Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCluster-Specific Predictions with Multi-Task Gaussian Processes
A model involving Gaussian processes (GPs) is introduced to simultaneously handle multi-task learning, clustering, and prediction for multiple functional data. This procedure acts as a model-based clustering method for functional data as well as a learning step for subsequent predictions for new tasks. The model is instantiated as a mixture of multi-task GPs with common mean processes. A variational EM algorithm is derived for dealing with the optimisation of the hyper-parameters along with the hyper-posteriors' estimation of latent variables and processes. We establish explicit formulas for integrating the mean processes and the latent clustering variables within a predictive distribution, accounting for uncertainty on both aspects. This distribution is defined as a mixture of cluster-specific GP predictions, which enhances the performances when dealing with group-structured data. The model handles irregular grid of observations and offers different hypotheses on the covariance structure for sharing additional information across tasks. The performances on both clustering and prediction tasks are assessed through various simulated scenarios and real datasets. The overall algorithm, called MagmaClust, is publicly available as an R package.
Transductive Few-Shot Learning: Clustering is All You Need?
We investigate a general formulation for clustering and transductive few-shot learning, which integrates prototype-based objectives, Laplacian regularization and supervision constraints from a few labeled data points. We propose a concave-convex relaxation of the problem, and derive a computationally efficient block-coordinate bound optimizer, with convergence guarantee. At each iteration,our optimizer computes independent (parallel) updates for each point-to-cluster assignment. Therefore, it could be trivially distributed for large-scale clustering and few-shot tasks. Furthermore, we provides a thorough convergence analysis based on point-to-set maps. Were port comprehensive clustering and few-shot learning experiments over various data sets, showing that our method yields competitive performances, in term of accuracy and optimization quality, while scaling up to large problems. Using standard training on the base classes, without resorting to complex meta-learning and episodic-training strategies, our approach outperforms state-of-the-art few-shot methods by significant margins, across various models, settings and data sets. Surprisingly, we found that even standard clustering procedures (e.g., K-means), which correspond to particular, non-regularized cases of our general model, already achieve competitive performances in comparison to the state-of-the-art in few-shot learning. These surprising results point to the limitations of the current few-shot benchmarks, and question the viability of a large body of convoluted few-shot learning techniques in the recent literature.
Probabilistic Partitive Partitioning (PPP)
Clustering is a NP-hard problem. Thus, no optimal algorithm exists, heuristics are applied to cluster the data. Heuristics can be very resource-intensive, if not applied properly. For substantially large data sets computational efficiencies can be achieved by reducing the input space if a minimal loss of information can be achieved. Clustering algorithms, in general, face two common problems: 1) these converge to different settings with different initial conditions and; 2) the number of clusters has to be arbitrarily decided beforehand. This problem has become critical in the realm of big data. Recently, clustering algorithms have emerged which can speedup computations using parallel processing over the grid but face the aforementioned problems. Goals: Our goals are to find methods to cluster data which: 1) guarantee convergence to the same settings irrespective of the initial conditions; 2) eliminate the need to establish the number of clusters beforehand, and 3) can be applied to cluster large datasets. Methods: We introduce a method that combines probabilistic and combinatorial clustering methods to produce repeatable and compact clusters that are not sensitive to initial conditions. This method harnesses the power of k-means (a combinatorial clustering method) to cluster/partition very large dimensional datasets and uses the Gaussian Mixture Model (a probabilistic clustering method) to validate the k-means partitions. Results: We show that this method produces very compact clusters that are not sensitive to initial conditions. This method can be used to identify the most 'separable' set in a dataset which increases the 'clusterability' of a dataset. This method also eliminates the need to specify the number of clusters in advance.
Partial Optimality in Cubic Correlation Clustering
The higher-order correlation clustering problem is an expressive model, and recently, local search heuristics have been proposed for several applications. Certifying optimality, however, is NP-hard and practically hampered already by the complexity of the problem statement. Here, we focus on establishing partial optimality conditions for the special case of complete graphs and cubic objective functions. In addition, we define and implement algorithms for testing these conditions and examine their effect numerically, on two datasets.
Fast Combinatorial Algorithms for Min Max Correlation Clustering
We introduce fast algorithms for correlation clustering with respect to the Min Max objective that provide constant factor approximations on complete graphs. Our algorithms are the first purely combinatorial approximation algorithms for this problem. We construct a novel semi-metric on the set of vertices, which we call the correlation metric, that indicates to our clustering algorithms whether pairs of nodes should be in the same cluster. The paper demonstrates empirically that, compared to prior work, our algorithms sacrifice little in the objective quality to obtain significantly better run-time. Moreover, our algorithms scale to larger networks that are effectively intractable for known algorithms.
Cluster Explanation via Polyhedral Descriptions
Clustering is an unsupervised learning problem that aims to partition unlabelled data points into groups with similar features. Traditional clustering algorithms provide limited insight into the groups they find as their main focus is accuracy and not the interpretability of the group assignments. This has spurred a recent line of work on explainable machine learning for clustering. In this paper we focus on the cluster description problem where, given a dataset and its partition into clusters, the task is to explain the clusters. We introduce a new approach to explain clusters by constructing polyhedra around each cluster while minimizing either the complexity of the resulting polyhedra or the number of features used in the description. We formulate the cluster description problem as an integer program and present a column generation approach to search over an exponential number of candidate half-spaces that can be used to build the polyhedra. To deal with large datasets, we introduce a novel grouping scheme that first forms smaller groups of data points and then builds the polyhedra around the grouped data, a strategy which out-performs simply sub-sampling data. Compared to state of the art cluster description algorithms, our approach is able to achieve competitive interpretability with improved description accuracy.
Optimizing Planning Service Territories by Dividing Into Compact Several Sub-areas Using Binary K-means Clustering According Vehicle Constraints
VRP (Vehicle Routing Problem) is an NP hard problem, and it has attracted a lot of research interest. In contexts where vehicles have limited carrying capacity, such as volume and weight but needed to deliver items at various locations. Initially before creating a route, each vehicle needs a group of delivery points that are not exceeding their maximum capacity. Drivers tend to deliver only to certain areas. Cluster-based is one of the approaches to give a basis for generating tighter routes. In this paper we propose new algorithms for producing such clusters/groups that do not exceed vehicles maximum capacity. Our basic assumptions are each vehicle originates from a depot, delivers the items to the customers and returns to the depot, also the vehicles are homogeneous. This methods are able to compact sub-areas in each cluster. Computational results demonstrate the effectiveness of our new procedures, which are able to assist users to plan service territories and vehicle routes more efficiently.
Enhancing Cluster Scheduling in HPC: A Continuous Transfer Learning for Real-Time Optimization
This study presents a machine learning-assisted approach to optimize task scheduling in cluster systems, focusing on node-affinity constraints. Traditional schedulers like Kubernetes struggle with real-time adaptability, whereas the proposed continuous transfer learning model evolves dynamically during operations, minimizing retraining needs. Evaluated on Google Cluster Data, the model achieves over 99% accuracy, reducing computational overhead and improving scheduling latency for constrained tasks. This scalable solution enables real-time optimization, advancing machine learning integration in cluster management and paving the way for future adaptive scheduling strategies.
Modified LAB Algorithm with Clustering-based Search Space Reduction Method for solving Engineering Design Problems
A modified LAB algorithm is introduced in this paper. It builds upon the original LAB algorithm (Reddy et al. 2023), which is a socio-inspired algorithm that models competitive and learning behaviours within a group, establishing hierarchical roles. The proposed algorithm incorporates the roulette wheel approach and a reduction factor introducing inter-group competition and iteratively narrowing down the sample space. The algorithm is validated by solving the benchmark test problems from CEC 2005 and CEC 2017. The solutions are validated using standard statistical tests such as two-sided and pairwise signed rank Wilcoxon test and Friedman rank test. The algorithm exhibited improved and superior robustness as well as search space exploration capabilities. Furthermore, a Clustering-Based Search Space Reduction (C-SSR) method is proposed, making the algorithm capable to solve constrained problems. The C-SSR method enables the algorithm to identify clusters of feasible regions, satisfying the constraints and contributing to achieve the optimal solution. This method demonstrates its effectiveness as a potential alternative to traditional constraint handling techniques. The results obtained using the Modified LAB algorithm are then compared with those achieved by other recent metaheuristic algorithms.
Generalized Reductions: Making any Hierarchical Clustering Fair and Balanced with Low Cost
Clustering is a fundamental building block of modern statistical analysis pipelines. Fair clustering has seen much attention from the machine learning community in recent years. We are some of the first to study fairness in the context of hierarchical clustering, after the results of Ahmadian et al. from NeurIPS in 2020. We evaluate our results using Dasgupta's cost function, perhaps one of the most prevalent theoretical metrics for hierarchical clustering evaluation. Our work vastly improves the previous O(n^{5/6}polylog(n)) fair approximation for cost to a near polylogarithmic O(n^delta polylog(n)) fair approximation for any constant deltain(0,1). This result establishes a cost-fairness tradeoff and extends to broader fairness constraints than the previous work. We also show how to alter existing hierarchical clusterings to guarantee fairness and cluster balance across any level in the hierarchy.
Classifying Clustering Schemes
Many clustering schemes are defined by optimizing an objective function defined on the partitions of the underlying set of a finite metric space. In this paper, we construct a framework for studying what happens when we instead impose various structural conditions on the clustering schemes, under the general heading of functoriality. Functoriality refers to the idea that one should be able to compare the results of clustering algorithms as one varies the data set, for example by adding points or by applying functions to it. We show that within this framework, one can prove a theorems analogous to one of J. Kleinberg, in which for example one obtains an existence and uniqueness theorem instead of a non-existence result. We obtain a full classification of all clustering schemes satisfying a condition we refer to as excisiveness. The classification can be changed by varying the notion of maps of finite metric spaces. The conditions occur naturally when one considers clustering as the statistical version of the geometric notion of connected components. By varying the degree of functoriality that one requires from the schemes it is possible to construct richer families of clustering schemes that exhibit sensitivity to density.
Exploring Scaling Laws for Local SGD in Large Language Model Training
This paper investigates scaling laws for local SGD in LLM training, a distributed optimization algorithm that facilitates training on loosely connected devices. Through extensive experiments, we show that local SGD achieves competitive results compared to conventional methods, given equivalent model parameters, datasets, and computational resources. Furthermore, we explore the application of local SGD in various practical scenarios, including multi-cluster setups and edge computing environments. Our findings elucidate the necessary conditions for effective multi-cluster LLM training and examine the potential and limitations of leveraging edge computing resources in the LLM training process. This demonstrates its viability as an alternative to single large-cluster training.
Project and Forget: Solving Large-Scale Metric Constrained Problems
Given a set of dissimilarity measurements amongst data points, determining what metric representation is most "consistent" with the input measurements or the metric that best captures the relevant geometric features of the data is a key step in many machine learning algorithms. Existing methods are restricted to specific kinds of metrics or small problem sizes because of the large number of metric constraints in such problems. In this paper, we provide an active set algorithm, Project and Forget, that uses Bregman projections, to solve metric constrained problems with many (possibly exponentially) inequality constraints. We provide a theoretical analysis of Project and Forget and prove that our algorithm converges to the global optimal solution and that the L_2 distance of the current iterate to the optimal solution decays asymptotically at an exponential rate. We demonstrate that using our method we can solve large problem instances of three types of metric constrained problems: general weight correlation clustering, metric nearness, and metric learning; in each case, out-performing the state of the art methods with respect to CPU times and problem sizes.
Active Learning Meets Optimized Item Selection
Designing recommendation systems with limited or no available training data remains a challenge. To that end, a new combinatorial optimization problem is formulated to generate optimized item selection for experimentation with the goal to shorten the time for collecting randomized training data. We first present an overview of the optimized item selection problem and a multi-level optimization framework to solve it. The approach integrates techniques from discrete optimization, unsupervised clustering, and latent text embeddings. We then discuss how to incorporate optimized item selection with active learning as part of randomized exploration in an ongoing fashion.
End-to-end Differentiable Clustering with Associative Memories
Clustering is a widely used unsupervised learning technique involving an intensive discrete optimization problem. Associative Memory models or AMs are differentiable neural networks defining a recursive dynamical system, which have been integrated with various deep learning architectures. We uncover a novel connection between the AM dynamics and the inherent discrete assignment necessary in clustering to propose a novel unconstrained continuous relaxation of the discrete clustering problem, enabling end-to-end differentiable clustering with AM, dubbed ClAM. Leveraging the pattern completion ability of AMs, we further develop a novel self-supervised clustering loss. Our evaluations on varied datasets demonstrate that ClAM benefits from the self-supervision, and significantly improves upon both the traditional Lloyd's k-means algorithm, and more recent continuous clustering relaxations (by upto 60% in terms of the Silhouette Coefficient).
On Pairwise Clustering with Side Information
Pairwise clustering, in general, partitions a set of items via a known similarity function. In our treatment, clustering is modeled as a transductive prediction problem. Thus rather than beginning with a known similarity function, the function instead is hidden and the learner only receives a random sample consisting of a subset of the pairwise similarities. An additional set of pairwise side-information may be given to the learner, which then determines the inductive bias of our algorithms. We measure performance not based on the recovery of the hidden similarity function, but instead on how well we classify each item. We give tight bounds on the number of misclassifications. We provide two algorithms. The first algorithm SACA is a simple agglomerative clustering algorithm which runs in near linear time, and which serves as a baseline for our analyses. Whereas the second algorithm, RGCA, enables the incorporation of side-information which may lead to improved bounds at the cost of a longer running time.
Near-Optimal Quantum Coreset Construction Algorithms for Clustering
k-Clustering in R^d (e.g., k-median and k-means) is a fundamental machine learning problem. While near-linear time approximation algorithms were known in the classical setting for a dataset with cardinality n, it remains open to find sublinear-time quantum algorithms. We give quantum algorithms that find coresets for k-clustering in R^d with O(nkd^{3/2}) query complexity. Our coreset reduces the input size from n to poly(kepsilon^{-1}d), so that existing alpha-approximation algorithms for clustering can run on top of it and yield (1 + epsilon)alpha-approximation. This eventually yields a quadratic speedup for various k-clustering approximation algorithms. We complement our algorithm with a nearly matching lower bound, that any quantum algorithm must make Omega(nk) queries in order to achieve even O(1)-approximation for k-clustering.
Efficient Sparse Spherical k-Means for Document Clustering
Spherical k-Means is frequently used to cluster document collections because it performs reasonably well in many settings and is computationally efficient. However, the time complexity increases linearly with the number of clusters k, which limits the suitability of the algorithm for larger values of k depending on the size of the collection. Optimizations targeted at the Euclidean k-Means algorithm largely do not apply because the cosine distance is not a metric. We therefore propose an efficient indexing structure to improve the scalability of Spherical k-Means with respect to k. Our approach exploits the sparsity of the input vectors and the convergence behavior of k-Means to reduce the number of comparisons on each iteration significantly.
A New Rejection Sampling Approach to k-means++ With Improved Trade-Offs
The k-means++ seeding algorithm (Arthur & Vassilvitskii, 2007) is widely used in practice for the k-means clustering problem where the goal is to cluster a dataset X subset R ^d into k clusters. The popularity of this algorithm is due to its simplicity and provable guarantee of being O(log k) competitive with the optimal solution in expectation. However, its running time is O(|X|kd), making it expensive for large datasets. In this work, we present a simple and effective rejection sampling based approach for speeding up k-means++. Our first method runs in time O(nnz (X) + beta k^2d) while still being O(log k ) competitive in expectation. Here, beta is a parameter which is the ratio of the variance of the dataset to the optimal k-means cost in expectation and O hides logarithmic factors in k and |X|. Our second method presents a new trade-off between computational cost and solution quality. It incurs an additional scale-invariant factor of k^{-Omega( m/beta)} Var (X) in addition to the O(log k) guarantee of k-means++ improving upon a result of (Bachem et al, 2016a) who get an additional factor of m^{-1}Var(X) while still running in time O(nnz(X) + mk^2d). We perform extensive empirical evaluations to validate our theoretical results and to show the effectiveness of our approach on real datasets.
Improving Pareto Set Learning for Expensive Multi-objective Optimization via Stein Variational Hypernetworks
Expensive multi-objective optimization problems (EMOPs) are common in real-world scenarios where evaluating objective functions is costly and involves extensive computations or physical experiments. Current Pareto set learning methods for such problems often rely on surrogate models like Gaussian processes to approximate the objective functions. These surrogate models can become fragmented, resulting in numerous small uncertain regions between explored solutions. When using acquisition functions such as the Lower Confidence Bound (LCB), these uncertain regions can turn into pseudo-local optima, complicating the search for globally optimal solutions. To address these challenges, we propose a novel approach called SVH-PSL, which integrates Stein Variational Gradient Descent (SVGD) with Hypernetworks for efficient Pareto set learning. Our method addresses the issues of fragmented surrogate models and pseudo-local optima by collectively moving particles in a manner that smooths out the solution space. The particles interact with each other through a kernel function, which helps maintain diversity and encourages the exploration of underexplored regions. This kernel-based interaction prevents particles from clustering around pseudo-local optima and promotes convergence towards globally optimal solutions. Our approach aims to establish robust relationships between trade-off reference vectors and their corresponding true Pareto solutions, overcoming the limitations of existing methods. Through extensive experiments across both synthetic and real-world MOO benchmarks, we demonstrate that SVH-PSL significantly improves the quality of the learned Pareto set, offering a promising solution for expensive multi-objective optimization problems.
Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs
We study the approximability of an existing framework for clustering edge-colored hypergraphs, which is closely related to chromatic correlation clustering and is motivated by machine learning and data mining applications where the goal is to cluster a set of objects based on multiway interactions of different categories or types. We present improved approximation guarantees based on linear programming, and show they are tight by proving a matching integrality gap. Our results also include new approximation hardness results, a combinatorial 2-approximation whose runtime is linear in the hypergraph size, and several new connections to well-studied objectives such as vertex cover and hypergraph multiway cut.
Fast and Eager k-Medoids Clustering: O(k) Runtime Improvement of the PAM, CLARA, and CLARANS Algorithms
Clustering non-Euclidean data is difficult, and one of the most used algorithms besides hierarchical clustering is the popular algorithm Partitioning Around Medoids (PAM), also simply referred to as k-medoids clustering. In Euclidean geometry the mean-as used in k-means-is a good estimator for the cluster center, but this does not exist for arbitrary dissimilarities. PAM uses the medoid instead, the object with the smallest dissimilarity to all others in the cluster. This notion of centrality can be used with any (dis-)similarity, and thus is of high relevance to many domains and applications. A key issue with PAM is its high run time cost. We propose modifications to the PAM algorithm that achieve an O(k)-fold speedup in the second ("SWAP") phase of the algorithm, but will still find the same results as the original PAM algorithm. If we relax the choice of swaps performed (while retaining comparable quality), we can further accelerate the algorithm by eagerly performing additional swaps in each iteration. With the substantially faster SWAP, we can now explore faster initialization strategies, because (i) the classic ("BUILD") initialization now becomes the bottleneck, and (ii) our swap is fast enough to compensate for worse starting conditions. We also show how the CLARA and CLARANS algorithms benefit from the proposed modifications. While we do not study the parallelization of our approach in this work, it can easily be combined with earlier approaches to use PAM and CLARA on big data (some of which use PAM as a subroutine, hence can immediately benefit from these improvements), where the performance with high k becomes increasingly important. In experiments on real data with k=100,200, we observed a 458x respectively 1191x speedup compared to the original PAM SWAP algorithm, making PAM applicable to larger data sets, and in particular to higher k.
Rethinking the "Heatmap + Monte Carlo Tree Search" Paradigm for Solving Large Scale TSP
The Travelling Salesman Problem (TSP) remains a fundamental challenge in combinatorial optimization, inspiring diverse algorithmic strategies. This paper revisits the "heatmap + Monte Carlo Tree Search (MCTS)" paradigm that has recently gained traction for learning-based TSP solutions. Within this framework, heatmaps encode the likelihood of edges forming part of the optimal tour, and MCTS refines this probabilistic guidance to discover optimal solutions. Contemporary approaches have predominantly emphasized the refinement of heatmap generation through sophisticated learning models, inadvertently sidelining the critical role of MCTS. Our extensive empirical analysis reveals two pivotal insights: 1) The configuration of MCTS strategies profoundly influences the solution quality, demanding meticulous tuning to leverage their full potential; 2) Our findings demonstrate that a rudimentary and parameter-free heatmap, derived from the intrinsic k-nearest nature of TSP, can rival or even surpass the performance of complicated heatmaps, with strong generalizability across various scales. Empirical evaluations across various TSP scales underscore the efficacy of our approach, achieving competitive results. These observations challenge the prevailing focus on heatmap sophistication, advocating a reevaluation of the paradigm to harness both components synergistically. Our code is available at: https://github.com/LOGO-CUHKSZ/rethink_mcts_tsp.
Taming the Titans: A Survey of Efficient LLM Inference Serving
Large Language Models (LLMs) for Generative AI have achieved remarkable progress, evolving into sophisticated and versatile tools widely adopted across various domains and applications. However, the substantial memory overhead caused by their vast number of parameters, combined with the high computational demands of the attention mechanism, poses significant challenges in achieving low latency and high throughput for LLM inference services. Recent advancements, driven by groundbreaking research, have significantly accelerated progress in this field. This paper provides a comprehensive survey of these methods, covering fundamental instance-level approaches, in-depth cluster-level strategies, emerging scenario directions, and other miscellaneous but important areas. At the instance level, we review model placement, request scheduling, decoding length prediction, storage management, and the disaggregation paradigm. At the cluster level, we explore GPU cluster deployment, multi-instance load balancing, and cloud service solutions. For emerging scenarios, we organize the discussion around specific tasks, modules, and auxiliary methods. To ensure a holistic overview, we also highlight several niche yet critical areas. Finally, we outline potential research directions to further advance the field of LLM inference serving.
HyperTrack: Neural Combinatorics for High Energy Physics
Combinatorial inverse problems in high energy physics span enormous algorithmic challenges. This work presents a new deep learning driven clustering algorithm that utilizes a space-time non-local trainable graph constructor, a graph neural network, and a set transformer. The model is trained with loss functions at the graph node, edge and object level, including contrastive learning and meta-supervision. The algorithm can be applied to problems such as charged particle tracking, calorimetry, pile-up discrimination, jet physics, and beyond. We showcase the effectiveness of this cutting-edge AI approach through particle tracking simulations. The code is available online.
Total Variation Graph Neural Networks
Recently proposed Graph Neural Networks (GNNs) for vertex clustering are trained with an unsupervised minimum cut objective, approximated by a Spectral Clustering (SC) relaxation. However, the SC relaxation is loose and, while it offers a closed-form solution, it also yields overly smooth cluster assignments that poorly separate the vertices. In this paper, we propose a GNN model that computes cluster assignments by optimizing a tighter relaxation of the minimum cut based on graph total variation (GTV). The cluster assignments can be used directly to perform vertex clustering or to implement graph pooling in a graph classification framework. Our model consists of two core components: i) a message-passing layer that minimizes the ell_1 distance in the features of adjacent vertices, which is key to achieving sharp transitions between clusters; ii) an unsupervised loss function that minimizes the GTV of the cluster assignments while ensuring balanced partitions. Experimental results show that our model outperforms other GNNs for vertex clustering and graph classification.
Generalizable Heuristic Generation Through Large Language Models with Meta-Optimization
Heuristic design with large language models (LLMs) has emerged as a promising approach for tackling combinatorial optimization problems (COPs). However, existing approaches often rely on manually predefined evolutionary computation (EC) optimizers and single-task training schemes, which may constrain the exploration of diverse heuristic algorithms and hinder the generalization of the resulting heuristics. To address these issues, we propose Meta-Optimization of Heuristics (MoH), a novel framework that operates at the optimizer level, discovering effective optimizers through the principle of meta-learning. Specifically, MoH leverages LLMs to iteratively refine a meta-optimizer that autonomously constructs diverse optimizers through (self-)invocation, thereby eliminating the reliance on a predefined EC optimizer. These constructed optimizers subsequently evolve heuristics for downstream tasks, enabling broader heuristic exploration. Moreover, MoH employs a multi-task training scheme to promote its generalization capability. Experiments on classic COPs demonstrate that MoH constructs an effective and interpretable meta-optimizer, achieving state-of-the-art performance across various downstream tasks, particularly in cross-size settings.
A Survey on Inference Optimization Techniques for Mixture of Experts Models
The emergence of large-scale Mixture of Experts (MoE) models has marked a significant advancement in artificial intelligence, offering enhanced model capacity and computational efficiency through conditional computation. However, the deployment and inference of these models present substantial challenges in terms of computational resources, latency, and energy efficiency. This comprehensive survey systematically analyzes the current landscape of inference optimization techniques for MoE models across the entire system stack. We first establish a taxonomical framework that categorizes optimization approaches into model-level, system-level, and hardware-level optimizations. At the model level, we examine architectural innovations including efficient expert design, attention mechanisms, various compression techniques such as pruning, quantization, and knowledge distillation, as well as algorithm improvement including dynamic routing strategies and expert merging methods. At the system level, we investigate distributed computing approaches, load balancing mechanisms, and efficient scheduling algorithms that enable scalable deployment. Furthermore, we delve into hardware-specific optimizations and co-design strategies that maximize throughput and energy efficiency. This survey not only provides a structured overview of existing solutions but also identifies key challenges and promising research directions in MoE inference optimization. Our comprehensive analysis serves as a valuable resource for researchers and practitioners working on large-scale deployment of MoE models in resource-constrained environments. To facilitate ongoing updates and the sharing of cutting-edge advances in MoE inference optimization research, we have established a repository accessible at https://github.com/MoE-Inf/awesome-moe-inference/.
FedRC: Tackling Diverse Distribution Shifts Challenge in Federated Learning by Robust Clustering
Federated Learning (FL) is a machine learning paradigm that safeguards privacy by retaining client data on edge devices. However, optimizing FL in practice can be challenging due to the diverse and heterogeneous nature of the learning system. Though recent research has focused on improving the optimization of FL when distribution shifts occur among clients, ensuring global performance when multiple types of distribution shifts occur simultaneously among clients -- such as feature distribution shift, label distribution shift, and concept shift -- remain under-explored. In this paper, we identify the learning challenges posed by the simultaneous occurrence of diverse distribution shifts and propose a clustering principle to overcome these challenges. Through our research, we find that existing methods fail to address the clustering principle. Therefore, we propose a novel clustering algorithm framework, dubbed as FedRC, which adheres to our proposed clustering principle by incorporating a bi-level optimization problem and a novel objective function. Extensive experiments demonstrate that FedRC significantly outperforms other SOTA cluster-based FL methods. Our code is available at https://github.com/LINs-lab/FedRC.
Accelerated Hierarchical Density Clustering
We present an accelerated algorithm for hierarchical density based clustering. Our new algorithm improves upon HDBSCAN*, which itself provided a significant qualitative improvement over the popular DBSCAN algorithm. The accelerated HDBSCAN* algorithm provides comparable performance to DBSCAN, while supporting variable density clusters, and eliminating the need for the difficult to tune distance scale parameter. This makes accelerated HDBSCAN* the default choice for density based clustering. Library available at: https://github.com/scikit-learn-contrib/hdbscan
Efficient block contrastive learning via parameter-free meta-node approximation
Contrastive learning has recently achieved remarkable success in many domains including graphs. However contrastive loss, especially for graphs, requires a large number of negative samples which is unscalable and computationally prohibitive with a quadratic time complexity. Sub-sampling is not optimal and incorrect negative sampling leads to sampling bias. In this work, we propose a meta-node based approximation technique that can (a) proxy all negative combinations (b) in quadratic cluster size time complexity, (c) at graph level, not node level, and (d) exploit graph sparsity. By replacing node-pairs with additive cluster-pairs, we compute the negatives in cluster-time at graph level. The resulting Proxy approximated meta-node Contrastive (PamC) loss, based on simple optimized GPU operations, captures the full set of negatives, yet is efficient with a linear time complexity. By avoiding sampling, we effectively eliminate sample bias. We meet the criterion for larger number of samples, thus achieving block-contrastiveness, which is proven to outperform pair-wise losses. We use learnt soft cluster assignments for the meta-node constriction, and avoid possible heterophily and noise added during edge creation. Theoretically, we show that real world graphs easily satisfy conditions necessary for our approximation. Empirically, we show promising accuracy gains over state-of-the-art graph clustering on 6 benchmarks. Importantly, we gain substantially in efficiency; up to 3x in training time, 1.8x in inference time and over 5x in GPU memory reduction.
RL4CO: an Extensive Reinforcement Learning for Combinatorial Optimization Benchmark
We introduce RL4CO, an extensive reinforcement learning (RL) for combinatorial optimization (CO) benchmark. RL4CO employs state-of-the-art software libraries as well as best practices in implementation, such as modularity and configuration management, to be efficient and easily modifiable by researchers for adaptations of neural network architecture, environments, and algorithms. Contrary to the existing focus on specific tasks like the traveling salesman problem (TSP) for performance assessment, we underline the importance of scalability and generalization capabilities for diverse optimization tasks. We also systematically benchmark sample efficiency, zero-shot generalization, and adaptability to changes in data distributions of various models. Our experiments show that some recent state-of-the-art methods fall behind their predecessors when evaluated using these new metrics, suggesting the necessity for a more balanced view of the performance of neural CO solvers. We hope RL4CO will encourage the exploration of novel solutions to complex real-world tasks, allowing to compare with existing methods through a standardized interface that decouples the science from the software engineering. We make our library publicly available at https://github.com/kaist-silab/rl4co.
A Deep Latent Factor Graph Clustering with Fairness-Utility Trade-off Perspective
Fair graph clustering seeks partitions that respect network structure while maintaining proportional representation across sensitive groups, with applications spanning community detection, team formation, resource allocation, and social network analysis. Many existing approaches enforce rigid constraints or rely on multi-stage pipelines (e.g., spectral embedding followed by k-means), limiting trade-off control, interpretability, and scalability. We introduce DFNMF, an end-to-end deep nonnegative tri-factorization tailored to graphs that directly optimizes cluster assignments with a soft statistical-parity regularizer. A single parameter lambda tunes the fairness--utility balance, while nonnegativity yields parts-based factors and transparent soft memberships. The optimization uses sparse-friendly alternating updates and scales near-linearly with the number of edges. Across synthetic and real networks, DFNMF achieves substantially higher group balance at comparable modularity, often dominating state-of-the-art baselines on the Pareto front. The code is available at https://github.com/SiamakGhodsi/DFNMF.git.
Likelihood Adjusted Semidefinite Programs for Clustering Heterogeneous Data
Clustering is a widely deployed unsupervised learning tool. Model-based clustering is a flexible framework to tackle data heterogeneity when the clusters have different shapes. Likelihood-based inference for mixture distributions often involves non-convex and high-dimensional objective functions, imposing difficult computational and statistical challenges. The classic expectation-maximization (EM) algorithm is a computationally thrifty iterative method that maximizes a surrogate function minorizing the log-likelihood of observed data in each iteration, which however suffers from bad local maxima even in the special case of the standard Gaussian mixture model with common isotropic covariance matrices. On the other hand, recent studies reveal that the unique global solution of a semidefinite programming (SDP) relaxed K-means achieves the information-theoretically sharp threshold for perfectly recovering the cluster labels under the standard Gaussian mixture model. In this paper, we extend the SDP approach to a general setting by integrating cluster labels as model parameters and propose an iterative likelihood adjusted SDP (iLA-SDP) method that directly maximizes the exact observed likelihood in the presence of data heterogeneity. By lifting the cluster assignment to group-specific membership matrices, iLA-SDP avoids centroids estimation -- a key feature that allows exact recovery under well-separateness of centroids without being trapped by their adversarial configurations. Thus iLA-SDP is less sensitive than EM to initialization and more stable on high-dimensional data. Our numeric experiments demonstrate that iLA-SDP can achieve lower mis-clustering errors over several widely used clustering methods including K-means, SDP and EM algorithms.
Queueing Systems with Preferred Service Delivery Times and Multiple Customer Classes
Motivated by the operational problems in click and collect systems, such as curbside pickup programs, we study a joint admission control and capacity allocation problem. We consider a system where arriving customers have preferred service delivery times and gauge the service quality based on the service provider's ability to complete the service as close as possible to the preferred time. Customers can be of different priority classes, and their priority may increase as they wait longer in the queue. The service provider can reject customers upon their arrival if the system is overloaded or outsource the service (alternatively work overtime) when the capacity is not enough. The service provider's goal is to find the minimum-cost admission and capacity allocation policy to dynamically decide when to serve and whom to serve. We model this problem as a Markov Decision Process. Our structural results partially characterize a set of suboptimal solutions, and we develop solution methods using these results. We also develop a problem-specific approximation method that is based on state aggregation to overcome the computational challenges. We present extensive computational results and discuss the impact of problem parameters on the optimal policy.
Pre-trained knowledge elevates large language models beyond traditional chemical reaction optimizers
Modern optimization in experimental chemistry employs algorithmic search through black-box parameter spaces. Here we demonstrate that pre-trained knowledge in large language models (LLMs) fundamentally changes this paradigm. Using six fully enumerated categorical reaction datasets (768 - 5,684 experiments), we benchmark LLM-guided optimization (LLM-GO) against Bayesian optimization (BO) and random sampling. Frontier LLMs consistently match or exceed BO performance across five single-objective datasets, with advantages growing as parameter complexity increases and high-performing conditions become scarce (<5% of space). BO retains superiority only for explicit multi-objective trade-offs. To understand these contrasting behaviors, we introduce a topology-agnostic information theory framework quantifying sampling diversity throughout optimization campaigns. This analysis reveals that LLMs maintain systematically higher exploration entropy than BO across all datasets while achieving superior performance, with advantages most pronounced in solution-scarce parameter spaces where high-entropy exploration typically fails - suggesting that pre-trained domain knowledge enables more effective navigation of chemical parameter space rather than replacing structured exploration strategies. To enable transparent benchmarking and community validation, we release Iron Mind (https://gomes.andrew.cmu.edu/iron-mind), a no-code platform for side-by-side evaluation of human, algorithmic, and LLM optimization campaigns with public leaderboards and complete trajectories. Our findings establish that LLM-GO excels precisely where traditional methods struggle: complex categorical spaces requiring domain understanding rather than mathematical optimization.
Tackling Prevalent Conditions in Unsupervised Combinatorial Optimization: Cardinality, Minimum, Covering, and More
Combinatorial optimization (CO) is naturally discrete, making machine learning based on differentiable optimization inapplicable. Karalias & Loukas (2020) adapted the probabilistic method to incorporate CO into differentiable optimization. Their work ignited the research on unsupervised learning for CO, composed of two main components: probabilistic objectives and derandomization. However, each component confronts unique challenges. First, deriving objectives under various conditions (e.g., cardinality constraints and minimum) is nontrivial. Second, the derandomization process is underexplored, and the existing derandomization methods are either random sampling or naive rounding. In this work, we aim to tackle prevalent (i.e., commonly involved) conditions in unsupervised CO. First, we concretize the targets for objective construction and derandomization with theoretical justification. Then, for various conditions commonly involved in different CO problems, we derive nontrivial objectives and derandomization to meet the targets. Finally, we apply the derivations to various CO problems. Via extensive experiments on synthetic and real-world graphs, we validate the correctness of our derivations and show our empirical superiority w.r.t. both optimization quality and speed.
Unveiling Downstream Performance Scaling of LLMs: A Clustering-Based Perspective
The rapid advancements in computing dramatically increase the scale and cost of training Large Language Models (LLMs). Accurately predicting downstream task performance prior to model training is crucial for efficient resource allocation, yet remains challenging due to two primary constraints: (1) the "emergence phenomenon", wherein downstream performance metrics become meaningful only after extensive training, which limits the ability to use smaller models for prediction; (2) Uneven task difficulty distributions and the absence of consistent scaling laws, resulting in substantial metric variability. Existing performance prediction methods suffer from limited accuracy and reliability, thereby impeding the assessment of potential LLM capabilities. To address these challenges, we propose a Clustering-On-Difficulty (COD) downstream performance prediction framework. COD first constructs a predictable support subset by clustering tasks based on difficulty features, strategically excluding non-emergent and non-scalable clusters. The scores on the selected subset serve as effective intermediate predictors of downstream performance on the full evaluation set. With theoretical support, we derive a mapping function that transforms performance metrics from the predictable subset to the full evaluation set, thereby ensuring accurate extrapolation of LLM downstream performance. The proposed method has been applied to predict performance scaling for a 70B LLM, providing actionable insights for training resource allocation and assisting in monitoring the training process. Notably, COD achieves remarkable predictive accuracy on the 70B LLM by leveraging an ensemble of small models, demonstrating an absolute mean deviation of 1.36% across eight important LLM evaluation benchmarks.
Constrained Efficient Global Optimization of Expensive Black-box Functions
We study the problem of constrained efficient global optimization, where both the objective and constraints are expensive black-box functions that can be learned with Gaussian processes. We propose CONFIG (CONstrained efFIcient Global Optimization), a simple and effective algorithm to solve it. Under certain regularity assumptions, we show that our algorithm enjoys the same cumulative regret bound as that in the unconstrained case and similar cumulative constraint violation upper bounds. For commonly used Matern and Squared Exponential kernels, our bounds are sublinear and allow us to derive a convergence rate to the optimal solution of the original constrained problem. In addition, our method naturally provides a scheme to declare infeasibility when the original black-box optimization problem is infeasible. Numerical experiments on sampled instances from the Gaussian process, artificial numerical problems, and a black-box building controller tuning problem all demonstrate the competitive performance of our algorithm. Compared to the other state-of-the-art methods, our algorithm significantly improves the theoretical guarantees, while achieving competitive empirical performance.
ClusterSeq: Enhancing Sequential Recommender Systems with Clustering based Meta-Learning
In practical scenarios, the effectiveness of sequential recommendation systems is hindered by the user cold-start problem, which arises due to limited interactions for accurately determining user preferences. Previous studies have attempted to address this issue by combining meta-learning with user and item-side information. However, these approaches face inherent challenges in modeling user preference dynamics, particularly for "minor users" who exhibit distinct preferences compared to more common or "major users." To overcome these limitations, we present a novel approach called ClusterSeq, a Meta-Learning Clustering-Based Sequential Recommender System. ClusterSeq leverages dynamic information in the user sequence to enhance item prediction accuracy, even in the absence of side information. This model preserves the preferences of minor users without being overshadowed by major users, and it capitalizes on the collective knowledge of users within the same cluster. Extensive experiments conducted on various benchmark datasets validate the effectiveness of ClusterSeq. Empirical results consistently demonstrate that ClusterSeq outperforms several state-of-the-art meta-learning recommenders. Notably, compared to existing meta-learning methods, our proposed approach achieves a substantial improvement of 16-39% in Mean Reciprocal Rank (MRR).
FIS-ONE: Floor Identification System with One Label for Crowdsourced RF Signals
Floor labels of crowdsourced RF signals are crucial for many smart-city applications, such as multi-floor indoor localization, geofencing, and robot surveillance. To build a prediction model to identify the floor number of a new RF signal upon its measurement, conventional approaches using the crowdsourced RF signals assume that at least few labeled signal samples are available on each floor. In this work, we push the envelope further and demonstrate that it is technically feasible to enable such floor identification with only one floor-labeled signal sample on the bottom floor while having the rest of signal samples unlabeled. We propose FIS-ONE, a novel floor identification system with only one labeled sample. FIS-ONE consists of two steps, namely signal clustering and cluster indexing. We first build a bipartite graph to model the RF signal samples and obtain a latent representation of each node (each signal sample) using our attention-based graph neural network model so that the RF signal samples can be clustered more accurately. Then, we tackle the problem of indexing the clusters with proper floor labels, by leveraging the observation that signals from an access point can be detected on different floors, i.e., signal spillover. Specifically, we formulate a cluster indexing problem as a combinatorial optimization problem and show that it is equivalent to solving a traveling salesman problem, whose (near-)optimal solution can be found efficiently. We have implemented FIS-ONE and validated its effectiveness on the Microsoft dataset and in three large shopping malls. Our results show that FIS-ONE outperforms other baseline algorithms significantly, with up to 23% improvement in adjusted rand index and 25% improvement in normalized mutual information using only one floor-labeled signal sample.
Natural Language-Based Synthetic Data Generation for Cluster Analysis
Cluster analysis relies on effective benchmarks for evaluating and comparing different algorithms. Simulation studies on synthetic data are popular because important features of the data sets, such as the overlap between clusters, or the variation in cluster shapes, can be effectively varied. Unfortunately, creating evaluation scenarios is often laborious, as practitioners must translate higher-level scenario descriptions like "clusters with very different shapes" into lower-level geometric parameters such as cluster centers, covariance matrices, etc. To make benchmarks more convenient and informative, we propose synthetic data generation based on direct specification of high-level scenarios, either through verbal descriptions or high-level geometric parameters. Our open-source Python package repliclust implements this workflow, making it easy to set up interpretable and reproducible benchmarks for cluster analysis. A demo of data generation from verbal inputs is available at https://demo.repliclust.org.
Unified Software Design Patterns for Simulated Annealing
Any optimization algorithm programming interface can be seen as a black-box function with additional free parameters. In this spirit, simulated annealing (SA) can be implemented in pseudo-code within the dimensions of a single slide with free parameters relating to the annealing schedule. Such an implementation, however, necessarily neglects much of the structure necessary to take advantage of advances in computing resources and algorithmic breakthroughs. Simulated annealing is often introduced in myriad disciplines, from discrete examples like the Traveling Salesman Problem (TSP) to molecular cluster potential energy exploration or even explorations of a protein's configurational space. Theoretical guarantees also demand a stricter structure in terms of statistical quantities, which cannot simply be left to the user. We will introduce several standard paradigms and demonstrate how these can be "lifted" into a unified framework using object-oriented programming in Python. We demonstrate how clean, interoperable, reproducible programming libraries can be used to access and rapidly iterate on variants of Simulated Annealing in a manner which can be extended to serve as a best practices blueprint or design pattern for a data-driven optimization library.
A Differentially Private Clustering Algorithm for Well-Clustered Graphs
We study differentially private (DP) algorithms for recovering clusters in well-clustered graphs, which are graphs whose vertex set can be partitioned into a small number of sets, each inducing a subgraph of high inner conductance and small outer conductance. Such graphs have widespread application as a benchmark in the theoretical analysis of spectral clustering. We provide an efficient (epsilon,delta)-DP algorithm tailored specifically for such graphs. Our algorithm draws inspiration from the recent work of Chen et al., who developed DP algorithms for recovery of stochastic block models in cases where the graph comprises exactly two nearly-balanced clusters. Our algorithm works for well-clustered graphs with k nearly-balanced clusters, and the misclassification ratio almost matches the one of the best-known non-private algorithms. We conduct experimental evaluations on datasets with known ground truth clusters to substantiate the prowess of our algorithm. We also show that any (pure) epsilon-DP algorithm would result in substantial error.
DiLoCo: Distributed Low-Communication Training of Language Models
Large language models (LLM) have become a critical component in many applications of machine learning. However, standard approaches to training LLM require a large number of tightly interconnected accelerators, with devices exchanging gradients and other intermediate states at each optimization step. While it is difficult to build and maintain a single computing cluster hosting many accelerators, it might be easier to find several computing clusters each hosting a smaller number of devices. In this work, we propose a distributed optimization algorithm, Distributed Low-Communication (DiLoCo), that enables training of language models on islands of devices that are poorly connected. The approach is a variant of federated averaging, where the number of inner steps is large, the inner optimizer is AdamW, and the outer optimizer is Nesterov momentum. On the widely used C4 dataset, we show that DiLoCo on 8 workers performs as well as fully synchronous optimization while communicating 500 times less. DiLoCo exhibits great robustness to the data distribution of each worker. It is also robust to resources becoming unavailable over time, and vice versa, it can seamlessly leverage resources that become available during training.
