·
Oct 17, 2024

GIFD: A Generative Gradient Inversion Method with Feature Domain Optimization

Federated Learning (FL) has recently emerged as a promising distributed machine learning framework to preserve clients' privacy, by allowing multiple clients to upload the gradients calculated from their local data to a central server. Recent studies find that the exchanged gradients also take the risk of privacy leakage, e.g., an attacker can invert the shared gradients and recover sensitive data against an FL system by leveraging pre-trained generative adversarial networks (GAN) as prior knowledge. However, performing gradient inversion attacks in the latent space of the GAN model limits their expression ability and generalizability. To tackle these challenges, we propose Gradient Inversion over Feature Domains (GIFD), which disassembles the GAN model and searches the feature domains of the intermediate layers. Instead of optimizing only over the initial latent code, we progressively change the optimized layer, from the initial latent space to intermediate layers closer to the output images. In addition, we design a regularizer to avoid unreal image generation by adding a small {l_1} ball constraint to the searching range. We also extend GIFD to the out-of-distribution (OOD) setting, which weakens the assumption that the training sets of GANs and FL tasks obey the same data distribution. Extensive experiments demonstrate that our method can achieve pixel-level reconstruction and is superior to the existing methods. Notably, GIFD also shows great generalizability under different defense strategy settings and batch sizes.

  • 5 authors
·
Aug 9, 2023

Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) has recently emerged as a promising solution for enhancing the accuracy and credibility of Large Language Models (LLMs), particularly in Question & Answer tasks. This is achieved by incorporating proprietary and private data from integrated databases. However, private RAG systems face significant challenges due to the scarcity of private domain data and critical data privacy issues. These obstacles impede the deployment of private RAG systems, as developing privacy-preserving RAG systems requires a delicate balance between data security and data availability. To address these challenges, we regard federated learning (FL) as a highly promising technology for privacy-preserving RAG services. We propose a novel framework called Federated Retrieval-Augmented Generation (FedE4RAG). This framework facilitates collaborative training of client-side RAG retrieval models. The parameters of these models are aggregated and distributed on a central-server, ensuring data privacy without direct sharing of raw data. In FedE4RAG, knowledge distillation is employed for communication between the server and client models. This technique improves the generalization of local RAG retrievers during the federated learning process. Additionally, we apply homomorphic encryption within federated learning to safeguard model parameters and mitigate concerns related to data leakage. Extensive experiments conducted on the real-world dataset have validated the effectiveness of FedE4RAG. The results demonstrate that our proposed framework can markedly enhance the performance of private RAG systems while maintaining robust data privacy protection.

  • 14 authors
·
Apr 27

Subject Membership Inference Attacks in Federated Learning

Privacy attacks on Machine Learning (ML) models often focus on inferring the existence of particular data points in the training data. However, what the adversary really wants to know is if a particular individual's (subject's) data was included during training. In such scenarios, the adversary is more likely to have access to the distribution of a particular subject than actual records. Furthermore, in settings like cross-silo Federated Learning (FL), a subject's data can be embodied by multiple data records that are spread across multiple organizations. Nearly all of the existing private FL literature is dedicated to studying privacy at two granularities -- item-level (individual data records), and user-level (participating user in the federation), neither of which apply to data subjects in cross-silo FL. This insight motivates us to shift our attention from the privacy of data records to the privacy of data subjects, also known as subject-level privacy. We propose two novel black-box attacks for subject membership inference, of which one assumes access to a model after each training round. Using these attacks, we estimate subject membership inference risk on real-world data for single-party models as well as FL scenarios. We find our attacks to be extremely potent, even without access to exact training records, and using the knowledge of membership for a handful of subjects. To better understand the various factors that may influence subject privacy risk in cross-silo FL settings, we systematically generate several hundred synthetic federation configurations, varying properties of the data, model design and training, and the federation itself. Finally, we investigate the effectiveness of Differential Privacy in mitigating this threat.

  • 4 authors
·
Jun 7, 2022

FedRE: A Representation Entanglement Framework for Model-Heterogeneous Federated Learning

Federated learning (FL) enables collaborative training across clients without compromising privacy. While most existing FL methods assume homogeneous model architectures, client heterogeneity in data and resources renders this assumption impractical, motivating model-heterogeneous FL. To address this problem, we propose Federated Representation Entanglement (FedRE), a framework built upon a novel form of client knowledge termed entangled representation. In FedRE, each client aggregates its local representations into a single entangled representation using normalized random weights and applies the same weights to integrate the corresponding one-hot label encodings into the entangled-label encoding. Those are then uploaded to the server to train a global classifier. During training, each entangled representation is supervised across categories via its entangled-label encoding, while random weights are resampled each round to introduce diversity, mitigating the global classifier's overconfidence and promoting smoother decision boundaries. Furthermore, each client uploads a single cross-category entangled representation along with its entangled-label encoding, mitigating the risk of representation inversion attacks and reducing communication overhead. Extensive experiments demonstrate that FedRE achieves an effective trade-off among model performance, privacy protection, and communication overhead. The codes are available at https://github.com/AIResearch-Group/FedRE.

Federated Learning on Virtual Heterogeneous Data with Local-global Distillation

While Federated Learning (FL) is gaining popularity for training machine learning models in a decentralized fashion, numerous challenges persist, such as asynchronization, computational expenses, data heterogeneity, and gradient and membership privacy attacks. Lately, dataset distillation has emerged as a promising solution for addressing the aforementioned challenges by generating a compact synthetic dataset that preserves a model's training efficacy. However, we discover that using distilled local datasets can amplify the heterogeneity issue in FL. To address this, we propose Federated Learning on Virtual Heterogeneous Data with Local-Global Dataset Distillation (FedLGD), where we seamlessly integrate dataset distillation algorithms into FL pipeline and train FL using a smaller synthetic dataset (referred as virtual data). Specifically, to harmonize the domain shifts, we propose iterative distribution matching to inpaint global information to local virtual data and use federated gradient matching to distill global virtual data that serve as anchor points to rectify heterogeneous local training, without compromising data privacy. We experiment on both benchmark and real-world datasets that contain heterogeneous data from different sources, and further scale up to an FL scenario that contains a large number of clients with heterogeneous and class-imbalanced data. Our method outperforms state-of-the-art heterogeneous FL algorithms under various settings. Our code is available at https://github.com/ubc-tea/FedLGD.

  • 5 authors
·
Mar 3, 2023

Distributed Pruning Towards Tiny Neural Networks in Federated Learning

Neural network pruning is an essential technique for reducing the size and complexity of deep neural networks, enabling large-scale models on devices with limited resources. However, existing pruning approaches heavily rely on training data for guiding the pruning strategies, making them ineffective for federated learning over distributed and confidential datasets. Additionally, the memory- and computation-intensive pruning process becomes infeasible for recourse-constrained devices in federated learning. To address these challenges, we propose FedTiny, a distributed pruning framework for federated learning that generates specialized tiny models for memory- and computing-constrained devices. We introduce two key modules in FedTiny to adaptively search coarse- and finer-pruned specialized models to fit deployment scenarios with sparse and cheap local computation. First, an adaptive batch normalization selection module is designed to mitigate biases in pruning caused by the heterogeneity of local data. Second, a lightweight progressive pruning module aims to finer prune the models under strict memory and computational budgets, allowing the pruning policy for each layer to be gradually determined rather than evaluating the overall model structure. The experimental results demonstrate the effectiveness of FedTiny, which outperforms state-of-the-art approaches, particularly when compressing deep models to extremely sparse tiny models. FedTiny achieves an accuracy improvement of 2.61% while significantly reducing the computational cost by 95.91% and the memory footprint by 94.01% compared to state-of-the-art methods.

  • 6 authors
·
Dec 4, 2022

BadVFL: Backdoor Attacks in Vertical Federated Learning

Federated learning (FL) enables multiple parties to collaboratively train a machine learning model without sharing their data; rather, they train their own model locally and send updates to a central server for aggregation. Depending on how the data is distributed among the participants, FL can be classified into Horizontal (HFL) and Vertical (VFL). In VFL, the participants share the same set of training instances but only host a different and non-overlapping subset of the whole feature space. Whereas in HFL, each participant shares the same set of features while the training set is split into locally owned training data subsets. VFL is increasingly used in applications like financial fraud detection; nonetheless, very little work has analyzed its security. In this paper, we focus on robustness in VFL, in particular, on backdoor attacks, whereby an adversary attempts to manipulate the aggregate model during the training process to trigger misclassifications. Performing backdoor attacks in VFL is more challenging than in HFL, as the adversary i) does not have access to the labels during training and ii) cannot change the labels as she only has access to the feature embeddings. We present a first-of-its-kind clean-label backdoor attack in VFL, which consists of two phases: a label inference and a backdoor phase. We demonstrate the effectiveness of the attack on three different datasets, investigate the factors involved in its success, and discuss countermeasures to mitigate its impact.

  • 3 authors
·
Apr 18, 2023

Improving the Model Consistency of Decentralized Federated Learning

To mitigate the privacy leakages and communication burdens of Federated Learning (FL), decentralized FL (DFL) discards the central server and each client only communicates with its neighbors in a decentralized communication network. However, existing DFL suffers from high inconsistency among local clients, which results in severe distribution shift and inferior performance compared with centralized FL (CFL), especially on heterogeneous data or sparse communication topology. To alleviate this issue, we propose two DFL algorithms named DFedSAM and DFedSAM-MGS to improve the performance of DFL. Specifically, DFedSAM leverages gradient perturbation to generate local flat models via Sharpness Aware Minimization (SAM), which searches for models with uniformly low loss values. DFedSAM-MGS further boosts DFedSAM by adopting Multiple Gossip Steps (MGS) for better model consistency, which accelerates the aggregation of local flat models and better balances communication complexity and generalization. Theoretically, we present improved convergence rates small Obig(1{KT}+1{T}+1{K^{1/2}T^{3/2}(1-lambda)^2}big) and small Obig(1{KT}+1{T}+lambda^Q+1{K^{1/2}T^{3/2}(1-lambda^Q)^2}big) in non-convex setting for DFedSAM and DFedSAM-MGS, respectively, where 1-lambda is the spectral gap of gossip matrix and Q is the number of MGS. Empirically, our methods can achieve competitive performance compared with CFL methods and outperform existing DFL methods.

  • 7 authors
·
Feb 8, 2023

Adaptive Personlization in Federated Learning for Highly Non-i.i.d. Data

Federated learning (FL) is a distributed learning method that offers medical institutes the prospect of collaboration in a global model while preserving the privacy of their patients. Although most medical centers conduct similar medical imaging tasks, their differences, such as specializations, number of patients, and devices, lead to distinctive data distributions. Data heterogeneity poses a challenge for FL and the personalization of the local models. In this work, we investigate an adaptive hierarchical clustering method for FL to produce intermediate semi-global models, so clients with similar data distribution have the chance of forming a more specialized model. Our method forms several clusters consisting of clients with the most similar data distributions; then, each cluster continues to train separately. Inside the cluster, we use meta-learning to improve the personalization of the participants' models. We compare the clustering approach with classical FedAvg and centralized training by evaluating our proposed methods on the HAM10k dataset for skin lesion classification with extreme heterogeneous data distribution. Our experiments demonstrate significant performance gain in heterogeneous distribution compared to standard FL methods in classification accuracy. Moreover, we show that the models converge faster if applied in clusters and outperform centralized training while using only a small subset of data.

  • 6 authors
·
Jul 7, 2022

The Federated Tumor Segmentation (FeTS) Challenge

This manuscript describes the first challenge on Federated Learning, namely the Federated Tumor Segmentation (FeTS) challenge 2021. International challenges have become the standard for validation of biomedical image analysis methods. However, the actual performance of participating (even the winning) algorithms on "real-world" clinical data often remains unclear, as the data included in challenges are usually acquired in very controlled settings at few institutions. The seemingly obvious solution of just collecting increasingly more data from more institutions in such challenges does not scale well due to privacy and ownership hurdles. Towards alleviating these concerns, we are proposing the FeTS challenge 2021 to cater towards both the development and the evaluation of models for the segmentation of intrinsically heterogeneous (in appearance, shape, and histology) brain tumors, namely gliomas. Specifically, the FeTS 2021 challenge uses clinically acquired, multi-institutional magnetic resonance imaging (MRI) scans from the BraTS 2020 challenge, as well as from various remote independent institutions included in the collaborative network of a real-world federation (https://www.fets.ai/). The goals of the FeTS challenge are directly represented by the two included tasks: 1) the identification of the optimal weight aggregation approach towards the training of a consensus model that has gained knowledge via federated learning from multiple geographically distinct institutions, while their data are always retained within each institution, and 2) the federated evaluation of the generalizability of brain tumor segmentation models "in the wild", i.e. on data from institutional distributions that were not part of the training datasets.

  • 32 authors
·
May 12, 2021

DP-BREM: Differentially-Private and Byzantine-Robust Federated Learning with Client Momentum

Federated Learning (FL) allows multiple participating clients to train machine learning models collaboratively while keeping their datasets local and only exchanging the gradient or model updates with a coordinating server. Existing FL protocols are vulnerable to attacks that aim to compromise data privacy and/or model robustness. Recently proposed defenses focused on ensuring either privacy or robustness, but not both. In this paper, we focus on simultaneously achieving differential privacy (DP) and Byzantine robustness for cross-silo FL, based on the idea of learning from history. The robustness is achieved via client momentum, which averages the updates of each client over time, thus reducing the variance of the honest clients and exposing the small malicious perturbations of Byzantine clients that are undetectable in a single round but accumulate over time. In our initial solution DP-BREM, DP is achieved by adding noise to the aggregated momentum, and we account for the privacy cost from the momentum, which is different from the conventional DP-SGD that accounts for the privacy cost from the gradient. Since DP-BREM assumes a trusted server (who can obtain clients' local models or updates), we further develop the final solution called DP-BREM+, which achieves the same DP and robustness properties as DP-BREM without a trusted server by utilizing secure aggregation techniques, where DP noise is securely and jointly generated by the clients. Both theoretical analysis and experimental results demonstrate that our proposed protocols achieve better privacy-utility tradeoff and stronger Byzantine robustness than several baseline methods, under different DP budgets and attack settings.

  • 3 authors
·
Jun 21, 2023