Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeModeling Eye Gaze Velocity Trajectories using GANs with Spectral Loss for Enhanced Fidelity
Accurate modeling of eye gaze dynamics is essential for advancement in human-computer interaction, neurological diagnostics, and cognitive research. Traditional generative models like Markov models often fail to capture the complex temporal dependencies and distributional nuance inherent in eye gaze trajectories data. This study introduces a GAN framework employing LSTM and CNN generators and discriminators to generate high-fidelity synthetic eye gaze velocity trajectories. We conducted a comprehensive evaluation of four GAN architectures: CNN-CNN, LSTM-CNN, CNN-LSTM, and LSTM-LSTM trained under two conditions: using only adversarial loss and using a weighted combination of adversarial and spectral losses. Our findings reveal that the LSTM-CNN architecture trained with this new loss function exhibits the closest alignment to the real data distribution, effectively capturing both the distribution tails and the intricate temporal dependencies. The inclusion of spectral regularization significantly enhances the GANs ability to replicate the spectral characteristics of eye gaze movements, leading to a more stable learning process and improved data fidelity. Comparative analysis with an HMM optimized to four hidden states further highlights the advantages of the LSTM-CNN GAN. Statistical metrics show that the HMM-generated data significantly diverges from the real data in terms of mean, standard deviation, skewness, and kurtosis. In contrast, the LSTM-CNN model closely matches the real data across these statistics, affirming its capacity to model the complexity of eye gaze dynamics effectively. These results position the spectrally regularized LSTM-CNN GAN as a robust tool for generating synthetic eye gaze velocity data with high fidelity.
Efficient Generative Modeling with Residual Vector Quantization-Based Tokens
We explore the use of Residual Vector Quantization (RVQ) for high-fidelity generation in vector-quantized generative models. This quantization technique maintains higher data fidelity by employing more in-depth tokens. However, increasing the token number in generative models leads to slower inference speeds. To this end, we introduce ResGen, an efficient RVQ-based discrete diffusion model that generates high-fidelity samples without compromising sampling speed. Our key idea is a direct prediction of vector embedding of collective tokens rather than individual ones. Moreover, we demonstrate that our proposed token masking and multi-token prediction method can be formulated within a principled probabilistic framework using a discrete diffusion process and variational inference. We validate the efficacy and generalizability of the proposed method on two challenging tasks across different modalities: conditional image generation} on ImageNet 256x256 and zero-shot text-to-speech synthesis. Experimental results demonstrate that ResGen outperforms autoregressive counterparts in both tasks, delivering superior performance without compromising sampling speed. Furthermore, as we scale the depth of RVQ, our generative models exhibit enhanced generation fidelity or faster sampling speeds compared to similarly sized baseline models. The project page can be found at https://resgen-genai.github.io
DICE: Discrete Inversion Enabling Controllable Editing for Multinomial Diffusion and Masked Generative Models
Discrete diffusion models have achieved success in tasks like image generation and masked language modeling but face limitations in controlled content editing. We introduce DICE (Discrete Inversion for Controllable Editing), the first approach to enable precise inversion for discrete diffusion models, including multinomial diffusion and masked generative models. By recording noise sequences and masking patterns during the reverse diffusion process, DICE enables accurate reconstruction and flexible editing of discrete data without the need for predefined masks or attention manipulation. We demonstrate the effectiveness of DICE across both image and text domains, evaluating it on models such as VQ-Diffusion, Paella, and RoBERTa. Our results show that DICE preserves high data fidelity while enhancing editing capabilities, offering new opportunities for fine-grained content manipulation in discrete spaces. For project webpage, see https://hexiaoxiao-cs.github.io/DICE/.
Reward Forcing: Efficient Streaming Video Generation with Rewarded Distribution Matching Distillation
Efficient streaming video generation is critical for simulating interactive and dynamic worlds. Existing methods distill few-step video diffusion models with sliding window attention, using initial frames as sink tokens to maintain attention performance and reduce error accumulation. However, video frames become overly dependent on these static tokens, resulting in copied initial frames and diminished motion dynamics. To address this, we introduce Reward Forcing, a novel framework with two key designs. First, we propose EMA-Sink, which maintains fixed-size tokens initialized from initial frames and continuously updated by fusing evicted tokens via exponential moving average as they exit the sliding window. Without additional computation cost, EMA-Sink tokens capture both long-term context and recent dynamics, preventing initial frame copying while maintaining long-horizon consistency. Second, to better distill motion dynamics from teacher models, we propose a novel Rewarded Distribution Matching Distillation (Re-DMD). Vanilla distribution matching treats every training sample equally, limiting the model's ability to prioritize dynamic content. Instead, Re-DMD biases the model's output distribution toward high-reward regions by prioritizing samples with greater dynamics rated by a vision-language model. Re-DMD significantly enhances motion quality while preserving data fidelity. We include both quantitative and qualitative experiments to show that Reward Forcing achieves state-of-the-art performance on standard benchmarks while enabling high-quality streaming video generation at 23.1 FPS on a single H100 GPU.
Solving Inverse Problems with FLAIR
Flow-based latent generative models such as Stable Diffusion 3 are able to generate images with remarkable quality, even enabling photorealistic text-to-image generation. Their impressive performance suggests that these models should also constitute powerful priors for inverse imaging problems, but that approach has not yet led to comparable fidelity. There are several key obstacles: (i) the encoding into a lower-dimensional latent space makes the underlying (forward) mapping non-linear; (ii) the data likelihood term is usually intractable; and (iii) learned generative models struggle to recover rare, atypical data modes during inference. We present FLAIR, a novel training free variational framework that leverages flow-based generative models as a prior for inverse problems. To that end, we introduce a variational objective for flow matching that is agnostic to the type of degradation, and combine it with deterministic trajectory adjustments to recover atypical modes. To enforce exact consistency with the observed data, we decouple the optimization of the data fidelity and regularization terms. Moreover, we introduce a time-dependent calibration scheme in which the strength of the regularization is modulated according to off-line accuracy estimates. Results on standard imaging benchmarks demonstrate that FLAIR consistently outperforms existing diffusion- and flow-based methods in terms of reconstruction quality and sample diversity.
Consistent Time-of-Flight Depth Denoising via Graph-Informed Geometric Attention
Depth images captured by Time-of-Flight (ToF) sensors are prone to noise, requiring denoising for reliable downstream applications. Previous works either focus on single-frame processing, or perform multi-frame processing without considering depth variations at corresponding pixels across frames, leading to undesirable temporal inconsistency and spatial ambiguity. In this paper, we propose a novel ToF depth denoising network leveraging motion-invariant graph fusion to simultaneously enhance temporal stability and spatial sharpness. Specifically, despite depth shifts across frames, graph structures exhibit temporal self-similarity, enabling cross-frame geometric attention for graph fusion. Then, by incorporating an image smoothness prior on the fused graph and data fidelity term derived from ToF noise distribution, we formulate a maximum a posterior problem for ToF denoising. Finally, the solution is unrolled into iterative filters whose weights are adaptively learned from the graph-informed geometric attention, producing a high-performance yet interpretable network. Experimental results demonstrate that the proposed scheme achieves state-of-the-art performance in terms of accuracy and consistency on synthetic DVToF dataset and exhibits robust generalization on the real Kinectv2 dataset. Source code will be released at https://github.com/davidweidawang/GIGA-ToF{https://github.com/davidweidawang/GIGA-ToF}.
Manifold Learning by Mixture Models of VAEs for Inverse Problems
Representing a manifold of very high-dimensional data with generative models has been shown to be computationally efficient in practice. However, this requires that the data manifold admits a global parameterization. In order to represent manifolds of arbitrary topology, we propose to learn a mixture model of variational autoencoders. Here, every encoder-decoder pair represents one chart of a manifold. We propose a loss function for maximum likelihood estimation of the model weights and choose an architecture that provides us the analytical expression of the charts and of their inverses. Once the manifold is learned, we use it for solving inverse problems by minimizing a data fidelity term restricted to the learned manifold. To solve the arising minimization problem we propose a Riemannian gradient descent algorithm on the learned manifold. We demonstrate the performance of our method for low-dimensional toy examples as well as for deblurring and electrical impedance tomography on certain image manifolds.
A Plug-and-Play Image Registration Network
Deformable image registration (DIR) is an active research topic in biomedical imaging. There is a growing interest in developing DIR methods based on deep learning (DL). A traditional DL approach to DIR is based on training a convolutional neural network (CNN) to estimate the registration field between two input images. While conceptually simple, this approach comes with a limitation that it exclusively relies on a pre-trained CNN without explicitly enforcing fidelity between the registered image and the reference. We present plug-and-play image registration network (PIRATE) as a new DIR method that addresses this issue by integrating an explicit data-fidelity penalty and a CNN prior. PIRATE pre-trains a CNN denoiser on the registration field and "plugs" it into an iterative method as a regularizer. We additionally present PIRATE+ that fine-tunes the CNN prior in PIRATE using deep equilibrium models (DEQ). PIRATE+ interprets the fixed-point iteration of PIRATE as a network with effectively infinite layers and then trains the resulting network end-to-end, enabling it to learn more task-specific information and boosting its performance. Our numerical results on OASIS and CANDI datasets show that our methods achieve state-of-the-art performance on DIR.
Plug-and-Play Posterior Sampling under Mismatched Measurement and Prior Models
Posterior sampling has been shown to be a powerful Bayesian approach for solving imaging inverse problems. The recent plug-and-play unadjusted Langevin algorithm (PnP-ULA) has emerged as a promising method for Monte Carlo sampling and minimum mean squared error (MMSE) estimation by combining physical measurement models with deep-learning priors specified using image denoisers. However, the intricate relationship between the sampling distribution of PnP-ULA and the mismatched data-fidelity and denoiser has not been theoretically analyzed. We address this gap by proposing a posterior-L2 pseudometric and using it to quantify an explicit error bound for PnP-ULA under mismatched posterior distribution. We numerically validate our theory on several inverse problems such as sampling from Gaussian mixture models and image deblurring. Our results suggest that the sensitivity of the sampling distribution of PnP-ULA to a mismatch in the measurement model and the denoiser can be precisely characterized.
Synthetic Dataset Evaluation Based on Generalized Cross Validation
With the rapid advancement of synthetic dataset generation techniques, evaluating the quality of synthetic data has become a critical research focus. Robust evaluation not only drives innovations in data generation methods but also guides researchers in optimizing the utilization of these synthetic resources. However, current evaluation studies for synthetic datasets remain limited, lacking a universally accepted standard framework. To address this, this paper proposes a novel evaluation framework integrating generalized cross-validation experiments and domain transfer learning principles, enabling generalizable and comparable assessments of synthetic dataset quality. The framework involves training task-specific models (e.g., YOLOv5s) on both synthetic datasets and multiple real-world benchmarks (e.g., KITTI, BDD100K), forming a cross-performance matrix. Following normalization, a Generalized Cross-Validation (GCV) Matrix is constructed to quantify domain transferability. The framework introduces two key metrics. One measures the simulation quality by quantifying the similarity between synthetic data and real-world datasets, while another evaluates the transfer quality by assessing the diversity and coverage of synthetic data across various real-world scenarios. Experimental validation on Virtual KITTI demonstrates the effectiveness of our proposed framework and metrics in assessing synthetic data fidelity. This scalable and quantifiable evaluation solution overcomes traditional limitations, providing a principled approach to guide synthetic dataset optimization in artificial intelligence research.
Latent Diffusion Models for Attribute-Preserving Image Anonymization
Generative techniques for image anonymization have great potential to generate datasets that protect the privacy of those depicted in the images, while achieving high data fidelity and utility. Existing methods have focused extensively on preserving facial attributes, but failed to embrace a more comprehensive perspective that considers the scene and background into the anonymization process. This paper presents, to the best of our knowledge, the first approach to image anonymization based on Latent Diffusion Models (LDMs). Every element of a scene is maintained to convey the same meaning, yet manipulated in a way that makes re-identification difficult. We propose two LDMs for this purpose: CAMOUFLaGE-Base exploits a combination of pre-trained ControlNets, and a new controlling mechanism designed to increase the distance between the real and anonymized images. CAMOFULaGE-Light is based on the Adapter technique, coupled with an encoding designed to efficiently represent the attributes of different persons in a scene. The former solution achieves superior performance on most metrics and benchmarks, while the latter cuts the inference time in half at the cost of fine-tuning a lightweight module. We show through extensive experimental comparison that the proposed method is competitive with the state-of-the-art concerning identity obfuscation whilst better preserving the original content of the image and tackling unresolved challenges that current solutions fail to address.
RAGalyst: Automated Human-Aligned Agentic Evaluation for Domain-Specific RAG
Retrieval-Augmented Generation (RAG) is a critical technique for grounding Large Language Models (LLMs) in factual evidence, yet evaluating RAG systems in specialized, safety-critical domains remains a significant challenge. Existing evaluation frameworks often rely on heuristic-based metrics that fail to capture domain-specific nuances and other works utilize LLM-as-a-Judge approaches that lack validated alignment with human judgment. This paper introduces RAGalyst, an automated, human-aligned agentic framework designed for the rigorous evaluation of domain-specific RAG systems. RAGalyst features an agentic pipeline that generates high-quality, synthetic question-answering (QA) datasets from source documents, incorporating an agentic filtering step to ensure data fidelity. The framework refines two key LLM-as-a-Judge metrics-Answer Correctness and Answerability-using prompt optimization to achieve a strong correlation with human annotations. Applying this framework to evaluate various RAG components across three distinct domains (military operations, cybersecurity, and bridge engineering), we find that performance is highly context-dependent. No single embedding model, LLM, or hyperparameter configuration proves universally optimal. Additionally, we provide an analysis on the most common low Answer Correctness reasons in RAG. These findings highlight the necessity of a systematic evaluation framework like RAGalyst, which empowers practitioners to uncover domain-specific trade-offs and make informed design choices for building reliable and effective RAG systems. RAGalyst is available on our Github.
Fidelity and Privacy of Synthetic Medical Data
The digitization of medical records ushered in a new era of big data to clinical science, and with it the possibility that data could be shared, to multiply insights beyond what investigators could abstract from paper records. The need to share individual-level medical data to accelerate innovation in precision medicine continues to grow, and has never been more urgent, as scientists grapple with the COVID-19 pandemic. However, enthusiasm for the use of big data has been tempered by a fully appropriate concern for patient autonomy and privacy. That is, the ability to extract private or confidential information about an individual, in practice, renders it difficult to share data, since significant infrastructure and data governance must be established before data can be shared. Although HIPAA provided de-identification as an approved mechanism for data sharing, linkage attacks were identified as a major vulnerability. A variety of mechanisms have been established to avoid leaking private information, such as field suppression or abstraction, strictly limiting the amount of information that can be shared, or employing mathematical techniques such as differential privacy. Another approach, which we focus on here, is creating synthetic data that mimics the underlying data. For synthetic data to be a useful mechanism in support of medical innovation and a proxy for real-world evidence, one must demonstrate two properties of the synthetic dataset: (1) any analysis on the real data must be matched by analysis of the synthetic data (statistical fidelity) and (2) the synthetic data must preserve privacy, with minimal risk of re-identification (privacy guarantee). In this paper we propose a framework for quantifying the statistical fidelity and privacy preservation properties of synthetic datasets and demonstrate these metrics for synthetic data generated by Syntegra technology.
GRAID: Enhancing Spatial Reasoning of VLMs Through High-Fidelity Data Generation
Vision Language Models (VLMs) achieve strong performance on many vision-language tasks but often struggle with spatial reasoningx2014a prerequisite for many applications. Empirically, we find that a dataset produced by a current training data generation pipeline has a 57.6% human validation rate. These rates stem from current limitations: single-image 3D reconstruction introduces cascading modeling errors and requires wide answer tolerances, while caption-based methods require hyper-detailed annotations and suffer from generative hallucinations. We present GRAID, built on the key insight that qualitative spatial relationships can be reliably determined from 2D geometric primitives alone. By operating exclusively on 2D bounding boxes from standard object detectors, GRAID avoids both 3D reconstruction errors and generative hallucinations, resulting in datasets that are of higher quality than existing tools that produce similar datasets as validated by human evaluations. We apply our framework to the BDD100k, NuImages, and Waymo datasets, generating over 8.5 million high-quality VQA pairs creating questions spanning spatial relations, counting, ranking, and size comparisons. We evaluate one of the datasets and find it achieves 91.16% human-validated accuracyx2014compared to 57.6% on a dataset generated by recent work. Critically, we demonstrate that when trained on GRAID data, models learn spatial reasoning concepts that generalize: models fine-tuned on 6 question types improve on over 10 held-out types, with accuracy gains of 47.5% on BDD and 37.9% on NuImages for Llama 3.2B 11B, and when trained on all questions types, achieve improvements on several existing benchmarks such as BLINK. The GRAID framework, datasets, and additional information can be found this https URL{here}.