Scattered Forest Search: Smarter Code Space Exploration with LLMs
We propose a novel approach to scaling LLM inference for code generation. We frame code generation as a black box optimization problem within the code space, and employ optimization-inspired techniques to enhance exploration. Specifically, we introduce Scattered Forest Search to enhance solution diversity while searching for solutions. Our theoretical analysis illustrates how these methods avoid local optima during optimization. Extensive experiments on HumanEval, MBPP, APPS, CodeContests, and Leetcode reveal significant performance improvements. For instance, our method achieves a pass@1 rate of 67.1% on HumanEval+ and 87.2% on HumanEval with GPT-3.5, marking improvements of 8.6% and 4.3% over the state-of-the-art, while also halving the iterations needed to find the correct solution. Furthermore, our method scales more efficiently than existing search techniques, including tree search, line search, and repeated sampling.
UDC: A Unified Neural Divide-and-Conquer Framework for Large-Scale Combinatorial Optimization Problems
Single-stage neural combinatorial optimization solvers have achieved near-optimal results on various small-scale combinatorial optimization (CO) problems without requiring expert knowledge. However, these solvers exhibit significant performance degradation when applied to large-scale CO problems. Recently, two-stage neural methods motivated by divide-and-conquer strategies have shown efficiency in addressing large-scale CO problems. Nevertheless, the performance of these methods highly relies on problem-specific heuristics in either the dividing or the conquering procedure, which limits their applicability to general CO problems. Moreover, these methods employ separate training schemes and ignore the interdependencies between the dividing and conquering strategies, often leading to sub-optimal solutions. To tackle these drawbacks, this article develops a unified neural divide-and-conquer framework (i.e., UDC) for solving general large-scale CO problems. UDC offers a Divide-Conquer-Reunion (DCR) training method to eliminate the negative impact of a sub-optimal dividing policy. Employing a high-efficiency Graph Neural Network (GNN) for global instance dividing and a fixed-length sub-path solver for conquering divided sub-problems, the proposed UDC framework demonstrates extensive applicability, achieving superior performance in 10 representative large-scale CO problems. The code is available at https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/UDC-Large-scale-CO-master.
DivClust: Controlling Diversity in Deep Clustering
Clustering has been a major research topic in the field of machine learning, one to which Deep Learning has recently been applied with significant success. However, an aspect of clustering that is not addressed by existing deep clustering methods, is that of efficiently producing multiple, diverse partitionings for a given dataset. This is particularly important, as a diverse set of base clusterings are necessary for consensus clustering, which has been found to produce better and more robust results than relying on a single clustering. To address this gap, we propose DivClust, a diversity controlling loss that can be incorporated into existing deep clustering frameworks to produce multiple clusterings with the desired degree of diversity. We conduct experiments with multiple datasets and deep clustering frameworks and show that: a) our method effectively controls diversity across frameworks and datasets with very small additional computational cost, b) the sets of clusterings learned by DivClust include solutions that significantly outperform single-clustering baselines, and c) using an off-the-shelf consensus clustering algorithm, DivClust produces consensus clustering solutions that consistently outperform single-clustering baselines, effectively improving the performance of the base deep clustering framework.
Data-Efficient Learning via Clustering-Based Sensitivity Sampling: Foundation Models and Beyond
We study the data selection problem, whose aim is to select a small representative subset of data that can be used to efficiently train a machine learning model. We present a new data selection approach based on k-means clustering and sensitivity sampling. Assuming access to an embedding representation of the data with respect to which the model loss is H\"older continuous, our approach provably allows selecting a set of ``typical'' k + 1/varepsilon^2 elements whose average loss corresponds to the average loss of the whole dataset, up to a multiplicative (1pmvarepsilon) factor and an additive varepsilon lambda Phi_k, where Phi_k represents the k-means cost for the input embeddings and lambda is the H\"older constant. We furthermore demonstrate the performance and scalability of our approach on fine-tuning foundation models and show that it outperforms state-of-the-art methods. We also show how it can be applied on linear regression, leading to a new sampling strategy that surprisingly matches the performances of leverage score sampling, while being conceptually simpler and more scalable.
Semi-Supervised Clustering with Neural Networks
Clustering using neural networks has recently demonstrated promising performance in machine learning and computer vision applications. However, the performance of current approaches is limited either by unsupervised learning or their dependence on large set of labeled data samples. In this paper, we propose ClusterNet that uses pairwise semantic constraints from very few labeled data samples (<5% of total data) and exploits the abundant unlabeled data to drive the clustering approach. We define a new loss function that uses pairwise semantic similarity between objects combined with constrained k-means clustering to efficiently utilize both labeled and unlabeled data in the same framework. The proposed network uses convolution autoencoder to learn a latent representation that groups data into k specified clusters, while also learning the cluster centers simultaneously. We evaluate and compare the performance of ClusterNet on several datasets and state of the art deep clustering approaches.
Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning
Supervised Fine-Tuning (SFT) Large Language Models (LLM) fundamentally rely on high-quality training data. While data selection and data synthesis are two common strategies to improve data quality, existing approaches often face limitations in static dataset curation that fail to adapt to evolving model capabilities. In this paper, we introduce Middo, a self-evolving Model-informed dynamic data optimization framework that uses model-aware data selection and context-preserving data refinement. Unlike conventional one-off filtering/synthesis methods, our framework establishes a closed-loop optimization system: (1) A self-referential diagnostic module proactively identifies suboptimal samples through tri-axial model signals - loss patterns (complexity), embedding cluster dynamics (diversity), and self-alignment scores (quality); (2) An adaptive optimization engine then transforms suboptimal samples into pedagogically valuable training points while preserving semantic integrity; (3) This optimization process continuously evolves with model capability through dynamic learning principles. Experiments on multiple benchmarks demonstrate that our \method consistently enhances the quality of seed data and boosts LLM's performance with improving accuracy by 7.15% on average while maintaining the original dataset scale. This work establishes a new paradigm for sustainable LLM training through dynamic human-AI co-evolution of data and models. Our datasets, models, and code are coming soon.
Object-Centric Learning with Slot Mixture Module
Object-centric architectures usually apply a differentiable module to the entire feature map to decompose it into sets of entity representations called slots. Some of these methods structurally resemble clustering algorithms, where the cluster's center in latent space serves as a slot representation. Slot Attention is an example of such a method, acting as a learnable analog of the soft k-means algorithm. