- General and Domain-Specific Zero-shot Detection of Generated Images via Conditional Likelihood The rapid advancement of generative models, particularly diffusion-based methods, has significantly improved the realism of synthetic images. As new generative models continuously emerge, detecting generated images remains a critical challenge. While fully supervised, and few-shot methods have been proposed, maintaining an updated dataset is time-consuming and challenging. Consequently, zero-shot methods have gained increasing attention in recent years. We find that existing zero-shot methods often struggle to adapt to specific image domains, such as artistic images, limiting their real-world applicability. In this work, we introduce CLIDE, a novel zero-shot detection method based on conditional likelihood approximation. Our approach computes likelihoods conditioned on real images, enabling adaptation across diverse image domains. We extensively evaluate CLIDE, demonstrating SOTA performance on a large-scale general dataset and significantly outperform existing methods in domain-specific cases. These results demonstrate the robustness of our method and underscore the need of broad, domain-aware generalization for the AI-generated image detection task. Code is available at https://tinyurl.com/clide-detector. 4 authors · Dec 5, 2025
- Principled RL for Diffusion LLMs Emerges from a Sequence-Level Perspective Reinforcement Learning (RL) has proven highly effective for autoregressive language models, but adapting these methods to diffusion large language models (dLLMs) presents fundamental challenges. The core difficulty lies in likelihood approximation: while autoregressive models naturally provide token-level conditional probabilities essential for token-level RL objectives (e.g., GRPO), dLLMs generate sequences through iterative non-autoregressive denoising steps that lack this factorization. To address this fundamental mismatch, we propose ELBO-based Sequence-level Policy Optimization (ESPO), a principled RL framework that treats entire sequence generation as a single action and uses the ELBO as a tractable sequence-level likelihood proxy. Our method incorporates per-token normalization of importance ratios and robust KL-divergence estimation to ensure stable large-scale training. Extensive experiments on mathematical reasoning, coding, and planning tasks demonstrate that ESPO significantly outperforms token-level baselines, achieving dramatic improvements of 20-40 points on the Countdown task, while maintaining consistent gains on math and coding benchmarks. Our approach establishes sequence-level optimization as a principled and empirically effective paradigm for RL in dLLMs. Our code is available at https://github.com/ML-GSAI/ESPO. 8 authors · Dec 3, 2025
70 Language Models Can Learn from Verbal Feedback Without Scalar Rewards LLMs are often trained with RL from human or AI feedback, yet such methods typically compress nuanced feedback into scalar rewards, discarding much of their richness and inducing scale imbalance. We propose treating verbal feedback as a conditioning signal. Inspired by language priors in text-to-image generation, which enable novel outputs from unseen prompts, we introduce the feedback-conditional policy (FCP). FCP learns directly from response-feedback pairs, approximating the feedback-conditional posterior through maximum likelihood training on offline data. We further develop an online bootstrapping stage where the policy generates under positive conditions and receives fresh feedback to refine itself. This reframes feedback-driven learning as conditional generation rather than reward optimization, offering a more expressive way for LLMs to directly learn from verbal feedback. Our code is available at https://github.com/sail-sg/feedback-conditional-policy. Sea AI Lab · Sep 26, 2025 3