Bootstrapping Language-Guided Navigation Learning with Self-Refining Data Flywheel
Creating high-quality data for training robust language-instructed agents is a long-lasting challenge in embodied AI. In this paper, we introduce a Self-Refining Data Flywheel (SRDF) that generates high-quality and large-scale navigational instruction-trajectory pairs by iteratively refining the data pool through the collaboration between two models, the instruction generator and the navigator, without any human-in-the-loop annotation. Specifically, SRDF starts with using a base generator to create an initial data pool for training a base navigator, followed by applying the trained navigator to filter the data pool. This leads to higher-fidelity data to train a better generator, which can, in turn, produce higher-quality data for training the next-round navigator. Such a flywheel establishes a data self-refining process, yielding a continuously improved and highly effective dataset for large-scale language-guided navigation learning. Our experiments demonstrate that after several flywheel rounds, the navigator elevates the performance boundary from 70% to 78% SPL on the classic R2R test set, surpassing human performance (76%) for the first time. Meanwhile, this process results in a superior generator, evidenced by a SPICE increase from 23.5 to 26.2, better than all previous VLN instruction generation methods. Finally, we demonstrate the scalability of our method through increasing environment and instruction diversity, and the generalization ability of our pre-trained navigator across various downstream navigation tasks, surpassing state-of-the-art methods by a large margin in all cases.
Multi-fidelity climate model parameterization for better generalization and extrapolation
Machine-learning-based parameterizations (i.e. representation of sub-grid processes) of global climate models or turbulent simulations have recently been proposed as a powerful alternative to physical, but empirical, representations, offering a lower computational cost and higher accuracy. Yet, those approaches still suffer from a lack of generalization and extrapolation beyond the training data, which is however critical to projecting climate change or unobserved regimes of turbulence. Here we show that a multi-fidelity approach, which integrates datasets of different accuracy and abundance, can provide the best of both worlds: the capacity to extrapolate leveraging the physically-based parameterization and a higher accuracy using the machine-learning-based parameterizations. In an application to climate modeling, the multi-fidelity framework yields more accurate climate projections without requiring major increase in computational resources. Our multi-fidelity randomized prior networks (MF-RPNs) combine physical parameterization data as low-fidelity and storm-resolving historical run's data as high-fidelity. To extrapolate beyond the training data, the MF-RPNs are tested on high-fidelity warming scenarios, +4K, data. We show the MF-RPN's capacity to return much more skillful predictions compared to either low- or high-fidelity (historical data) simulations trained only on one regime while providing trustworthy uncertainty quantification across a wide range of scenarios. Our approach paves the way for the use of machine-learning based methods that can optimally leverage historical observations or high-fidelity simulations and extrapolate to unseen regimes such as climate change.
Conditional Data Synthesis Augmentation
Reliable machine learning and statistical analysis rely on diverse, well-distributed training data. However, real-world datasets are often limited in size and exhibit underrepresentation across key subpopulations, leading to biased predictions and reduced performance, particularly in supervised tasks such as classification. To address these challenges, we propose Conditional Data Synthesis Augmentation (CoDSA), a novel framework that leverages generative models, such as diffusion models, to synthesize high-fidelity data for improving model performance across multimodal domains including tabular, textual, and image data. CoDSA generates synthetic samples that faithfully capture the conditional distributions of the original data, with a focus on under-sampled or high-interest regions. Through transfer learning, CoDSA fine-tunes pre-trained generative models to enhance the realism of synthetic data and increase sample density in sparse areas. This process preserves inter-modal relationships, mitigates data imbalance, improves domain adaptation, and boosts generalization. We also introduce a theoretical framework that quantifies the statistical accuracy improvements enabled by CoDSA as a function of synthetic sample volume and targeted region allocation, providing formal guarantees of its effectiveness. Extensive experiments demonstrate that CoDSA consistently outperforms non-adaptive augmentation strategies and state-of-the-art baselines in both supervised and unsupervised settings.
From Model-Based to Data-Driven Simulation: Challenges and Trends in Autonomous Driving
Simulation is an integral part in the process of developing autonomous vehicles and advantageous for training, validation, and verification of driving functions. Even though simulations come with a series of benefits compared to real-world experiments, various challenges still prevent virtual testing from entirely replacing physical test-drives. Our work provides an overview of these challenges with regard to different aspects and types of simulation and subsumes current trends to overcome them. We cover aspects around perception-, behavior- and content-realism as well as general hurdles in the domain of simulation. Among others, we observe a trend of data-driven, generative approaches and high-fidelity data synthesis to increasingly replace model-based simulation.
Mano Report
Graphical user interfaces (GUIs) are the primary medium for human-computer interaction, yet automating GUI interactions remains challenging due to the complexity of visual elements, dynamic environments, and the need for multi-step reasoning. Existing methods based on vision-language models (VLMs) often suffer from limited resolution, domain mismatch, and insufficient sequential decisionmaking capability. To address these issues, we propose Mano, a robust GUI agent built upon a multi-modal foundation model pre-trained on extensive web and computer system data. Our approach integrates a novel simulated environment for high-fidelity data generation, a three-stage training pipeline (supervised fine-tuning, offline reinforcement learning, and online reinforcement learning), and a verification module for error recovery. Mano demonstrates state-of-the-art performance on multiple GUI benchmarks, including Mind2Web and OSWorld, achieving significant improvements in success rate and operational accuracy. Our work provides new insights into the effective integration of reinforcement learning with VLMs for practical GUI agent deployment, highlighting the importance of domain-specific data, iterative training, and holistic reward design.
Blockwise Flow Matching: Improving Flow Matching Models For Efficient High-Quality Generation
Recently, Flow Matching models have pushed the boundaries of high-fidelity data generation across a wide range of domains. It typically employs a single large network to learn the entire generative trajectory from noise to data. Despite their effectiveness, this design struggles to capture distinct signal characteristics across timesteps simultaneously and incurs substantial inference costs due to the iterative evaluation of the entire model. To address these limitations, we propose Blockwise Flow Matching (BFM), a novel framework that partitions the generative trajectory into multiple temporal segments, each modeled by smaller but specialized velocity blocks. This blockwise design enables each block to specialize effectively in its designated interval, improving inference efficiency and sample quality. To further enhance generation fidelity, we introduce a Semantic Feature Guidance module that explicitly conditions velocity blocks on semantically rich features aligned with pretrained representations. Additionally, we propose a lightweight Feature Residual Approximation strategy that preserves semantic quality while significantly reducing inference cost. Extensive experiments on ImageNet 256x256 demonstrate that BFM establishes a substantially improved Pareto frontier over existing Flow Matching methods, achieving 2.1x to 4.9x accelerations in inference complexity at comparable generation performance. Code is available at https://github.com/mlvlab/BFM.
Extreme Event Prediction with Multi-agent Reinforcement Learning-based Parametrization of Atmospheric and Oceanic Turbulence
Global climate models (GCMs) are the main tools for understanding and predicting climate change. However, due to limited numerical resolutions, these models suffer from major structural uncertainties; e.g., they cannot resolve critical processes such as small-scale eddies in atmospheric and oceanic turbulence. Thus, such small-scale processes have to be represented as a function of the resolved scales via closures (parametrization). The accuracy of these closures is particularly important for capturing climate extremes. Traditionally, such closures are based on heuristics and simplifying assumptions about the unresolved physics. Recently, supervised-learned closures, trained offline on high-fidelity data, have been shown to outperform the classical physics-based closures. However, this approach requires a significant amount of high-fidelity training data and can also lead to instabilities. Reinforcement learning is emerging as a potent alternative for developing such closures as it requires only low-order statistics and leads to stable closures. In Scientific Multi-Agent Reinforcement Learning (SMARL) computational elements serve a dual role of discretization points and learning agents. We leverage SMARL and fundamentals of turbulence physics to learn closures for prototypes of atmospheric and oceanic turbulence. The policy is trained using only the enstrophy spectrum, which is nearly invariant and can be estimated from a few high-fidelity samples (these few samples are far from enough for supervised/offline learning). We show that these closures lead to stable low-resolution simulations that, at a fraction of the cost, can reproduce the high-fidelity simulations' statistics, including the tails of the probability density functions. The results demonstrate the high potential of SMARL for closure modeling for GCMs, especially in the regime of scarce data and indirect observations.
FETA: Towards Specializing Foundation Models for Expert Task Applications
Foundation Models (FMs) have demonstrated unprecedented capabilities including zero-shot learning, high fidelity data synthesis, and out of domain generalization. However, as we show in this paper, FMs still have poor out-of-the-box performance on expert tasks (e.g. retrieval of car manuals technical illustrations from language queries), data for which is either unseen or belonging to a long-tail part of the data distribution of the huge datasets used for FM pre-training. This underlines the necessity to explicitly evaluate and finetune FMs on such expert tasks, arguably ones that appear the most in practical real-world applications. In this paper, we propose a first of its kind FETA benchmark built around the task of teaching FMs to understand technical documentation, via learning to match their graphical illustrations to corresponding language descriptions. Our FETA benchmark focuses on text-to-image and image-to-text retrieval in public car manuals and sales catalogue brochures. FETA is equipped with a procedure for completely automatic annotation extraction (code would be released upon acceptance), allowing easy extension of FETA to more documentation types and application domains in the future. Our automatic annotation leads to an automated performance metric shown to be consistent with metrics computed on human-curated annotations (also released). We provide multiple baselines and analysis of popular FMs on FETA leading to several interesting findings that we believe would be very valuable to the FM community, paving the way towards real-world application of FMs for practical expert tasks currently 'overlooked' by standard benchmarks focusing on common objects.
OLATverse: A Large-scale Real-world Object Dataset with Precise Lighting Control
We introduce OLATverse, a large-scale dataset comprising around 9M images of 765 real-world objects, captured from multiple viewpoints under a diverse set of precisely controlled lighting conditions. While recent advances in object-centric inverse rendering, novel view synthesis and relighting have shown promising results, most techniques still heavily rely on the synthetic datasets for training and small-scale real-world datasets for benchmarking, which limits their realism and generalization. To address this gap, OLATverse offers two key advantages over existing datasets: large-scale coverage of real objects and high-fidelity appearance under precisely controlled illuminations. Specifically, OLATverse contains 765 common and uncommon real-world objects, spanning a wide range of material categories. Each object is captured using 35 DSLR cameras and 331 individually controlled light sources, enabling the simulation of diverse illumination conditions. In addition, for each object, we provide well-calibrated camera parameters, accurate object masks, photometric surface normals, and diffuse albedo as auxiliary resources. We also construct an extensive evaluation set, establishing the first comprehensive real-world object-centric benchmark for inverse rendering and normal estimation. We believe that OLATverse represents a pivotal step toward integrating the next generation of inverse rendering and relighting methods with real-world data. The full dataset, along with all post-processing workflows, will be publicly released at https://vcai.mpi-inf.mpg.de/projects/OLATverse/.
High-Fidelity Simulated Data Generation for Real-World Zero-Shot Robotic Manipulation Learning with Gaussian Splatting
The scalability of robotic learning is fundamentally bottlenecked by the significant cost and labor of real-world data collection. While simulated data offers a scalable alternative, it often fails to generalize to the real world due to significant gaps in visual appearance, physical properties, and object interactions. To address this, we propose RoboSimGS, a novel Real2Sim2Real framework that converts multi-view real-world images into scalable, high-fidelity, and physically interactive simulation environments for robotic manipulation. Our approach reconstructs scenes using a hybrid representation: 3D Gaussian Splatting (3DGS) captures the photorealistic appearance of the environment, while mesh primitives for interactive objects ensure accurate physics simulation. Crucially, we pioneer the use of a Multi-modal Large Language Model (MLLM) to automate the creation of physically plausible, articulated assets. The MLLM analyzes visual data to infer not only physical properties (e.g., density, stiffness) but also complex kinematic structures (e.g., hinges, sliding rails) of objects. We demonstrate that policies trained entirely on data generated by RoboSimGS achieve successful zero-shot sim-to-real transfer across a diverse set of real-world manipulation tasks. Furthermore, data from RoboSimGS significantly enhances the performance and generalization capabilities of SOTA methods. Our results validate RoboSimGS as a powerful and scalable solution for bridging the sim-to-real gap.
Fidelity-Aware Data Composition for Robust Robot Generalization
Generalist robot policies trained on large-scale, visually homogeneous datasets can be susceptible to shortcut learning, which impairs their out-of-distribution (OOD) generalization. While generative data augmentation is a common approach to introduce diversity, it presents a subtle challenge: data composition. Naively mixing real and synthetic data can corrupt the learning signal, as this process often prioritizes visual diversity at the expense of information fidelity. This paper suggests that robust generalization depends on principled, fidelity-aware data composition. We introduce Coherent Information Fidelity Tuning (CIFT), a framework that treats data composition as an optimization problem. CIFT uses a practical proxy for Information Fidelity based on the feature-space geometry of a dataset. This enables the identification of a phase transition, termed the Decoherence Point, where training stability degrades. The framework includes a generative engine, Multi-View Video Augmentation (MVAug), to synthesize a causally disentangled data spectrum for this tuning process. Applying CIFT to policy architectures such as pi_0 and Diffusion Policy improves OOD success rates by over 54\%. These results indicate that fidelity-aware composition, beyond data synthesis alone, is an important component for developing robust, general-purpose robots.
TabularARGN: A Flexible and Efficient Auto-Regressive Framework for Generating High-Fidelity Synthetic Data
Synthetic data generation for tabular datasets must balance fidelity, efficiency, and versatility to meet the demands of real-world applications. We introduce the Tabular Auto-Regressive Generative Network (TabularARGN), a flexible framework designed to handle mixed-type, multivariate, and sequential datasets. By training on all possible conditional probabilities, TabularARGN supports advanced features such as fairness-aware generation, imputation, and conditional generation on any subset of columns. The framework achieves state-of-the-art synthetic data quality while significantly reducing training and inference times, making it ideal for large-scale datasets with diverse structures. Evaluated across established benchmarks, including realistic datasets with complex relationships, TabularARGN demonstrates its capability to synthesize high-quality data efficiently. By unifying flexibility and performance, this framework paves the way for practical synthetic data generation across industries.
Re$^3$Sim: Generating High-Fidelity Simulation Data via 3D-Photorealistic Real-to-Sim for Robotic Manipulation
Real-world data collection for robotics is costly and resource-intensive, requiring skilled operators and expensive hardware. Simulations offer a scalable alternative but often fail to achieve sim-to-real generalization due to geometric and visual gaps. To address these challenges, we propose a 3D-photorealistic real-to-sim system, namely, RE^3SIM, addressing geometric and visual sim-to-real gaps. RE^3SIM employs advanced 3D reconstruction and neural rendering techniques to faithfully recreate real-world scenarios, enabling real-time rendering of simulated cross-view cameras within a physics-based simulator. By utilizing privileged information to collect expert demonstrations efficiently in simulation, and train robot policies with imitation learning, we validate the effectiveness of the real-to-sim-to-real pipeline across various manipulation task scenarios. Notably, with only simulated data, we can achieve zero-shot sim-to-real transfer with an average success rate exceeding 58%. To push the limit of real-to-sim, we further generate a large-scale simulation dataset, demonstrating how a robust policy can be built from simulation data that generalizes across various objects. Codes and demos are available at: http://xshenhan.github.io/Re3Sim/.
InternData-A1: Pioneering High-Fidelity Synthetic Data for Pre-training Generalist Policy
Recent works explore how real and synthetic data contribute to Vision-Language-Action (VLA) models' generalization. While current VLA models have shown the strong effectiveness of large-scale real-robot pre-training, synthetic data has not previously demonstrated comparable capability at scale. This paper provides the first evidence that synthetic data alone can match the performance of the strongest π-dataset in pre-training a VLA model, revealing the substantial value of large-scale simulation. The resulting model also exhibits surprisingly zero-shot sim-to-real transfer on several challenging tasks. Our synthetic dataset, InternData-A1, contains over 630k trajectories and 7,433 hours across 4 embodiments, 18 skills, 70 tasks, and 227 scenes, covering rigid, articulated, deformable, and fluid-object manipulation. It is generated through a highly autonomous, fully decoupled, and compositional simulation pipeline that enables long-horizon skill composition, flexible task assembly, and heterogeneous embodiments with minimal manual tuning. Using the same architecture as π_0, we pre-train a model entirely on InternData-A1 and find that it matches the official π_0 across 49 simulation tasks, 5 real-world tasks, and 4 long-horizon dexterous tasks. We release the dataset and will open-source the generation pipeline to broaden access to large-scale robotic data and to lower the barrier to scalable data creation for embodied AI research.
SynSpill: Improved Industrial Spill Detection With Synthetic Data
Large-scale Vision-Language Models (VLMs) have transformed general-purpose visual recognition through strong zero-shot capabilities. However, their performance degrades significantly in niche, safety-critical domains such as industrial spill detection, where hazardous events are rare, sensitive, and difficult to annotate. This scarcity -- driven by privacy concerns, data sensitivity, and the infrequency of real incidents -- renders conventional fine-tuning of detectors infeasible for most industrial settings. We address this challenge by introducing a scalable framework centered on a high-quality synthetic data generation pipeline. We demonstrate that this synthetic corpus enables effective Parameter-Efficient Fine-Tuning (PEFT) of VLMs and substantially boosts the performance of state-of-the-art object detectors such as YOLO and DETR. Notably, in the absence of synthetic data (SynSpill dataset), VLMs still generalize better to unseen spill scenarios than these detectors. When SynSpill is used, both VLMs and detectors achieve marked improvements, with their performance becoming comparable. Our results underscore that high-fidelity synthetic data is a powerful means to bridge the domain gap in safety-critical applications. The combination of synthetic generation and lightweight adaptation offers a cost-effective, scalable pathway for deploying vision systems in industrial environments where real data is scarce/impractical to obtain. Project Page: https://synspill.vercel.app
Infinite Mobility: Scalable High-Fidelity Synthesis of Articulated Objects via Procedural Generation
Large-scale articulated objects with high quality are desperately needed for multiple tasks related to embodied AI. Most existing methods for creating articulated objects are either data-driven or simulation based, which are limited by the scale and quality of the training data or the fidelity and heavy labour of the simulation. In this paper, we propose Infinite Mobility, a novel method for synthesizing high-fidelity articulated objects through procedural generation. User study and quantitative evaluation demonstrate that our method can produce results that excel current state-of-the-art methods and are comparable to human-annotated datasets in both physics property and mesh quality. Furthermore, we show that our synthetic data can be used as training data for generative models, enabling next-step scaling up. Code is available at https://github.com/Intern-Nexus/Infinite-Mobility
Disentangled Multi-Fidelity Deep Bayesian Active Learning
To balance quality and cost, various domain areas of science and engineering run simulations at multiple levels of sophistication. Multi-fidelity active learning aims to learn a direct mapping from input parameters to simulation outputs at the highest fidelity by actively acquiring data from multiple fidelity levels. However, existing approaches based on Gaussian processes are hardly scalable to high-dimensional data. Deep learning-based methods often impose a hierarchical structure in hidden representations, which only supports passing information from low-fidelity to high-fidelity. These approaches can lead to the undesirable propagation of errors from low-fidelity representations to high-fidelity ones. We propose a novel framework called Disentangled Multi-fidelity Deep Bayesian Active Learning (D-MFDAL), which learns the surrogate models conditioned on the distribution of functions at multiple fidelities. On benchmark tasks of learning deep surrogates of partial differential equations including heat equation, Poisson's equation and fluid simulations, our approach significantly outperforms state-of-the-art in prediction accuracy and sample efficiency.
Fast LiDAR Data Generation with Rectified Flows
Building LiDAR generative models holds promise as powerful data priors for restoration, scene manipulation, and scalable simulation in autonomous mobile robots. In recent years, approaches using diffusion models have emerged, significantly improving training stability and generation quality. Despite their success, diffusion models require numerous iterations of running neural networks to generate high-quality samples, making the increasing computational cost a potential barrier for robotics applications. To address this challenge, this paper presents R2Flow, a fast and high-fidelity generative model for LiDAR data. Our method is based on rectified flows that learn straight trajectories, simulating data generation with significantly fewer sampling steps compared to diffusion models. We also propose an efficient Transformer-based model architecture for processing the image representation of LiDAR range and reflectance measurements. Our experiments on unconditional LiDAR data generation using the KITTI-360 dataset demonstrate the effectiveness of our approach in terms of both efficiency and quality.
HPR3D: Hierarchical Proxy Representation for High-Fidelity 3D Reconstruction and Controllable Editing
Current 3D representations like meshes, voxels, point clouds, and NeRF-based neural implicit fields exhibit significant limitations: they are often task-specific, lacking universal applicability across reconstruction, generation, editing, and driving. While meshes offer high precision, their dense vertex data complicates editing; NeRFs deliver excellent rendering but suffer from structural ambiguity, hindering animation and manipulation; all representations inherently struggle with the trade-off between data complexity and fidelity. To overcome these issues, we introduce a novel 3D Hierarchical Proxy Node representation. Its core innovation lies in representing an object's shape and texture via a sparse set of hierarchically organized (tree-structured) proxy nodes distributed on its surface and interior. Each node stores local shape and texture information (implicitly encoded by a small MLP) within its neighborhood. Querying any 3D coordinate's properties involves efficient neural interpolation and lightweight decoding from relevant nearby and parent nodes. This framework yields a highly compact representation where nodes align with local semantics, enabling direct drag-and-edit manipulation, and offers scalable quality-complexity control. Extensive experiments across 3D reconstruction and editing demonstrate our method's expressive efficiency, high-fidelity rendering quality, and superior editability.
SynLLM: A Comparative Analysis of Large Language Models for Medical Tabular Synthetic Data Generation via Prompt Engineering
Access to real-world medical data is often restricted due to privacy regulations, posing a significant barrier to the advancement of healthcare research. Synthetic data offers a promising alternative; however, generating realistic, clinically valid, and privacy-conscious records remains a major challenge. Recent advancements in Large Language Models (LLMs) offer new opportunities for structured data generation; however, existing approaches frequently lack systematic prompting strategies and comprehensive, multi-dimensional evaluation frameworks. In this paper, we present SynLLM, a modular framework for generating high-quality synthetic medical tabular data using 20 state-of-the-art open-source LLMs, including LLaMA, Mistral, and GPT variants, guided by structured prompts. We propose four distinct prompt types, ranging from example-driven to rule-based constraints, that encode schema, metadata, and domain knowledge to control generation without model fine-tuning. Our framework features a comprehensive evaluation pipeline that rigorously assesses generated data across statistical fidelity, clinical consistency, and privacy preservation. We evaluate SynLLM across three public medical datasets, including Diabetes, Cirrhosis, and Stroke, using 20 open-source LLMs. Our results show that prompt engineering significantly impacts data quality and privacy risk, with rule-based prompts achieving the best privacy-quality balance. SynLLM establishes that, when guided by well-designed prompts and evaluated with robust, multi-metric criteria, LLMs can generate synthetic medical data that is both clinically plausible and privacy-aware, paving the way for safer and more effective data sharing in healthcare research.
Slight Corruption in Pre-training Data Makes Better Diffusion Models
Diffusion models (DMs) have shown remarkable capabilities in generating realistic high-quality images, audios, and videos. They benefit significantly from extensive pre-training on large-scale datasets, including web-crawled data with paired data and conditions, such as image-text and image-class pairs. Despite rigorous filtering, these pre-training datasets often inevitably contain corrupted pairs where conditions do not accurately describe the data. This paper presents the first comprehensive study on the impact of such corruption in pre-training data of DMs. We synthetically corrupt ImageNet-1K and CC3M to pre-train and evaluate over 50 conditional DMs. Our empirical findings reveal that various types of slight corruption in pre-training can significantly enhance the quality, diversity, and fidelity of the generated images across different DMs, both during pre-training and downstream adaptation stages. Theoretically, we consider a Gaussian mixture model and prove that slight corruption in the condition leads to higher entropy and a reduced 2-Wasserstein distance to the ground truth of the data distribution generated by the corruptly trained DMs. Inspired by our analysis, we propose a simple method to improve the training of DMs on practical datasets by adding condition embedding perturbations (CEP). CEP significantly improves the performance of various DMs in both pre-training and downstream tasks. We hope that our study provides new insights into understanding the data and pre-training processes of DMs.
Euclid: Supercharging Multimodal LLMs with Synthetic High-Fidelity Visual Descriptions
Multimodal large language models (MLLMs) have made rapid progress in recent years, yet continue to struggle with low-level visual perception (LLVP) -- particularly the ability to accurately describe the geometric details of an image. This capability is crucial for applications in areas such as robotics, medical image analysis, and manufacturing. In this paper, we first introduce Geoperception, a benchmark designed to evaluate an MLLM's ability to accurately transcribe 2D geometric information from an image. Using this benchmark, we demonstrate the limitations of leading MLLMs, and then conduct a comprehensive empirical study to explore strategies for improving their performance on geometric tasks. Our findings highlight the benefits of certain model architectures, training techniques, and data strategies, including the use of high-fidelity synthetic data and multi-stage training with a data curriculum. Notably, we find that a data curriculum enables models to learn challenging geometry understanding tasks which they fail to learn from scratch. Leveraging these insights, we develop Euclid, a family of models specifically optimized for strong low-level geometric perception. Although purely trained on synthetic multimodal data, Euclid shows strong generalization ability to novel geometry shapes. For instance, Euclid outperforms the best closed-source model, Gemini-1.5-Pro, by up to 58.56% on certain Geoperception benchmark tasks and 10.65% on average across all tasks.
Automatically Generating Numerous Context-Driven SFT Data for LLMs across Diverse Granularity
Constructing high-quality query-response pairs from custom corpus is crucial for supervised fine-tuning (SFT) large language models (LLMs) in many applications, like creating domain-specific AI assistants or roleplaying agents. However, sourcing this data through human annotation is costly, and existing automated methods often fail to capture the diverse range of contextual granularity and tend to produce homogeneous data. To tackle these issues, we introduce a novel method named AugCon, capable of automatically generating context-driven SFT data across multiple levels of granularity with high diversity, quality and fidelity. AugCon begins by generating queries using the Context-Split-Tree (CST), an innovative approach for recursively deriving queries and splitting context to cover full granularity. Then, we train a scorer through contrastive learning to collaborate with CST to rank and refine queries. Finally, a synergistic integration of self-alignment and self-improving is introduced to obtain high-fidelity responses. Extensive experiments are conducted incorporating both human and automatic evaluations, encompassing a test scenario and four widely-used benchmarks in English and Chinese. The results highlight the significant advantages of AugCon in producing high diversity, quality, and fidelity SFT data against several state-of-the-art methods. All of our code, dataset, and fine-tuned model will be available at: https://github.com/quanshr/AugCon.
Harnessing Business and Media Insights with Large Language Models
This paper introduces Fortune Analytics Language Model (FALM). FALM empowers users with direct access to comprehensive business analysis, including market trends, company performance metrics, and expert insights. Unlike generic LLMs, FALM leverages a curated knowledge base built from professional journalism, enabling it to deliver precise and in-depth answers to intricate business questions. Users can further leverage natural language queries to directly visualize financial data, generating insightful charts and graphs to understand trends across diverse business sectors clearly. FALM fosters user trust and ensures output accuracy through three novel methods: 1) Time-aware reasoning guarantees accurate event registration and prioritizes recent updates. 2) Thematic trend analysis explicitly examines topic evolution over time, providing insights into emerging business landscapes. 3) Content referencing and task decomposition enhance answer fidelity and data visualization accuracy. We conduct both automated and human evaluations, demonstrating FALM's significant performance improvements over baseline methods while prioritizing responsible AI practices. These benchmarks establish FALM as a cutting-edge LLM in the business and media domains, with exceptional accuracy and trustworthiness.
Brain-IT: Image Reconstruction from fMRI via Brain-Interaction Transformer
Reconstructing images seen by people from their fMRI brain recordings provides a non-invasive window into the human brain. Despite recent progress enabled by diffusion models, current methods often lack faithfulness to the actual seen images. We present "Brain-IT", a brain-inspired approach that addresses this challenge through a Brain Interaction Transformer (BIT), allowing effective interactions between clusters of functionally-similar brain-voxels. These functional-clusters are shared by all subjects, serving as building blocks for integrating information both within and across brains. All model components are shared by all clusters & subjects, allowing efficient training with a limited amount of data. To guide the image reconstruction, BIT predicts two complementary localized patch-level image features: (i)high-level semantic features which steer the diffusion model toward the correct semantic content of the image; and (ii)low-level structural features which help to initialize the diffusion process with the correct coarse layout of the image. BIT's design enables direct flow of information from brain-voxel clusters to localized image features. Through these principles, our method achieves image reconstructions from fMRI that faithfully reconstruct the seen images, and surpass current SotA approaches both visually and by standard objective metrics. Moreover, with only 1-hour of fMRI data from a new subject, we achieve results comparable to current methods trained on full 40-hour recordings.
Standardized Benchmark Dataset for Localized Exposure to a Realistic Source at 10$-$90 GHz
The lack of freely available standardized datasets represents an aggravating factor during the development and testing the performance of novel computational techniques in exposure assessment and dosimetry research. This hinders progress as researchers are required to generate numerical data (field, power and temperature distribution) anew using simulation software for each exposure scenario. Other than being time consuming, this approach is highly susceptible to errors that occur during the configuration of the electromagnetic model. To address this issue, in this paper, the limited available data on the incident power density and resultant maximum temperature rise on the skin surface considering various steady-state exposure scenarios at 10-90 GHz have been statistically modeled. The synthetic data have been sampled from the fitted statistical multivariate distribution with respect to predetermined dosimetric constraints. We thus present a comprehensive and open-source dataset compiled of the high-fidelity numerical data considering various exposures to a realistic source. Furthermore, different surrogate models for predicting maximum temperature rise on the skin surface were fitted based on the synthetic dataset. All surrogate models were tested on the originally available data where satisfactory predictive performance has been demonstrated. A simple technique of combining quadratic polynomial and tensor-product spline surrogates, each operating on its own cluster of data, has achieved the lowest mean absolute error of 0.058 {\deg}C. Therefore, overall experimental results indicate the validity of the proposed synthetic dataset.
DexUMI: Using Human Hand as the Universal Manipulation Interface for Dexterous Manipulation
We present DexUMI - a data collection and policy learning framework that uses the human hand as the natural interface to transfer dexterous manipulation skills to various robot hands. DexUMI includes hardware and software adaptations to minimize the embodiment gap between the human hand and various robot hands. The hardware adaptation bridges the kinematics gap using a wearable hand exoskeleton. It allows direct haptic feedback in manipulation data collection and adapts human motion to feasible robot hand motion. The software adaptation bridges the visual gap by replacing the human hand in video data with high-fidelity robot hand inpainting. We demonstrate DexUMI's capabilities through comprehensive real-world experiments on two different dexterous robot hand hardware platforms, achieving an average task success rate of 86%.
D3PO: Preference-Based Alignment of Discrete Diffusion Models
Diffusion models have achieved state-of-the-art performance across multiple domains, with recent advancements extending their applicability to discrete data. However, aligning discrete diffusion models with task-specific preferences remains challenging, particularly in scenarios where explicit reward functions are unavailable. In this work, we introduce Discrete Diffusion DPO (D3PO), the first adaptation of Direct Preference Optimization (DPO) to discrete diffusion models formulated as continuous-time Markov chains. Our approach derives a novel loss function that directly fine-tunes the generative process using preference data while preserving fidelity to a reference distribution. We validate D3PO on a structured binary sequence generation task, demonstrating that the method effectively aligns model outputs with preferences while maintaining structural validity. Our results highlight that D3PO enables controlled fine-tuning without requiring explicit reward models, making it a practical alternative to reinforcement learning-based approaches. Future research will explore extending D3PO to more complex generative tasks, including language modeling and protein sequence generation, as well as investigating alternative noise schedules, such as uniform noising, to enhance flexibility across different applications.
Dropout is NOT All You Need to Prevent Gradient Leakage
Gradient inversion attacks on federated learning systems reconstruct client training data from exchanged gradient information. To defend against such attacks, a variety of defense mechanisms were proposed. However, they usually lead to an unacceptable trade-off between privacy and model utility. Recent observations suggest that dropout could mitigate gradient leakage and improve model utility if added to neural networks. Unfortunately, this phenomenon has not been systematically researched yet. In this work, we thoroughly analyze the effect of dropout on iterative gradient inversion attacks. We find that state of the art attacks are not able to reconstruct the client data due to the stochasticity induced by dropout during model training. Nonetheless, we argue that dropout does not offer reliable protection if the dropout induced stochasticity is adequately modeled during attack optimization. Consequently, we propose a novel Dropout Inversion Attack (DIA) that jointly optimizes for client data and dropout masks to approximate the stochastic client model. We conduct an extensive systematic evaluation of our attack on four seminal model architectures and three image classification datasets of increasing complexity. We find that our proposed attack bypasses the protection seemingly induced by dropout and reconstructs client data with high fidelity. Our work demonstrates that privacy inducing changes to model architectures alone cannot be assumed to reliably protect from gradient leakage and therefore should be combined with complementary defense mechanisms.
HeadGAP: Few-shot 3D Head Avatar via Generalizable Gaussian Priors
In this paper, we present a novel 3D head avatar creation approach capable of generalizing from few-shot in-the-wild data with high-fidelity and animatable robustness. Given the underconstrained nature of this problem, incorporating prior knowledge is essential. Therefore, we propose a framework comprising prior learning and avatar creation phases. The prior learning phase leverages 3D head priors derived from a large-scale multi-view dynamic dataset, and the avatar creation phase applies these priors for few-shot personalization. Our approach effectively captures these priors by utilizing a Gaussian Splatting-based auto-decoder network with part-based dynamic modeling. Our method employs identity-shared encoding with personalized latent codes for individual identities to learn the attributes of Gaussian primitives. During the avatar creation phase, we achieve fast head avatar personalization by leveraging inversion and fine-tuning strategies. Extensive experiments demonstrate that our model effectively exploits head priors and successfully generalizes them to few-shot personalization, achieving photo-realistic rendering quality, multi-view consistency, and stable animation.
DOVE: Efficient One-Step Diffusion Model for Real-World Video Super-Resolution
Diffusion models have demonstrated promising performance in real-world video super-resolution (VSR). However, the dozens of sampling steps they require, make inference extremely slow. Sampling acceleration techniques, particularly single-step, provide a potential solution. Nonetheless, achieving one step in VSR remains challenging, due to the high training overhead on video data and stringent fidelity demands. To tackle the above issues, we propose DOVE, an efficient one-step diffusion model for real-world VSR. DOVE is obtained by fine-tuning a pretrained video diffusion model (*i.e.*, CogVideoX). To effectively train DOVE, we introduce the latent-pixel training strategy. The strategy employs a two-stage scheme to gradually adapt the model to the video super-resolution task. Meanwhile, we design a video processing pipeline to construct a high-quality dataset tailored for VSR, termed HQ-VSR. Fine-tuning on this dataset further enhances the restoration capability of DOVE. Extensive experiments show that DOVE exhibits comparable or superior performance to multi-step diffusion-based VSR methods. It also offers outstanding inference efficiency, achieving up to a **28times** speed-up over existing methods such as MGLD-VSR. Code is available at: https://github.com/zhengchen1999/DOVE.
Planning-Guided Diffusion Policy Learning for Generalizable Contact-Rich Bimanual Manipulation
Contact-rich bimanual manipulation involves precise coordination of two arms to change object states through strategically selected contacts and motions. Due to the inherent complexity of these tasks, acquiring sufficient demonstration data and training policies that generalize to unseen scenarios remain a largely unresolved challenge. Building on recent advances in planning through contacts, we introduce Generalizable Planning-Guided Diffusion Policy Learning (GLIDE), an approach that effectively learns to solve contact-rich bimanual manipulation tasks by leveraging model-based motion planners to generate demonstration data in high-fidelity physics simulation. Through efficient planning in randomized environments, our approach generates large-scale and high-quality synthetic motion trajectories for tasks involving diverse objects and transformations. We then train a task-conditioned diffusion policy via behavior cloning using these demonstrations. To tackle the sim-to-real gap, we propose a set of essential design options in feature extraction, task representation, action prediction, and data augmentation that enable learning robust prediction of smooth action sequences and generalization to unseen scenarios. Through experiments in both simulation and the real world, we demonstrate that our approach can enable a bimanual robotic system to effectively manipulate objects of diverse geometries, dimensions, and physical properties. Website: https://glide-manip.github.io/
WithAnyone: Towards Controllable and ID Consistent Image Generation
Identity-consistent generation has become an important focus in text-to-image research, with recent models achieving notable success in producing images aligned with a reference identity. Yet, the scarcity of large-scale paired datasets containing multiple images of the same individual forces most approaches to adopt reconstruction-based training. This reliance often leads to a failure mode we term copy-paste, where the model directly replicates the reference face rather than preserving identity across natural variations in pose, expression, or lighting. Such over-similarity undermines controllability and limits the expressive power of generation. To address these limitations, we (1) construct a large-scale paired dataset MultiID-2M, tailored for multi-person scenarios, providing diverse references for each identity; (2) introduce a benchmark that quantifies both copy-paste artifacts and the trade-off between identity fidelity and variation; and (3) propose a novel training paradigm with a contrastive identity loss that leverages paired data to balance fidelity with diversity. These contributions culminate in WithAnyone, a diffusion-based model that effectively mitigates copy-paste while preserving high identity similarity. Extensive qualitative and quantitative experiments demonstrate that WithAnyone significantly reduces copy-paste artifacts, improves controllability over pose and expression, and maintains strong perceptual quality. User studies further validate that our method achieves high identity fidelity while enabling expressive controllable generation.
Towards Algorithmic Fidelity: Mental Health Representation across Demographics in Synthetic vs. Human-generated Data
Synthetic data generation has the potential to impact applications and domains with scarce data. However, before such data is used for sensitive tasks such as mental health, we need an understanding of how different demographics are represented in it. In our paper, we analyze the potential of producing synthetic data using GPT-3 by exploring the various stressors it attributes to different race and gender combinations, to provide insight for future researchers looking into using LLMs for data generation. Using GPT-3, we develop HEADROOM, a synthetic dataset of 3,120 posts about depression-triggering stressors, by controlling for race, gender, and time frame (before and after COVID-19). Using this dataset, we conduct semantic and lexical analyses to (1) identify the predominant stressors for each demographic group; and (2) compare our synthetic data to a human-generated dataset. We present the procedures to generate queries to develop depression data using GPT-3, and conduct analyzes to uncover the types of stressors it assigns to demographic groups, which could be used to test the limitations of LLMs for synthetic data generation for depression data. Our findings show that synthetic data mimics some of the human-generated data distribution for the predominant depression stressors across diverse demographics.
Fair4Free: Generating High-fidelity Fair Synthetic Samples using Data Free Distillation
This work presents Fair4Free, a novel generative model to generate synthetic fair data using data-free distillation in the latent space. Fair4Free can work on the situation when the data is private or inaccessible. In our approach, we first train a teacher model to create fair representation and then distil the knowledge to a student model (using a smaller architecture). The process of distilling the student model is data-free, i.e. the student model does not have access to the training dataset while distilling. After the distillation, we use the distilled model to generate fair synthetic samples. Our extensive experiments show that our synthetic samples outperform state-of-the-art models in all three criteria (fairness, utility and synthetic quality) with a performance increase of 5% for fairness, 8% for utility and 12% in synthetic quality for both tabular and image datasets.
TabStruct: Measuring Structural Fidelity of Tabular Data
Evaluating tabular generators remains a challenging problem, as the unique causal structural prior of heterogeneous tabular data does not lend itself to intuitive human inspection. Recent work has introduced structural fidelity as a tabular-specific evaluation dimension to assess whether synthetic data complies with the causal structures of real data. However, existing benchmarks often neglect the interplay between structural fidelity and conventional evaluation dimensions, thus failing to provide a holistic understanding of model performance. Moreover, they are typically limited to toy datasets, as quantifying existing structural fidelity metrics requires access to ground-truth causal structures, which are rarely available for real-world datasets. In this paper, we propose a novel evaluation framework that jointly considers structural fidelity and conventional evaluation dimensions. We introduce a new evaluation metric, global utility, which enables the assessment of structural fidelity even in the absence of ground-truth causal structures. In addition, we present TabStruct, a comprehensive evaluation benchmark offering large-scale quantitative analysis on 13 tabular generators from nine distinct categories, across 29 datasets. Our results demonstrate that global utility provides a task-independent, domain-agnostic lens for tabular generator performance. We release the TabStruct benchmark suite, including all datasets, evaluation pipelines, and raw results. Code is available at https://github.com/SilenceX12138/TabStruct.
Decoupled Data Augmentation for Improving Image Classification
Recent advancements in image mixing and generative data augmentation have shown promise in enhancing image classification. However, these techniques face the challenge of balancing semantic fidelity with diversity. Specifically, image mixing involves interpolating two images to create a new one, but this pixel-level interpolation can compromise fidelity. Generative augmentation uses text-to-image generative models to synthesize or modify images, often limiting diversity to avoid generating out-of-distribution data that potentially affects accuracy. We propose that this fidelity-diversity dilemma partially stems from the whole-image paradigm of existing methods. Since an image comprises the class-dependent part (CDP) and the class-independent part (CIP), where each part has fundamentally different impacts on the image's fidelity, treating different parts uniformly can therefore be misleading. To address this fidelity-diversity dilemma, we introduce Decoupled Data Augmentation (De-DA), which resolves the dilemma by separating images into CDPs and CIPs and handling them adaptively. To maintain fidelity, we use generative models to modify real CDPs under controlled conditions, preserving semantic consistency. To enhance diversity, we replace the image's CIP with inter-class variants, creating diverse CDP-CIP combinations. Additionally, we implement an online randomized combination strategy during training to generate numerous distinct CDP-CIP combinations cost-effectively. Comprehensive empirical evaluations validate the effectiveness of our method.
Data-Driven Time Series Reconstruction for Modern Power Systems Research
A critical aspect of power systems research is the availability of suitable data, access to which is limited by privacy concerns and the sensitive nature of energy infrastructure. This lack of data, in turn, hinders the development of modern research avenues such as machine learning approaches or stochastic formulations. To overcome this challenge, this paper proposes a systematic, data-driven framework for reconstructing high-fidelity time series, using publicly-available grid snapshots and historical data published by transmission system operators. The proposed approach, from geo-spatial data and generation capacity reconstruction, to time series disaggregation, is applied to the French transmission grid. Thereby, synthetic but highly realistic time series data, spanning multiple years with a 5-minute granularity, is generated at the individual component level.
TripoSG: High-Fidelity 3D Shape Synthesis using Large-Scale Rectified Flow Models
Recent advancements in diffusion techniques have propelled image and video generation to unprece- dented levels of quality, significantly accelerating the deployment and application of generative AI. However, 3D shape generation technology has so far lagged behind, constrained by limitations in 3D data scale, complexity of 3D data process- ing, and insufficient exploration of advanced tech- niques in the 3D domain. Current approaches to 3D shape generation face substantial challenges in terms of output quality, generalization capa- bility, and alignment with input conditions. We present TripoSG, a new streamlined shape diffu- sion paradigm capable of generating high-fidelity 3D meshes with precise correspondence to input images. Specifically, we propose: 1) A large-scale rectified flow transformer for 3D shape generation, achieving state-of-the-art fidelity through training on extensive, high-quality data. 2) A hybrid supervised training strategy combining SDF, normal, and eikonal losses for 3D VAE, achieving high- quality 3D reconstruction performance. 3) A data processing pipeline to generate 2 million high- quality 3D samples, highlighting the crucial rules for data quality and quantity in training 3D gen- erative models. Through comprehensive experi- ments, we have validated the effectiveness of each component in our new framework. The seamless integration of these parts has enabled TripoSG to achieve state-of-the-art performance in 3D shape generation. The resulting 3D shapes exhibit en- hanced detail due to high-resolution capabilities and demonstrate exceptional fidelity to input im- ages. Moreover, TripoSG demonstrates improved versatility in generating 3D models from diverse image styles and contents, showcasing strong gen- eralization capabilities. To foster progress and innovation in the field of 3D generation, we will make our model publicly available.
Data-driven operator learning for energy-efficient building control
Energy-efficient ventilation control plays a vital role in reducing building energy consumption while ensuring occupant health and comfort. While Computational Fluid Dynamics (CFD) simulations offer high-fidelity modeling of airflow for building HVAC design, their high computational cost makes them impractical for practical adoption in real-time building management system. In this work, we present a data-driven framework that combines the physical accuracy of CFD with the computational efficiency of machine learning to enable energy-efficient building ventilation control. Our method jointly optimizes airflow supply rates and vent angles to reduce energy use and adhere to air quality constraints. We train a neural operator transformer to learn the mapping from building control actions to airflow field distributions using high-resolution CFD data. This learned operator enables a gradient-based control framework capable of optimal decision-making. Experimental results demonstrate that our approach achieves substantial energy savings compared to maximum airflow rate control, rule-based control, and data-driven control based on regional average CO2 predictions, while consistently maintaining safe indoor air quality. These results highlight the practicality and scalability of our method for enabling safe and energy-efficient building management.
DrivAerML: High-Fidelity Computational Fluid Dynamics Dataset for Road-Car External Aerodynamics
Machine Learning (ML) has the potential to revolutionise the field of automotive aerodynamics, enabling split-second flow predictions early in the design process. However, the lack of open-source training data for realistic road cars, using high-fidelity CFD methods, represents a barrier to their development. To address this, a high-fidelity open-source (CC-BY-SA) public dataset for automotive aerodynamics has been generated, based on 500 parametrically morphed variants of the widely-used DrivAer notchback generic vehicle. Mesh generation and scale-resolving CFD was executed using consistent and validated automatic workflows representative of the industrial state-of-the-art. Geometries and rich aerodynamic data are published in open-source formats. To our knowledge, this is the first large, public-domain dataset for complex automotive configurations generated using high-fidelity CFD.
Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry
We introduce a multi-fidelity estimator of covariance matrices that employs the log-Euclidean geometry of the symmetric positive-definite manifold. The estimator fuses samples from a hierarchy of data sources of differing fidelities and costs for variance reduction while guaranteeing definiteness, in contrast with previous approaches. The new estimator makes covariance estimation tractable in applications where simulation or data collection is expensive; to that end, we develop an optimal sample allocation scheme that minimizes the mean-squared error of the estimator given a fixed budget. Guaranteed definiteness is crucial to metric learning, data assimilation, and other downstream tasks. Evaluations of our approach using data from physical applications (heat conduction, fluid dynamics) demonstrate more accurate metric learning and speedups of more than one order of magnitude compared to benchmarks.
A high fidelity synthetic face framework for computer vision
Analysis of faces is one of the core applications of computer vision, with tasks ranging from landmark alignment, head pose estimation, expression recognition, and face recognition among others. However, building reliable methods requires time-consuming data collection and often even more time-consuming manual annotation, which can be unreliable. In our work we propose synthesizing such facial data, including ground truth annotations that would be almost impossible to acquire through manual annotation at the consistency and scale possible through use of synthetic data. We use a parametric face model together with hand crafted assets which enable us to generate training data with unprecedented quality and diversity (varying shape, texture, expression, pose, lighting, and hair).
Step1X-3D: Towards High-Fidelity and Controllable Generation of Textured 3D Assets
While generative artificial intelligence has advanced significantly across text, image, audio, and video domains, 3D generation remains comparatively underdeveloped due to fundamental challenges such as data scarcity, algorithmic limitations, and ecosystem fragmentation. To this end, we present Step1X-3D, an open framework addressing these challenges through: (1) a rigorous data curation pipeline processing >5M assets to create a 2M high-quality dataset with standardized geometric and textural properties; (2) a two-stage 3D-native architecture combining a hybrid VAE-DiT geometry generator with an diffusion-based texture synthesis module; and (3) the full open-source release of models, training code, and adaptation modules. For geometry generation, the hybrid VAE-DiT component produces TSDF representations by employing perceiver-based latent encoding with sharp edge sampling for detail preservation. The diffusion-based texture synthesis module then ensures cross-view consistency through geometric conditioning and latent-space synchronization. Benchmark results demonstrate state-of-the-art performance that exceeds existing open-source methods, while also achieving competitive quality with proprietary solutions. Notably, the framework uniquely bridges the 2D and 3D generation paradigms by supporting direct transfer of 2D control techniques~(e.g., LoRA) to 3D synthesis. By simultaneously advancing data quality, algorithmic fidelity, and reproducibility, Step1X-3D aims to establish new standards for open research in controllable 3D asset generation.
xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations
We present xGen-VideoSyn-1, a text-to-video (T2V) generation model capable of producing realistic scenes from textual descriptions. Building on recent advancements, such as OpenAI's Sora, we explore the latent diffusion model (LDM) architecture and introduce a video variational autoencoder (VidVAE). VidVAE compresses video data both spatially and temporally, significantly reducing the length of visual tokens and the computational demands associated with generating long-sequence videos. To further address the computational costs, we propose a divide-and-merge strategy that maintains temporal consistency across video segments. Our Diffusion Transformer (DiT) model incorporates spatial and temporal self-attention layers, enabling robust generalization across different timeframes and aspect ratios. We have devised a data processing pipeline from the very beginning and collected over 13M high-quality video-text pairs. The pipeline includes multiple steps such as clipping, text detection, motion estimation, aesthetics scoring, and dense captioning based on our in-house video-LLM model. Training the VidVAE and DiT models required approximately 40 and 642 H100 days, respectively. Our model supports over 14-second 720p video generation in an end-to-end way and demonstrates competitive performance against state-of-the-art T2V models.
GarVerseLOD: High-Fidelity 3D Garment Reconstruction from a Single In-the-Wild Image using a Dataset with Levels of Details
Neural implicit functions have brought impressive advances to the state-of-the-art of clothed human digitization from multiple or even single images. However, despite the progress, current arts still have difficulty generalizing to unseen images with complex cloth deformation and body poses. In this work, we present GarVerseLOD, a new dataset and framework that paves the way to achieving unprecedented robustness in high-fidelity 3D garment reconstruction from a single unconstrained image. Inspired by the recent success of large generative models, we believe that one key to addressing the generalization challenge lies in the quantity and quality of 3D garment data. Towards this end, GarVerseLOD collects 6,000 high-quality cloth models with fine-grained geometry details manually created by professional artists. In addition to the scale of training data, we observe that having disentangled granularities of geometry can play an important role in boosting the generalization capability and inference accuracy of the learned model. We hence craft GarVerseLOD as a hierarchical dataset with levels of details (LOD), spanning from detail-free stylized shape to pose-blended garment with pixel-aligned details. This allows us to make this highly under-constrained problem tractable by factorizing the inference into easier tasks, each narrowed down with smaller searching space. To ensure GarVerseLOD can generalize well to in-the-wild images, we propose a novel labeling paradigm based on conditional diffusion models to generate extensive paired images for each garment model with high photorealism. We evaluate our method on a massive amount of in-the-wild images. Experimental results demonstrate that GarVerseLOD can generate standalone garment pieces with significantly better quality than prior approaches. Project page: https://garverselod.github.io/
Improving Context Fidelity via Native Retrieval-Augmented Reasoning
Large language models (LLMs) often struggle with context fidelity, producing inconsistent answers when responding to questions based on provided information. Existing approaches either rely on expensive supervised fine-tuning to generate evidence post-answer or train models to perform web searches without necessarily improving utilization of the given context. We propose CARE, a novel native retrieval-augmented reasoning framework that teaches LLMs to explicitly integrate in-context evidence within their reasoning process with the model's own retrieval capabilities. Our method requires limited labeled evidence data while significantly enhancing both retrieval accuracy and answer generation performance through strategically retrieved in-context tokens in the reasoning chain. Extensive experiments on multiple real-world and counterfactual QA benchmarks demonstrate that our approach substantially outperforms supervised fine-tuning, traditional retrieval-augmented generation methods, and external retrieval solutions. This work represents a fundamental advancement in making LLMs more accurate, reliable, and efficient for knowledge-intensive tasks.
StyleAvatar3D: Leveraging Image-Text Diffusion Models for High-Fidelity 3D Avatar Generation
The recent advancements in image-text diffusion models have stimulated research interest in large-scale 3D generative models. Nevertheless, the limited availability of diverse 3D resources presents significant challenges to learning. In this paper, we present a novel method for generating high-quality, stylized 3D avatars that utilizes pre-trained image-text diffusion models for data generation and a Generative Adversarial Network (GAN)-based 3D generation network for training. Our method leverages the comprehensive priors of appearance and geometry offered by image-text diffusion models to generate multi-view images of avatars in various styles. During data generation, we employ poses extracted from existing 3D models to guide the generation of multi-view images. To address the misalignment between poses and images in data, we investigate view-specific prompts and develop a coarse-to-fine discriminator for GAN training. We also delve into attribute-related prompts to increase the diversity of the generated avatars. Additionally, we develop a latent diffusion model within the style space of StyleGAN to enable the generation of avatars based on image inputs. Our approach demonstrates superior performance over current state-of-the-art methods in terms of visual quality and diversity of the produced avatars.
High-Fidelity Facial Albedo Estimation via Texture Quantization
Recent 3D face reconstruction methods have made significant progress in shape estimation, but high-fidelity facial albedo reconstruction remains challenging. Existing methods depend on expensive light-stage captured data to learn facial albedo maps. However, a lack of diversity in subjects limits their ability to recover high-fidelity results. In this paper, we present a novel facial albedo reconstruction model, HiFiAlbedo, which recovers the albedo map directly from a single image without the need for captured albedo data. Our key insight is that the albedo map is the illumination invariant texture map, which enables us to use inexpensive texture data to derive an albedo estimation by eliminating illumination. To achieve this, we first collect large-scale ultra-high-resolution facial images and train a high-fidelity facial texture codebook. By using the FFHQ dataset and limited UV textures, we then fine-tune the encoder for texture reconstruction from the input image with adversarial supervision in both image and UV space. Finally, we train a cross-attention module and utilize group identity loss to learn the adaptation from facial texture to the albedo domain. Extensive experimentation has demonstrated that our method exhibits excellent generalizability and is capable of achieving high-fidelity results for in-the-wild facial albedo recovery. Our code, pre-trained weights, and training data will be made publicly available at https://hifialbedo.github.io/.
MuRating: A High Quality Data Selecting Approach to Multilingual Large Language Model Pretraining
Data quality is a critical driver of large language model performance, yet existing model-based selection methods focus almost exclusively on English. We introduce MuRating, a scalable framework that transfers high-quality English data-quality signals into a single rater for 17 target languages. MuRating aggregates multiple English "raters" via pairwise comparisons to learn unified document-quality scores,then projects these judgments through translation to train a multilingual evaluator on monolingual, cross-lingual, and parallel text pairs. Applied to web data, MuRating selects balanced subsets of English and multilingual content to pretrain a 1.2 B-parameter LLaMA model. Compared to strong baselines, including QuRater, AskLLM, DCLM and so on, our approach boosts average accuracy on both English benchmarks and multilingual evaluations, with especially large gains on knowledge-intensive tasks. We further analyze translation fidelity, selection biases, and underrepresentation of narrative material, outlining directions for future work.
Vision-Language Synthetic Data Enhances Echocardiography Downstream Tasks
High-quality, large-scale data is essential for robust deep learning models in medical applications, particularly ultrasound image analysis. Diffusion models facilitate high-fidelity medical image generation, reducing the costs associated with acquiring and annotating new images. This paper utilizes recent vision-language models to produce diverse and realistic synthetic echocardiography image data, preserving key features of the original images guided by textual and semantic label maps. Specifically, we investigate three potential avenues: unconditional generation, generation guided by text, and a hybrid approach incorporating both textual and semantic supervision. We show that the rich contextual information present in the synthesized data potentially enhances the accuracy and interpretability of downstream tasks, such as echocardiography segmentation and classification with improved metrics and faster convergence. Our implementation with checkpoints, prompts, and the created synthetic dataset will be publicly available at https://github.com/Pooria90/DiffEcho{GitHub}.
HRM^2Avatar: High-Fidelity Real-Time Mobile Avatars from Monocular Phone Scans
We present HRM^2Avatar, a framework for creating high-fidelity avatars from monocular phone scans, which can be rendered and animated in real time on mobile devices. Monocular capture with smartphones provides a low-cost alternative to studio-grade multi-camera rigs, making avatar digitization accessible to non-expert users. Reconstructing high-fidelity avatars from single-view video sequences poses challenges due to limited visual and geometric data. To address these limitations, at the data level, our method leverages two types of data captured with smartphones: static pose sequences for texture reconstruction and dynamic motion sequences for learning pose-dependent deformations and lighting changes. At the representation level, we employ a lightweight yet expressive representation to reconstruct high-fidelity digital humans from sparse monocular data. We extract garment meshes from monocular data to model clothing deformations effectively, and attach illumination-aware Gaussians to the mesh surface, enabling high-fidelity rendering and capturing pose-dependent lighting. This representation efficiently learns high-resolution and dynamic information from monocular data, enabling the creation of detailed avatars. At the rendering level, real-time performance is critical for animating high-fidelity avatars in AR/VR, social gaming, and on-device creation. Our GPU-driven rendering pipeline delivers 120 FPS on mobile devices and 90 FPS on standalone VR devices at 2K resolution, over 2.7times faster than representative mobile-engine baselines. Experiments show that HRM^2Avatar delivers superior visual realism and real-time interactivity, outperforming state-of-the-art monocular methods.
ADMIRE-BayesOpt: Accelerated Data MIxture RE-weighting for Language Models with Bayesian Optimization
Determining the optimal data mixture for large language model training remains a challenging problem with an outsized impact on performance. In practice, language model developers continue to rely on heuristic exploration since no learning-based approach has emerged as a reliable solution. In this work, we propose to view the selection of training data mixtures as a black-box hyperparameter optimization problem, for which Bayesian Optimization is a well-established class of appropriate algorithms. Firstly, we cast data mixture learning as a sequential decision-making problem, in which we aim to find a suitable trade-off between the computational cost of training exploratory (proxy-) models and final mixture performance. Secondly, we systematically explore the properties of transferring mixtures learned at a small scale to larger-scale experiments, providing insights and highlighting opportunities for research at a modest scale. By proposing Multi-fidelity Bayesian Optimization as a suitable method in this common scenario, we introduce a natural framework to balance experiment cost with model fit, avoiding the risks of overfitting to smaller scales while minimizing the number of experiments at high cost. We present results for pre-training and instruction finetuning across models ranging from 1 million to 7 billion parameters, varying from simple architectures to state-of-the-art models and benchmarks spanning dozens of datasets. We demonstrate consistently strong results relative to a wide range of baselines, resulting inspeed-ups of over 500% in determining the best data mixture on our largest experiments. In addition, we broaden access to research by sharing ADMIRE IFT Runs, a dataset of 460 full training & evaluation runs worth over 13,000 GPU hours, greatly reducing the cost of conducting research in this area.
AID4AD: Aerial Image Data for Automated Driving Perception
This work investigates the integration of spatially aligned aerial imagery into perception tasks for automated vehicles (AVs). As a central contribution, we present AID4AD, a publicly available dataset that augments the nuScenes dataset with high-resolution aerial imagery precisely aligned to its local coordinate system. The alignment is performed using SLAM-based point cloud maps provided by nuScenes, establishing a direct link between aerial data and nuScenes local coordinate system. To ensure spatial fidelity, we propose an alignment workflow that corrects for localization and projection distortions. A manual quality control process further refines the dataset by identifying a set of high-quality alignments, which we publish as ground truth to support future research on automated registration. We demonstrate the practical value of AID4AD in two representative tasks: in online map construction, aerial imagery serves as a complementary input that improves the mapping process; in motion prediction, it functions as a structured environmental representation that replaces high-definition maps. Experiments show that aerial imagery leads to a 15-23% improvement in map construction accuracy and a 2% gain in trajectory prediction performance. These results highlight the potential of aerial imagery as a scalable and adaptable source of environmental context in automated vehicle systems, particularly in scenarios where high-definition maps are unavailable, outdated, or costly to maintain. AID4AD, along with evaluation code and pretrained models, is publicly released to foster further research in this direction: https://github.com/DriverlessMobility/AID4AD.
StyleSync: High-Fidelity Generalized and Personalized Lip Sync in Style-based Generator
Despite recent advances in syncing lip movements with any audio waves, current methods still struggle to balance generation quality and the model's generalization ability. Previous studies either require long-term data for training or produce a similar movement pattern on all subjects with low quality. In this paper, we propose StyleSync, an effective framework that enables high-fidelity lip synchronization. We identify that a style-based generator would sufficiently enable such a charming property on both one-shot and few-shot scenarios. Specifically, we design a mask-guided spatial information encoding module that preserves the details of the given face. The mouth shapes are accurately modified by audio through modulated convolutions. Moreover, our design also enables personalized lip-sync by introducing style space and generator refinement on only limited frames. Thus the identity and talking style of a target person could be accurately preserved. Extensive experiments demonstrate the effectiveness of our method in producing high-fidelity results on a variety of scenes. Resources can be found at https://hangz-nju-cuhk.github.io/projects/StyleSync.
LongWriter-V: Enabling Ultra-Long and High-Fidelity Generation in Vision-Language Models
Existing Large Vision-Language Models (LVLMs) can process inputs with context lengths up to 128k visual and text tokens, yet they struggle to generate coherent outputs beyond 1,000 words. We find that the primary limitation is the absence of long output examples during supervised fine-tuning (SFT). To tackle this issue, we introduce LongWriter-V-22k, a SFT dataset comprising 22,158 examples, each with multiple input images, an instruction, and corresponding outputs ranging from 0 to 10,000 words. Moreover, to achieve long outputs that maintain high-fidelity to the input images, we employ Direct Preference Optimization (DPO) to the SFT model. Given the high cost of collecting human feedback for lengthy outputs (e.g., 3,000 words), we propose IterDPO, which breaks long outputs into segments and uses iterative corrections to form preference pairs with the original outputs. Additionally, we develop MMLongBench-Write, a benchmark featuring six tasks to evaluate the long-generation capabilities of VLMs. Our 7B parameter model, trained with LongWriter-V-22k and IterDPO, achieves impressive performance on this benchmark, outperforming larger proprietary models like GPT-4o. Code and data: https://github.com/THU-KEG/LongWriter-V
DreamActor-H1: High-Fidelity Human-Product Demonstration Video Generation via Motion-designed Diffusion Transformers
In e-commerce and digital marketing, generating high-fidelity human-product demonstration videos is important for effective product presentation. However, most existing frameworks either fail to preserve the identities of both humans and products or lack an understanding of human-product spatial relationships, leading to unrealistic representations and unnatural interactions. To address these challenges, we propose a Diffusion Transformer (DiT)-based framework. Our method simultaneously preserves human identities and product-specific details, such as logos and textures, by injecting paired human-product reference information and utilizing an additional masked cross-attention mechanism. We employ a 3D body mesh template and product bounding boxes to provide precise motion guidance, enabling intuitive alignment of hand gestures with product placements. Additionally, structured text encoding is used to incorporate category-level semantics, enhancing 3D consistency during small rotational changes across frames. Trained on a hybrid dataset with extensive data augmentation strategies, our approach outperforms state-of-the-art techniques in maintaining the identity integrity of both humans and products and generating realistic demonstration motions. Project page: https://submit2025-dream.github.io/DreamActor-H1/.
Real2Render2Real: Scaling Robot Data Without Dynamics Simulation or Robot Hardware
Scaling robot learning requires vast and diverse datasets. Yet the prevailing data collection paradigm-human teleoperation-remains costly and constrained by manual effort and physical robot access. We introduce Real2Render2Real (R2R2R), a novel approach for generating robot training data without relying on object dynamics simulation or teleoperation of robot hardware. The input is a smartphone-captured scan of one or more objects and a single video of a human demonstration. R2R2R renders thousands of high visual fidelity robot-agnostic demonstrations by reconstructing detailed 3D object geometry and appearance, and tracking 6-DoF object motion. R2R2R uses 3D Gaussian Splatting (3DGS) to enable flexible asset generation and trajectory synthesis for both rigid and articulated objects, converting these representations to meshes to maintain compatibility with scalable rendering engines like IsaacLab but with collision modeling off. Robot demonstration data generated by R2R2R integrates directly with models that operate on robot proprioceptive states and image observations, such as vision-language-action models (VLA) and imitation learning policies. Physical experiments suggest that models trained on R2R2R data from a single human demonstration can match the performance of models trained on 150 human teleoperation demonstrations. Project page: https://real2render2real.com
CheXGenBench: A Unified Benchmark For Fidelity, Privacy and Utility of Synthetic Chest Radiographs
We introduce CheXGenBench, a rigorous and multifaceted evaluation framework for synthetic chest radiograph generation that simultaneously assesses fidelity, privacy risks, and clinical utility across state-of-the-art text-to-image generative models. Despite rapid advancements in generative AI for real-world imagery, medical domain evaluations have been hindered by methodological inconsistencies, outdated architectural comparisons, and disconnected assessment criteria that rarely address the practical clinical value of synthetic samples. CheXGenBench overcomes these limitations through standardised data partitioning and a unified evaluation protocol comprising over 20 quantitative metrics that systematically analyse generation quality, potential privacy vulnerabilities, and downstream clinical applicability across 11 leading text-to-image architectures. Our results reveal critical inefficiencies in the existing evaluation protocols, particularly in assessing generative fidelity, leading to inconsistent and uninformative comparisons. Our framework establishes a standardised benchmark for the medical AI community, enabling objective and reproducible comparisons while facilitating seamless integration of both existing and future generative models. Additionally, we release a high-quality, synthetic dataset, SynthCheX-75K, comprising 75K radiographs generated by the top-performing model (Sana 0.6B) in our benchmark to support further research in this critical domain. Through CheXGenBench, we establish a new state-of-the-art and release our framework, models, and SynthCheX-75K dataset at https://raman1121.github.io/CheXGenBench/
On Data Fabrication in Collaborative Vehicular Perception: Attacks and Countermeasures
Collaborative perception, which greatly enhances the sensing capability of connected and autonomous vehicles (CAVs) by incorporating data from external resources, also brings forth potential security risks. CAVs' driving decisions rely on remote untrusted data, making them susceptible to attacks carried out by malicious participants in the collaborative perception system. However, security analysis and countermeasures for such threats are absent. To understand the impact of the vulnerability, we break the ground by proposing various real-time data fabrication attacks in which the attacker delivers crafted malicious data to victims in order to perturb their perception results, leading to hard brakes or increased collision risks. Our attacks demonstrate a high success rate of over 86\% on high-fidelity simulated scenarios and are realizable in real-world experiments. To mitigate the vulnerability, we present a systematic anomaly detection approach that enables benign vehicles to jointly reveal malicious fabrication. It detects 91.5% of attacks with a false positive rate of 3% in simulated scenarios and significantly mitigates attack impacts in real-world scenarios.
BibleTTS: a large, high-fidelity, multilingual, and uniquely African speech corpus
BibleTTS is a large, high-quality, open speech dataset for ten languages spoken in Sub-Saharan Africa. The corpus contains up to 86 hours of aligned, studio quality 48kHz single speaker recordings per language, enabling the development of high-quality text-to-speech models. The ten languages represented are: Akuapem Twi, Asante Twi, Chichewa, Ewe, Hausa, Kikuyu, Lingala, Luganda, Luo, and Yoruba. This corpus is a derivative work of Bible recordings made and released by the Open.Bible project from Biblica. We have aligned, cleaned, and filtered the original recordings, and additionally hand-checked a subset of the alignments for each language. We present results for text-to-speech models with Coqui TTS. The data is released under a commercial-friendly CC-BY-SA license.
DriveDreamer4D: World Models Are Effective Data Machines for 4D Driving Scene Representation
Closed-loop simulation is essential for advancing end-to-end autonomous driving systems. Contemporary sensor simulation methods, such as NeRF and 3DGS, rely predominantly on conditions closely aligned with training data distributions, which are largely confined to forward-driving scenarios. Consequently, these methods face limitations when rendering complex maneuvers (e.g., lane change, acceleration, deceleration). Recent advancements in autonomous-driving world models have demonstrated the potential to generate diverse driving videos. However, these approaches remain constrained to 2D video generation, inherently lacking the spatiotemporal coherence required to capture intricacies of dynamic driving environments. In this paper, we introduce DriveDreamer4D, which enhances 4D driving scene representation leveraging world model priors. Specifically, we utilize the world model as a data machine to synthesize novel trajectory videos based on real-world driving data. Notably, we explicitly leverage structured conditions to control the spatial-temporal consistency of foreground and background elements, thus the generated data adheres closely to traffic constraints. To our knowledge, DriveDreamer4D is the first to utilize video generation models for improving 4D reconstruction in driving scenarios. Experimental results reveal that DriveDreamer4D significantly enhances generation quality under novel trajectory views, achieving a relative improvement in FID by 24.5%, 39.0%, and 10.5% compared to PVG, S3Gaussian, and Deformable-GS. Moreover, DriveDreamer4D markedly enhances the spatiotemporal coherence of driving agents, which is verified by a comprehensive user study and the relative increases of 20.3%, 42.0%, and 13.7% in the NTA-IoU metric.
Towards Robust Fidelity for Evaluating Explainability of Graph Neural Networks
Graph Neural Networks (GNNs) are neural models that leverage the dependency structure in graphical data via message passing among the graph nodes. GNNs have emerged as pivotal architectures in analyzing graph-structured data, and their expansive application in sensitive domains requires a comprehensive understanding of their decision-making processes -- necessitating a framework for GNN explainability. An explanation function for GNNs takes a pre-trained GNN along with a graph as input, to produce a `sufficient statistic' subgraph with respect to the graph label. A main challenge in studying GNN explainability is to provide fidelity measures that evaluate the performance of these explanation functions. This paper studies this foundational challenge, spotlighting the inherent limitations of prevailing fidelity metrics, including Fid_+, Fid_-, and Fid_Delta. Specifically, a formal, information-theoretic definition of explainability is introduced and it is shown that existing metrics often fail to align with this definition across various statistical scenarios. The reason is due to potential distribution shifts when subgraphs are removed in computing these fidelity measures. Subsequently, a robust class of fidelity measures are introduced, and it is shown analytically that they are resilient to distribution shift issues and are applicable in a wide range of scenarios. Extensive empirical analysis on both synthetic and real datasets are provided to illustrate that the proposed metrics are more coherent with gold standard metrics. The source code is available at https://trustai4s-lab.github.io/fidelity.
HumanRF: High-Fidelity Neural Radiance Fields for Humans in Motion
Representing human performance at high-fidelity is an essential building block in diverse applications, such as film production, computer games or videoconferencing. To close the gap to production-level quality, we introduce HumanRF, a 4D dynamic neural scene representation that captures full-body appearance in motion from multi-view video input, and enables playback from novel, unseen viewpoints. Our novel representation acts as a dynamic video encoding that captures fine details at high compression rates by factorizing space-time into a temporal matrix-vector decomposition. This allows us to obtain temporally coherent reconstructions of human actors for long sequences, while representing high-resolution details even in the context of challenging motion. While most research focuses on synthesizing at resolutions of 4MP or lower, we address the challenge of operating at 12MP. To this end, we introduce ActorsHQ, a novel multi-view dataset that provides 12MP footage from 160 cameras for 16 sequences with high-fidelity, per-frame mesh reconstructions. We demonstrate challenges that emerge from using such high-resolution data and show that our newly introduced HumanRF effectively leverages this data, making a significant step towards production-level quality novel view synthesis.
SenSE: Semantic-Aware High-Fidelity Universal Speech Enhancement
Generative universal speech enhancement (USE) methods aim to leverage generative models to improve speech quality under various types of distortions. Diffusion- or flow-based generative models are capable of producing enhanced speech with high quality and fidelity. However, they typically achieve speech enhancement by learning an acoustic feature mapping from degraded speech to clean speech, while lacking awareness of high-level semantic information. This deficiency tends to cause semantic ambiguity and acoustic discontinuities in the enhanced speech. In contrast, humans can often comprehend heavily corrupted speech by relying on semantic priors, suggesting that semantics play a crucial role in speech enhancement. Therefore, in this paper, we propose SenSE, which leverages a language model to capture the semantic information of distorted speech and effectively integrates it into a flow-matching-based speech enhancement framework. Specifically, we introduce a semantic-aware speech language model to capture the semantics of degraded speech and generate semantic tokens. We then design a semantic guidance mechanism that incorporates semantic information into the flow-matching-based speech enhancement process, effectively mitigating semantic ambiguity. In addition, we propose a prompt guidance mechanism, which leverages a short reference utterance to alleviate the loss of speaker similarity under severe distortion conditions. The results of several benchmark data sets demonstrate that SenSE not only ensures high perceptual quality but also substantially improves speech fidelity while maintaining strong robustness under severe distortions. Codes and demos are available.
WindsorML: High-Fidelity Computational Fluid Dynamics Dataset For Automotive Aerodynamics
This paper presents a new open-source high-fidelity dataset for Machine Learning (ML) containing 355 geometric variants of the Windsor body, to help the development and testing of ML surrogate models for external automotive aerodynamics. Each Computational Fluid Dynamics (CFD) simulation was run with a GPU-native high-fidelity Wall-Modeled Large-Eddy Simulations (WMLES) using a Cartesian immersed-boundary method using more than 280M cells to ensure the greatest possible accuracy. The dataset contains geometry variants that exhibits a wide range of flow characteristics that are representative of those observed on road-cars. The dataset itself contains the 3D time-averaged volume & boundary data as well as the geometry and force & moment coefficients. This paper discusses the validation of the underlying CFD methods as well as contents and structure of the dataset. To the authors knowledge, this represents the first, large-scale high-fidelity CFD dataset for the Windsor body with a permissive open-source license (CC-BY-SA).
Diverse Data Augmentation with Diffusions for Effective Test-time Prompt Tuning
Benefiting from prompt tuning, recent years have witnessed the promising performance of pre-trained vision-language models, e.g., CLIP, on versatile downstream tasks. In this paper, we focus on a particular setting of learning adaptive prompts on the fly for each test sample from an unseen new domain, which is known as test-time prompt tuning (TPT). Existing TPT methods typically rely on data augmentation and confidence selection. However, conventional data augmentation techniques, e.g., random resized crops, suffers from the lack of data diversity, while entropy-based confidence selection alone is not sufficient to guarantee prediction fidelity. To address these issues, we propose a novel TPT method, named DiffTPT, which leverages pre-trained diffusion models to generate diverse and informative new data. Specifically, we incorporate augmented data by both conventional method and pre-trained stable diffusion to exploit their respective merits, improving the models ability to adapt to unknown new test data. Moreover, to ensure the prediction fidelity of generated data, we introduce a cosine similarity-based filtration technique to select the generated data with higher similarity to the single test sample. Our experiments on test datasets with distribution shifts and unseen categories demonstrate that DiffTPT improves the zero-shot accuracy by an average of 5.13\% compared to the state-of-the-art TPT method. Our code and models will be publicly released.
Logic2Text: High-Fidelity Natural Language Generation from Logical Forms
Previous works on Natural Language Generation (NLG) from structured data have primarily focused on surface-level descriptions of record sequences. However, for complex structured data, e.g., multi-row tables, it is often desirable for an NLG system to describe interesting facts from logical inferences across records. If only provided with the table, it is hard for existing models to produce controllable and high-fidelity logical generations. In this work, we formulate logical level NLG as generation from logical forms in order to obtain controllable, high-fidelity, and faithful generations. We present a new large-scale dataset, Logic2Text, with 10,753 descriptions involving common logic types paired with the underlying logical forms. The logical forms show diversified graph structure of free schema, which poses great challenges on the model's ability to understand the semantics. We experiment on (1) Fully-supervised training with the full datasets, and (2) Few-shot setting, provided with hundreds of paired examples; We compare several popular generation models and analyze their performances. We hope our dataset can encourage research towards building an advanced NLG system capable of natural, faithful, and human-like generation. The dataset and code are available at https://github.com/czyssrs/Logic2Text.
DreamID: High-Fidelity and Fast diffusion-based Face Swapping via Triplet ID Group Learning
In this paper, we introduce DreamID, a diffusion-based face swapping model that achieves high levels of ID similarity, attribute preservation, image fidelity, and fast inference speed. Unlike the typical face swapping training process, which often relies on implicit supervision and struggles to achieve satisfactory results. DreamID establishes explicit supervision for face swapping by constructing Triplet ID Group data, significantly enhancing identity similarity and attribute preservation. The iterative nature of diffusion models poses challenges for utilizing efficient image-space loss functions, as performing time-consuming multi-step sampling to obtain the generated image during training is impractical. To address this issue, we leverage the accelerated diffusion model SD Turbo, reducing the inference steps to a single iteration, enabling efficient pixel-level end-to-end training with explicit Triplet ID Group supervision. Additionally, we propose an improved diffusion-based model architecture comprising SwapNet, FaceNet, and ID Adapter. This robust architecture fully unlocks the power of the Triplet ID Group explicit supervision. Finally, to further extend our method, we explicitly modify the Triplet ID Group data during training to fine-tune and preserve specific attributes, such as glasses and face shape. Extensive experiments demonstrate that DreamID outperforms state-of-the-art methods in terms of identity similarity, pose and expression preservation, and image fidelity. Overall, DreamID achieves high-quality face swapping results at 512*512 resolution in just 0.6 seconds and performs exceptionally well in challenging scenarios such as complex lighting, large angles, and occlusions.
Large Language Models for Data Synthesis
Generating synthetic data that faithfully captures the statistical structure of real-world distributions is a fundamental challenge in data modeling. Classical approaches often depend on strong parametric assumptions or manual structural design and struggle in high-dimensional or heterogeneous domains. Recent progress in Large Language Models (LLMs) reveals their potential as flexible, high-dimensional priors over real-world distributions. However, when applied to data synthesis, standard LLM-based sampling is inefficient, constrained by fixed context limits, and fails to ensure statistical alignment. Given this, we introduce LLMSynthor, a general framework for data synthesis that transforms LLMs into structure-aware simulators guided by distributional feedback. LLMSynthor treats the LLM as a nonparametric copula simulator for modeling high-order dependencies and introduces LLM Proposal Sampling to generate grounded proposal distributions that improve sampling efficiency without requiring rejection. By minimizing discrepancies in the summary statistics space, the iterative synthesis loop aligns real and synthetic data while gradually uncovering and refining the latent generative structure. We evaluate LLMSynthor in both controlled and real-world settings using heterogeneous datasets in privacy-sensitive domains (e.g., e-commerce, population, and mobility) that encompass both structured and unstructured formats. The synthetic data produced by LLMSynthor shows high statistical fidelity, practical utility, and cross-data adaptability, positioning it as a valuable tool across economics, social science, urban studies, and beyond.
EditScore: Unlocking Online RL for Image Editing via High-Fidelity Reward Modeling
Instruction-guided image editing has achieved remarkable progress, yet current models still face challenges with complex instructions and often require multiple samples to produce a desired result. Reinforcement Learning (RL) offers a promising solution, but its adoption in image editing has been severely hindered by the lack of a high-fidelity, efficient reward signal. In this work, we present a comprehensive methodology to overcome this barrier, centered on the development of a state-of-the-art, specialized reward model. We first introduce EditReward-Bench, a comprehensive benchmark to systematically evaluate reward models on editing quality. Building on this benchmark, we develop EditScore, a series of reward models (7B-72B) for evaluating the quality of instruction-guided image editing. Through meticulous data curation and filtering, EditScore effectively matches the performance of learning proprietary VLMs. Furthermore, coupled with an effective self-ensemble strategy tailored for the generative nature of EditScore, our largest variant even surpasses GPT-5 in the benchmark. We then demonstrate that a high-fidelity reward model is the key to unlocking online RL for image editing. Our experiments show that, while even the largest open-source VLMs fail to provide an effective learning signal, EditScore enables efficient and robust policy optimization. Applying our framework to a strong base model, OmniGen2, results in a final model that shows a substantial and consistent performance uplift. Overall, this work provides the first systematic path from benchmarking to reward modeling to RL training in image editing, showing that a high-fidelity, domain-specialized reward model is the key to unlocking the full potential of RL in this domain.
DiT360: High-Fidelity Panoramic Image Generation via Hybrid Training
In this work, we propose DiT360, a DiT-based framework that performs hybrid training on perspective and panoramic data for panoramic image generation. For the issues of maintaining geometric fidelity and photorealism in generation quality, we attribute the main reason to the lack of large-scale, high-quality, real-world panoramic data, where such a data-centric view differs from prior methods that focus on model design. Basically, DiT360 has several key modules for inter-domain transformation and intra-domain augmentation, applied at both the pre-VAE image level and the post-VAE token level. At the image level, we incorporate cross-domain knowledge through perspective image guidance and panoramic refinement, which enhance perceptual quality while regularizing diversity and photorealism. At the token level, hybrid supervision is applied across multiple modules, which include circular padding for boundary continuity, yaw loss for rotational robustness, and cube loss for distortion awareness. Extensive experiments on text-to-panorama, inpainting, and outpainting tasks demonstrate that our method achieves better boundary consistency and image fidelity across eleven quantitative metrics. Our code is available at https://github.com/Insta360-Research-Team/DiT360.
RodinHD: High-Fidelity 3D Avatar Generation with Diffusion Models
We present RodinHD, which can generate high-fidelity 3D avatars from a portrait image. Existing methods fail to capture intricate details such as hairstyles which we tackle in this paper. We first identify an overlooked problem of catastrophic forgetting that arises when fitting triplanes sequentially on many avatars, caused by the MLP decoder sharing scheme. To overcome this issue, we raise a novel data scheduling strategy and a weight consolidation regularization term, which improves the decoder's capability of rendering sharper details. Additionally, we optimize the guiding effect of the portrait image by computing a finer-grained hierarchical representation that captures rich 2D texture cues, and injecting them to the 3D diffusion model at multiple layers via cross-attention. When trained on 46K avatars with a noise schedule optimized for triplanes, the resulting model can generate 3D avatars with notably better details than previous methods and can generalize to in-the-wild portrait input.
Hunyuan3D 2.1: From Images to High-Fidelity 3D Assets with Production-Ready PBR Material
3D AI-generated content (AIGC) is a passionate field that has significantly accelerated the creation of 3D models in gaming, film, and design. Despite the development of several groundbreaking models that have revolutionized 3D generation, the field remains largely accessible only to researchers, developers, and designers due to the complexities involved in collecting, processing, and training 3D models. To address these challenges, we introduce Hunyuan3D 2.1 as a case study in this tutorial. This tutorial offers a comprehensive, step-by-step guide on processing 3D data, training a 3D generative model, and evaluating its performance using Hunyuan3D 2.1, an advanced system for producing high-resolution, textured 3D assets. The system comprises two core components: the Hunyuan3D-DiT for shape generation and the Hunyuan3D-Paint for texture synthesis. We will explore the entire workflow, including data preparation, model architecture, training strategies, evaluation metrics, and deployment. By the conclusion of this tutorial, you will have the knowledge to finetune or develop a robust 3D generative model suitable for applications in gaming, virtual reality, and industrial design.
High-Fidelity Virtual Try-on with Large-Scale Unpaired Learning
Virtual try-on (VTON) transfers a target clothing image to a reference person, where clothing fidelity is a key requirement for downstream e-commerce applications. However, existing VTON methods still fall short in high-fidelity try-on due to the conflict between the high diversity of dressing styles (\eg clothes occluded by pants or distorted by posture) and the limited paired data for training. In this work, we propose a novel framework Boosted Virtual Try-on (BVTON) to leverage the large-scale unpaired learning for high-fidelity try-on. Our key insight is that pseudo try-on pairs can be reliably constructed from vastly available fashion images. Specifically, 1) we first propose a compositional canonicalizing flow that maps on-model clothes into pseudo in-shop clothes, dubbed canonical proxy. Each clothing part (sleeves, torso) is reversely deformed into an in-shop-like shape to compositionally construct the canonical proxy. 2) Next, we design a layered mask generation module that generates accurate semantic layout by training on canonical proxy. We replace the in-shop clothes used in conventional pipelines with the derived canonical proxy to boost the training process. 3) Finally, we propose an unpaired try-on synthesizer by constructing pseudo training pairs with randomly misaligned on-model clothes, where intricate skin texture and clothes boundaries can be generated. Extensive experiments on high-resolution (1024times768) datasets demonstrate the superiority of our approach over state-of-the-art methods both qualitatively and quantitatively. Notably, BVTON shows great generalizability and scalability to various dressing styles and data sources.
RelDiff: Relational Data Generative Modeling with Graph-Based Diffusion Models
Real-world databases are predominantly relational, comprising multiple interlinked tables that contain complex structural and statistical dependencies. Learning generative models on relational data has shown great promise in generating synthetic data and imputing missing values. However, existing methods often struggle to capture this complexity, typically reducing relational data to conditionally generated flat tables and imposing limiting structural assumptions. To address these limitations, we introduce RelDiff, a novel diffusion generative model that synthesizes complete relational databases by explicitly modeling their foreign key graph structure. RelDiff combines a joint graph-conditioned diffusion process across all tables for attribute synthesis, and a 2K+SBM graph generator based on the Stochastic Block Model for structure generation. The decomposition of graph structure and relational attributes ensures both high fidelity and referential integrity, both of which are crucial aspects of synthetic relational database generation. Experiments on 11 benchmark datasets demonstrate that RelDiff consistently outperforms prior methods in producing realistic and coherent synthetic relational databases. Code is available at https://github.com/ValterH/RelDiff.
MiLA: Multi-view Intensive-fidelity Long-term Video Generation World Model for Autonomous Driving
In recent years, data-driven techniques have greatly advanced autonomous driving systems, but the need for rare and diverse training data remains a challenge, requiring significant investment in equipment and labor. World models, which predict and generate future environmental states, offer a promising solution by synthesizing annotated video data for training. However, existing methods struggle to generate long, consistent videos without accumulating errors, especially in dynamic scenes. To address this, we propose MiLA, a novel framework for generating high-fidelity, long-duration videos up to one minute. MiLA utilizes a Coarse-to-Re(fine) approach to both stabilize video generation and correct distortion of dynamic objects. Additionally, we introduce a Temporal Progressive Denoising Scheduler and Joint Denoising and Correcting Flow modules to improve the quality of generated videos. Extensive experiments on the nuScenes dataset show that MiLA achieves state-of-the-art performance in video generation quality. For more information, visit the project website: https://github.com/xiaomi-mlab/mila.github.io.
OHTA: One-shot Hand Avatar via Data-driven Implicit Priors
In this paper, we delve into the creation of one-shot hand avatars, attaining high-fidelity and drivable hand representations swiftly from a single image. With the burgeoning domains of the digital human, the need for quick and personalized hand avatar creation has become increasingly critical. Existing techniques typically require extensive input data and may prove cumbersome or even impractical in certain scenarios. To enhance accessibility, we present a novel method OHTA (One-shot Hand avaTAr) that enables the creation of detailed hand avatars from merely one image. OHTA tackles the inherent difficulties of this data-limited problem by learning and utilizing data-driven hand priors. Specifically, we design a hand prior model initially employed for 1) learning various hand priors with available data and subsequently for 2) the inversion and fitting of the target identity with prior knowledge. OHTA demonstrates the capability to create high-fidelity hand avatars with consistent animatable quality, solely relying on a single image. Furthermore, we illustrate the versatility of OHTA through diverse applications, encompassing text-to-avatar conversion, hand editing, and identity latent space manipulation.
Geo2SigMap: High-Fidelity RF Signal Mapping Using Geographic Databases
Radio frequency (RF) signal mapping, which is the process of analyzing and predicting the RF signal strength and distribution across specific areas, is crucial for cellular network planning and deployment. Traditional approaches to RF signal mapping rely on statistical models constructed based on measurement data, which offer low complexity but often lack accuracy, or ray tracing tools, which provide enhanced precision for the target area but suffer from increased computational complexity. Recently, machine learning (ML) has emerged as a data-driven method for modeling RF signal propagation, which leverages models trained on synthetic datasets to perform RF signal mapping in "unseen" areas. In this paper, we present Geo2SigMap, an ML-based framework for efficient and high-fidelity RF signal mapping using geographic databases. First, we develop an automated framework that seamlessly integrates three open-source tools: OpenStreetMap (geographic databases), Blender (computer graphics), and Sionna (ray tracing), enabling the efficient generation of large-scale 3D building maps and ray tracing models. Second, we propose a cascaded U-Net model, which is pre-trained on synthetic datasets and employed to generate detailed RF signal maps, leveraging environmental information and sparse measurement data. Finally, we evaluate the performance of Geo2SigMap via a real-world measurement campaign, where three types of user equipment (UE) collect over 45,000 data points related to cellular information from six LTE cells operating in the citizens broadband radio service (CBRS) band. Our results show that Geo2SigMap achieves an average root-mean-square-error (RMSE) of 6.04 dB for predicting the reference signal received power (RSRP) at the UE, representing an average RMSE improvement of 3.59 dB compared to existing methods.
AirfRANS: High Fidelity Computational Fluid Dynamics Dataset for Approximating Reynolds-Averaged Navier-Stokes Solutions
Surrogate models are necessary to optimize meaningful quantities in physical dynamics as their recursive numerical resolutions are often prohibitively expensive. It is mainly the case for fluid dynamics and the resolution of Navier-Stokes equations. However, despite the fast-growing field of data-driven models for physical systems, reference datasets representing real-world phenomena are lacking. In this work, we develop AirfRANS, a dataset for studying the two-dimensional incompressible steady-state Reynolds-Averaged Navier-Stokes equations over airfoils at a subsonic regime and for different angles of attacks. We also introduce metrics on the stress forces at the surface of geometries and visualization of boundary layers to assess the capabilities of models to accurately predict the meaningful information of the problem. Finally, we propose deep learning baselines on four machine learning tasks to study AirfRANS under different constraints for generalization considerations: big and scarce data regime, Reynolds number, and angle of attack extrapolation.
AlignHuman: Improving Motion and Fidelity via Timestep-Segment Preference Optimization for Audio-Driven Human Animation
Recent advancements in human video generation and animation tasks, driven by diffusion models, have achieved significant progress. However, expressive and realistic human animation remains challenging due to the trade-off between motion naturalness and visual fidelity. To address this, we propose AlignHuman, a framework that combines Preference Optimization as a post-training technique with a divide-and-conquer training strategy to jointly optimize these competing objectives. Our key insight stems from an analysis of the denoising process across timesteps: (1) early denoising timesteps primarily control motion dynamics, while (2) fidelity and human structure can be effectively managed by later timesteps, even if early steps are skipped. Building on this observation, we propose timestep-segment preference optimization (TPO) and introduce two specialized LoRAs as expert alignment modules, each targeting a specific dimension in its corresponding timestep interval. The LoRAs are trained using their respective preference data and activated in the corresponding intervals during inference to enhance motion naturalness and fidelity. Extensive experiments demonstrate that AlignHuman improves strong baselines and reduces NFEs during inference, achieving a 3.3times speedup (from 100 NFEs to 30 NFEs) with minimal impact on generation quality. Homepage: https://alignhuman.github.io/{https://alignhuman.github.io/}
Uncertainty Quantification for Multi-fidelity Simulations
The work focuses on gathering high-fidelity and low-fidelity numerical simulations data using Nektar++ (Solver based on Applied Mathematics) and XFOIL respectively. The utilization of the higher polynomial distribution in calculating the Coefficient of lift and drag has demonstrated superior accuracy and precision. Further, Co-kriging Data fusion and Adaptive sampling technique has been used to obtain the precise data predictions for the lift and drag within the confined domain without conducting the costly simulations on HPC clusters. This creates a methodology to quantifying uncertainty in computational fluid dynamics by minimizing the required number of samples. To minimize the reliability on high-fidelity numerical simulations in Uncertainty Quantification, a multi-fidelity strategy has been adopted. The effectiveness of the multi-fidelity deep neural network model has been validated through the approximation of benchmark functions across 1-, 32-, and 100-dimensional, encompassing both linear and nonlinear correlations. The surrogate modelling results showed that multi-fidelity deep neural network model has shown excellent approximation capabilities for the test functions and multi-fidelity deep neural network method has outperformed Co-kriging in effectiveness. In addition to that, multi-fidelity deep neural network model is utilized for the simulation of aleatory uncertainty propagation in 1-, 32-, and 100 dimensional function test, considering both uniform and Gaussian distributions for input uncertainties. The results have shown that multi-fidelity deep neural network model has efficiently predicted the probability density distributions of quantities of interest as well as the statistical moments with precision and accuracy. The Co-Kriging model has exhibited limitations when addressing 32-Dimension problems due to the limitation of memory capacity for storage and manipulation.
GeneMAN: Generalizable Single-Image 3D Human Reconstruction from Multi-Source Human Data
Given a single in-the-wild human photo, it remains a challenging task to reconstruct a high-fidelity 3D human model. Existing methods face difficulties including a) the varying body proportions captured by in-the-wild human images; b) diverse personal belongings within the shot; and c) ambiguities in human postures and inconsistency in human textures. In addition, the scarcity of high-quality human data intensifies the challenge. To address these problems, we propose a Generalizable image-to-3D huMAN reconstruction framework, dubbed GeneMAN, building upon a comprehensive multi-source collection of high-quality human data, including 3D scans, multi-view videos, single photos, and our generated synthetic human data. GeneMAN encompasses three key modules. 1) Without relying on parametric human models (e.g., SMPL), GeneMAN first trains a human-specific text-to-image diffusion model and a view-conditioned diffusion model, serving as GeneMAN 2D human prior and 3D human prior for reconstruction, respectively. 2) With the help of the pretrained human prior models, the Geometry Initialization-&-Sculpting pipeline is leveraged to recover high-quality 3D human geometry given a single image. 3) To achieve high-fidelity 3D human textures, GeneMAN employs the Multi-Space Texture Refinement pipeline, consecutively refining textures in the latent and the pixel spaces. Extensive experimental results demonstrate that GeneMAN could generate high-quality 3D human models from a single image input, outperforming prior state-of-the-art methods. Notably, GeneMAN could reveal much better generalizability in dealing with in-the-wild images, often yielding high-quality 3D human models in natural poses with common items, regardless of the body proportions in the input images.
SynFER: Towards Boosting Facial Expression Recognition with Synthetic Data
Facial expression datasets remain limited in scale due to the subjectivity of annotations and the labor-intensive nature of data collection. This limitation poses a significant challenge for developing modern deep learning-based facial expression analysis models, particularly foundation models, that rely on large-scale data for optimal performance. To tackle the overarching and complex challenge, instead of introducing a new large-scale dataset, we introduce SynFER (Synthesis of Facial Expressions with Refined Control), a novel synthetic framework for synthesizing facial expression image data based on high-level textual descriptions as well as more fine-grained and precise control through facial action units. To ensure the quality and reliability of the synthetic data, we propose a semantic guidance technique to steer the generation process and a pseudo-label generator to help rectify the facial expression labels for the synthetic images. To demonstrate the generation fidelity and the effectiveness of the synthetic data from SynFER, we conduct extensive experiments on representation learning using both synthetic data and real-world data. Results validate the efficacy of our approach and the synthetic data. Notably, our approach achieves a 67.23% classification accuracy on AffectNet when training solely with synthetic data equivalent to the AffectNet training set size, which increases to 69.84% when scaling up to five times the original size. Code is available here.
Beyond Finite Data: Towards Data-free Out-of-distribution Generalization via Extrapolation
Out-of-distribution (OOD) generalization is a favorable yet challenging property for deep neural networks. The core challenges lie in the limited availability of source domains that help models learn an invariant representation from the spurious features. Various domain augmentation have been proposed but largely rely on interpolating existing domains and frequently face difficulties in creating truly "novel" domains. Humans, on the other hand, can easily extrapolate novel domains, thus, an intriguing question arises: How can neural networks extrapolate like humans and achieve OOD generalization? We introduce a novel approach to domain extrapolation that leverages reasoning ability and the extensive knowledge encapsulated within large language models (LLMs) to synthesize entirely new domains. Starting with the class of interest, we query the LLMs to extract relevant knowledge for these novel domains. We then bridge the gap between the text-centric knowledge derived from LLMs and the pixel input space of the model using text-to-image generation techniques. By augmenting the training set of domain generalization datasets with high-fidelity, photo-realistic images of these new domains, we achieve significant improvements over all existing methods, as demonstrated in both single and multi-domain generalization across various benchmarks. With the ability to extrapolate any domains for any class, our method has the potential to learn a generalized model for any task without any data. To illustrate, we put forth a much more difficult setting termed, data-free domain generalization, that aims to learn a generalized model in the absence of any collected data. Our empirical findings support the above argument and our methods exhibit commendable performance in this setting, even surpassing the supervised setting by approximately 1-2\% on datasets such as VLCS.
Towards High-Fidelity Text-Guided 3D Face Generation and Manipulation Using only Images
Generating 3D faces from textual descriptions has a multitude of applications, such as gaming, movie, and robotics. Recent progresses have demonstrated the success of unconditional 3D face generation and text-to-3D shape generation. However, due to the limited text-3D face data pairs, text-driven 3D face generation remains an open problem. In this paper, we propose a text-guided 3D faces generation method, refer as TG-3DFace, for generating realistic 3D faces using text guidance. Specifically, we adopt an unconditional 3D face generation framework and equip it with text conditions, which learns the text-guided 3D face generation with only text-2D face data. On top of that, we propose two text-to-face cross-modal alignment techniques, including the global contrastive learning and the fine-grained alignment module, to facilitate high semantic consistency between generated 3D faces and input texts. Besides, we present directional classifier guidance during the inference process, which encourages creativity for out-of-domain generations. Compared to the existing methods, TG-3DFace creates more realistic and aesthetically pleasing 3D faces, boosting 9% multi-view consistency (MVIC) over Latent3D. The rendered face images generated by TG-3DFace achieve higher FID and CLIP score than text-to-2D face/image generation models, demonstrating our superiority in generating realistic and semantic-consistent textures.
Data and Representation for Turkish Natural Language Inference
Large annotated datasets in NLP are overwhelmingly in English. This is an obstacle to progress in other languages. Unfortunately, obtaining new annotated resources for each task in each language would be prohibitively expensive. At the same time, commercial machine translation systems are now robust. Can we leverage these systems to translate English-language datasets automatically? In this paper, we offer a positive response for natural language inference (NLI) in Turkish. We translated two large English NLI datasets into Turkish and had a team of experts validate their translation quality and fidelity to the original labels. Using these datasets, we address core issues of representation for Turkish NLI. We find that in-language embeddings are essential and that morphological parsing can be avoided where the training set is large. Finally, we show that models trained on our machine-translated datasets are successful on human-translated evaluation sets. We share all code, models, and data publicly.
High-Fidelity Image Generation With Fewer Labels
Deep generative models are becoming a cornerstone of modern machine learning. Recent work on conditional generative adversarial networks has shown that learning complex, high-dimensional distributions over natural images is within reach. While the latest models are able to generate high-fidelity, diverse natural images at high resolution, they rely on a vast quantity of labeled data. In this work we demonstrate how one can benefit from recent work on self- and semi-supervised learning to outperform the state of the art on both unsupervised ImageNet synthesis, as well as in the conditional setting. In particular, the proposed approach is able to match the sample quality (as measured by FID) of the current state-of-the-art conditional model BigGAN on ImageNet using only 10% of the labels and outperform it using 20% of the labels.
FlashVideo:Flowing Fidelity to Detail for Efficient High-Resolution Video Generation
DiT diffusion models have achieved great success in text-to-video generation, leveraging their scalability in model capacity and data scale. High content and motion fidelity aligned with text prompts, however, often require large model parameters and a substantial number of function evaluations (NFEs). Realistic and visually appealing details are typically reflected in high resolution outputs, further amplifying computational demands especially for single stage DiT models. To address these challenges, we propose a novel two stage framework, FlashVideo, which strategically allocates model capacity and NFEs across stages to balance generation fidelity and quality. In the first stage, prompt fidelity is prioritized through a low resolution generation process utilizing large parameters and sufficient NFEs to enhance computational efficiency. The second stage establishes flow matching between low and high resolutions, effectively generating fine details with minimal NFEs. Quantitative and visual results demonstrate that FlashVideo achieves state-of-the-art high resolution video generation with superior computational efficiency. Additionally, the two-stage design enables users to preview the initial output before committing to full resolution generation, thereby significantly reducing computational costs and wait times as well as enhancing commercial viability .
Gaussian Variation Field Diffusion for High-fidelity Video-to-4D Synthesis
In this paper, we present a novel framework for video-to-4D generation that creates high-quality dynamic 3D content from single video inputs. Direct 4D diffusion modeling is extremely challenging due to costly data construction and the high-dimensional nature of jointly representing 3D shape, appearance, and motion. We address these challenges by introducing a Direct 4DMesh-to-GS Variation Field VAE that directly encodes canonical Gaussian Splats (GS) and their temporal variations from 3D animation data without per-instance fitting, and compresses high-dimensional animations into a compact latent space. Building upon this efficient representation, we train a Gaussian Variation Field diffusion model with temporal-aware Diffusion Transformer conditioned on input videos and canonical GS. Trained on carefully-curated animatable 3D objects from the Objaverse dataset, our model demonstrates superior generation quality compared to existing methods. It also exhibits remarkable generalization to in-the-wild video inputs despite being trained exclusively on synthetic data, paving the way for generating high-quality animated 3D content. Project page: https://gvfdiffusion.github.io/.
Video Compression for Spatiotemporal Earth System Data
Large-scale Earth system datasets, from high-resolution remote sensing imagery to spatiotemporal climate model outputs, exhibit characteristics analogous to those of standard videos. Their inherent spatial, temporal, and spectral redundancies can thus be readily exploited by established video compression techniques. Here, we present xarrayvideo, a Python library for compressing multichannel spatiotemporal datasets by encoding them as videos. Our approach achieves compression ratios of up to 250x while maintaining high fidelity by leveraging standard, well-optimized video codecs through ffmpeg. We demonstrate the library's effectiveness on four real-world multichannel spatiotemporal datasets: DynamicEarthNet (very high resolution Planet images), DeepExtremeCubes (high resolution Sentinel-2 images), ERA5 (weather reanalysis data), and the SimpleS2 dataset (high resolution multichannel Sentinel-2 images), achieving Peak Signal-to-Noise Ratios (PSNRs) of 55.86, 40.60, 46.58, and 43.23 dB at 0.1 bits per pixel per band (bpppb) and 65.91, 54.28, 62.90, and 55.04 dB at 1 bpppb. We are redistributing two of these datasets, DeepExtremeCubes (2.3 Tb) and DynamicEarthNet (525 Gb), in the machine-learning-ready and cloud-ready TACO format through HuggingFace at significantly reduced sizes (270 Gb and 8.5 Gb, respectively) without compromising quality (PSNR 55.77-56.65 and 60.15). No performance loss is observed when the compressed versions of these datasets are used in their respective deep learning-based downstream tasks (next step reflectance prediction and landcover segmentation). In conclusion, xarrayvideo presents an efficient solution for handling the rapidly growing size of Earth observation datasets, making advanced compression techniques accessible and practical to the Earth science community. The library is available for use at https://github.com/IPL-UV/xarrayvideo
Hummingbird: High Fidelity Image Generation via Multimodal Context Alignment
While diffusion models are powerful in generating high-quality, diverse synthetic data for object-centric tasks, existing methods struggle with scene-aware tasks such as Visual Question Answering (VQA) and Human-Object Interaction (HOI) Reasoning, where it is critical to preserve scene attributes in generated images consistent with a multimodal context, i.e. a reference image with accompanying text guidance query. To address this, we introduce Hummingbird, the first diffusion-based image generator which, given a multimodal context, generates highly diverse images w.r.t. the reference image while ensuring high fidelity by accurately preserving scene attributes, such as object interactions and spatial relationships from the text guidance. Hummingbird employs a novel Multimodal Context Evaluator that simultaneously optimizes our formulated Global Semantic and Fine-grained Consistency Rewards to ensure generated images preserve the scene attributes of reference images in relation to the text guidance while maintaining diversity. As the first model to address the task of maintaining both diversity and fidelity given a multimodal context, we introduce a new benchmark formulation incorporating MME Perception and Bongard HOI datasets. Benchmark experiments show Hummingbird outperforms all existing methods by achieving superior fidelity while maintaining diversity, validating Hummingbird's potential as a robust multimodal context-aligned image generator in complex visual tasks.
Aioli: A Unified Optimization Framework for Language Model Data Mixing
Language model performance depends on identifying the optimal mixture of data groups to train on (e.g., law, code, math). Prior work has proposed a diverse set of methods to efficiently learn mixture proportions, ranging from fitting regression models over training runs to dynamically updating proportions throughout training. Surprisingly, we find that no existing method consistently outperforms a simple stratified sampling baseline in terms of average test perplexity. To understand this inconsistency, we unify existing methods into a standard framework, showing they are equivalent to solving a common optimization problem: minimize average loss subject to a method-specific mixing law -- an implicit assumption on the relationship between loss and mixture proportions. This framework suggests that measuring the fidelity of a method's mixing law can offer insights into its performance. Empirically, we find that existing methods set their mixing law parameters inaccurately, resulting in the inconsistent mixing performance we observe. Using this insight, we derive a new online method named Aioli, which directly estimates the mixing law parameters throughout training and uses them to dynamically adjust proportions. Aioli outperforms stratified sampling on 6 out of 6 datasets by an average of 0.27 test perplexity points, whereas existing methods fail to consistently beat stratified sampling, doing up to 6.9 points worse. Moreover, in a practical setting where proportions are learned on shorter runs due to computational constraints, Aioli can dynamically adjust these proportions over the full training run, consistently improving performance over existing methods by up to 12.012 test perplexity points.
Simultaneous q-Space Sampling Optimization and Reconstruction for Fast and High-fidelity Diffusion Magnetic Resonance Imaging
Diffusion Magnetic Resonance Imaging (dMRI) plays a crucial role in the noninvasive investigation of tissue microstructural properties and structural connectivity in the in vivo human brain. However, to effectively capture the intricate characteristics of water diffusion at various directions and scales, it is important to employ comprehensive q-space sampling. Unfortunately, this requirement leads to long scan times, limiting the clinical applicability of dMRI. To address this challenge, we propose SSOR, a Simultaneous q-Space sampling Optimization and Reconstruction framework. We jointly optimize a subset of q-space samples using a continuous representation of spherical harmonic functions and a reconstruction network. Additionally, we integrate the unique properties of diffusion magnetic resonance imaging (dMRI) in both the q-space and image domains by applying l1-norm and total-variation regularization. The experiments conducted on HCP data demonstrate that SSOR has promising strengths both quantitatively and qualitatively and exhibits robustness to noise.
ScanNet++: A High-Fidelity Dataset of 3D Indoor Scenes
We present ScanNet++, a large-scale dataset that couples together capture of high-quality and commodity-level geometry and color of indoor scenes. Each scene is captured with a high-end laser scanner at sub-millimeter resolution, along with registered 33-megapixel images from a DSLR camera, and RGB-D streams from an iPhone. Scene reconstructions are further annotated with an open vocabulary of semantics, with label-ambiguous scenarios explicitly annotated for comprehensive semantic understanding. ScanNet++ enables a new real-world benchmark for novel view synthesis, both from high-quality RGB capture, and importantly also from commodity-level images, in addition to a new benchmark for 3D semantic scene understanding that comprehensively encapsulates diverse and ambiguous semantic labeling scenarios. Currently, ScanNet++ contains 460 scenes, 280,000 captured DSLR images, and over 3.7M iPhone RGBD frames.
HiFi-Codec: Group-residual Vector quantization for High Fidelity Audio Codec
Audio codec models are widely used in audio communication as a crucial technique for compressing audio into discrete representations. Nowadays, audio codec models are increasingly utilized in generation fields as intermediate representations. For instance, AudioLM is an audio generation model that uses the discrete representation of SoundStream as a training target, while VALL-E employs the Encodec model as an intermediate feature to aid TTS tasks. Despite their usefulness, two challenges persist: (1) training these audio codec models can be difficult due to the lack of publicly available training processes and the need for large-scale data and GPUs; (2) achieving good reconstruction performance requires many codebooks, which increases the burden on generation models. In this study, we propose a group-residual vector quantization (GRVQ) technique and use it to develop a novel High Fidelity Audio Codec model, HiFi-Codec, which only requires 4 codebooks. We train all the models using publicly available TTS data such as LibriTTS, VCTK, AISHELL, and more, with a total duration of over 1000 hours, using 8 GPUs. Our experimental results show that HiFi-Codec outperforms Encodec in terms of reconstruction performance despite requiring only 4 codebooks. To facilitate research in audio codec and generation, we introduce AcademiCodec, the first open-source audio codec toolkit that offers training codes and pre-trained models for Encodec, SoundStream, and HiFi-Codec. Code and pre-trained model can be found on: https://github.com/yangdongchao/AcademiCodec{https://github.com/yangdongchao/AcademiCodec}
DOOMGAN:High-Fidelity Dynamic Identity Obfuscation Ocular Generative Morphing
Ocular biometrics in the visible spectrum have emerged as a prominent modality due to their high accuracy, resistance to spoofing, and non-invasive nature. However, morphing attacks, synthetic biometric traits created by blending features from multiple individuals, threaten biometric system integrity. While extensively studied for near-infrared iris and face biometrics, morphing in visible-spectrum ocular data remains underexplored. Simulating such attacks demands advanced generation models that handle uncontrolled conditions while preserving detailed ocular features like iris boundaries and periocular textures. To address this gap, we introduce DOOMGAN, that encompasses landmark-driven encoding of visible ocular anatomy, attention-guided generation for realistic morph synthesis, and dynamic weighting of multi-faceted losses for optimized convergence. DOOMGAN achieves over 20% higher attack success rates than baseline methods under stringent thresholds, along with 20% better elliptical iris structure generation and 30% improved gaze consistency. We also release the first comprehensive ocular morphing dataset to support further research in this domain.
TextFlux: An OCR-Free DiT Model for High-Fidelity Multilingual Scene Text Synthesis
Diffusion-based scene text synthesis has progressed rapidly, yet existing methods commonly rely on additional visual conditioning modules and require large-scale annotated data to support multilingual generation. In this work, we revisit the necessity of complex auxiliary modules and further explore an approach that simultaneously ensures glyph accuracy and achieves high-fidelity scene integration, by leveraging diffusion models' inherent capabilities for contextual reasoning. To this end, we introduce TextFlux, a DiT-based framework that enables multilingual scene text synthesis. The advantages of TextFlux can be summarized as follows: (1) OCR-free model architecture. TextFlux eliminates the need for OCR encoders (additional visual conditioning modules) that are specifically used to extract visual text-related features. (2) Strong multilingual scalability. TextFlux is effective in low-resource multilingual settings, and achieves strong performance in newly added languages with fewer than 1,000 samples. (3) Streamlined training setup. TextFlux is trained with only 1% of the training data required by competing methods. (4) Controllable multi-line text generation. TextFlux offers flexible multi-line synthesis with precise line-level control, outperforming methods restricted to single-line or rigid layouts. Extensive experiments and visualizations demonstrate that TextFlux outperforms previous methods in both qualitative and quantitative evaluations.
FabricDiffusion: High-Fidelity Texture Transfer for 3D Garments Generation from In-The-Wild Clothing Images
We introduce FabricDiffusion, a method for transferring fabric textures from a single clothing image to 3D garments of arbitrary shapes. Existing approaches typically synthesize textures on the garment surface through 2D-to-3D texture mapping or depth-aware inpainting via generative models. Unfortunately, these methods often struggle to capture and preserve texture details, particularly due to challenging occlusions, distortions, or poses in the input image. Inspired by the observation that in the fashion industry, most garments are constructed by stitching sewing patterns with flat, repeatable textures, we cast the task of clothing texture transfer as extracting distortion-free, tileable texture materials that are subsequently mapped onto the UV space of the garment. Building upon this insight, we train a denoising diffusion model with a large-scale synthetic dataset to rectify distortions in the input texture image. This process yields a flat texture map that enables a tight coupling with existing Physically-Based Rendering (PBR) material generation pipelines, allowing for realistic relighting of the garment under various lighting conditions. We show that FabricDiffusion can transfer various features from a single clothing image including texture patterns, material properties, and detailed prints and logos. Extensive experiments demonstrate that our model significantly outperforms state-to-the-art methods on both synthetic data and real-world, in-the-wild clothing images while generalizing to unseen textures and garment shapes.
StereoCrafter: Diffusion-based Generation of Long and High-fidelity Stereoscopic 3D from Monocular Videos
This paper presents a novel framework for converting 2D videos to immersive stereoscopic 3D, addressing the growing demand for 3D content in immersive experience. Leveraging foundation models as priors, our approach overcomes the limitations of traditional methods and boosts the performance to ensure the high-fidelity generation required by the display devices. The proposed system consists of two main steps: depth-based video splatting for warping and extracting occlusion mask, and stereo video inpainting. We utilize pre-trained stable video diffusion as the backbone and introduce a fine-tuning protocol for the stereo video inpainting task. To handle input video with varying lengths and resolutions, we explore auto-regressive strategies and tiled processing. Finally, a sophisticated data processing pipeline has been developed to reconstruct a large-scale and high-quality dataset to support our training. Our framework demonstrates significant improvements in 2D-to-3D video conversion, offering a practical solution for creating immersive content for 3D devices like Apple Vision Pro and 3D displays. In summary, this work contributes to the field by presenting an effective method for generating high-quality stereoscopic videos from monocular input, potentially transforming how we experience digital media.
PoseAnimate: Zero-shot high fidelity pose controllable character animation
Image-to-video(I2V) generation aims to create a video sequence from a single image, which requires high temporal coherence and visual fidelity with the source image.However, existing approaches suffer from character appearance inconsistency and poor preservation of fine details. Moreover, they require a large amount of video data for training, which can be computationally demanding.To address these limitations,we propose PoseAnimate, a novel zero-shot I2V framework for character animation.PoseAnimate contains three key components: 1) Pose-Aware Control Module (PACM) incorporates diverse pose signals into conditional embeddings, to preserve character-independent content and maintain precise alignment of actions.2) Dual Consistency Attention Module (DCAM) enhances temporal consistency, and retains character identity and intricate background details.3) Mask-Guided Decoupling Module (MGDM) refines distinct feature perception, improving animation fidelity by decoupling the character and background.We also propose a Pose Alignment Transition Algorithm (PATA) to ensure smooth action transition.Extensive experiment results demonstrate that our approach outperforms the state-of-the-art training-based methods in terms of character consistency and detail fidelity. Moreover, it maintains a high level of temporal coherence throughout the generated animations.
MADGF: Multi-Agent Data Generation Framework
Automatic Speech Recognition (ASR) systems predominantly cater to monolingual inputs and struggle with the complexity introduced by mixed language audio. In this paper, we present a novel Multi-Agent Data Generation Framework (MADGF) to address this challenge. We finetune the open-source multilingual ASR model, Whisper, utilizing our generated Mixed Cantonese and English (MCE) audio dataset, Which achieved an impressive Mix Error Rate (MER) of 14.28%, 35.13% lower than the original model. Meanwhile, single language recognition ability is not affected, 12.6% Character Error Rate (CER) in Common voice zh-HK, 14.8% Word Error Rate (WER) in Common voice en. However, these metrics do not encompass all aspects critical to the ASR systems. Hence, we propose a novel evaluation metric called Fidelity to the Original Audio, Accuracy, and Latency (FAL).
Is One Epoch All You Need For Multi-Fidelity Hyperparameter Optimization?
Hyperparameter optimization (HPO) is crucial for fine-tuning machine learning models but can be computationally expensive. To reduce costs, Multi-fidelity HPO (MF-HPO) leverages intermediate accuracy levels in the learning process and discards low-performing models early on. We compared various representative MF-HPO methods against a simple baseline on classical benchmark data. The baseline involved discarding all models except the Top-K after training for only one epoch, followed by further training to select the best model. Surprisingly, this baseline achieved similar results to its counterparts, while requiring an order of magnitude less computation. Upon analyzing the learning curves of the benchmark data, we observed a few dominant learning curves, which explained the success of our baseline. This suggests that researchers should (1) always use the suggested baseline in benchmarks and (2) broaden the diversity of MF-HPO benchmarks to include more complex cases.
Unsupervised Deep Learning-based Pansharpening with Jointly-Enhanced Spectral and Spatial Fidelity
In latest years, deep learning has gained a leading role in the pansharpening of multiresolution images. Given the lack of ground truth data, most deep learning-based methods carry out supervised training in a reduced-resolution domain. However, models trained on downsized images tend to perform poorly on high-resolution target images. For this reason, several research groups are now turning to unsupervised training in the full-resolution domain, through the definition of appropriate loss functions and training paradigms. In this context, we have recently proposed a full-resolution training framework which can be applied to many existing architectures. Here, we propose a new deep learning-based pansharpening model that fully exploits the potential of this approach and provides cutting-edge performance. Besides architectural improvements with respect to previous work, such as the use of residual attention modules, the proposed model features a novel loss function that jointly promotes the spectral and spatial quality of the pansharpened data. In addition, thanks to a new fine-tuning strategy, it improves inference-time adaptation to target images. Experiments on a large variety of test images, performed in challenging scenarios, demonstrate that the proposed method compares favorably with the state of the art both in terms of numerical results and visual output. Code is available online at https://github.com/matciotola/Lambda-PNN.
Is synthetic data from generative models ready for image recognition?
Recent text-to-image generation models have shown promising results in generating high-fidelity photo-realistic images. Though the results are astonishing to human eyes, how applicable these generated images are for recognition tasks remains under-explored. In this work, we extensively study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks, and focus on two perspectives: synthetic data for improving classification models in data-scarce settings (i.e. zero-shot and few-shot), and synthetic data for large-scale model pre-training for transfer learning. We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks. Code: https://github.com/CVMI-Lab/SyntheticData.
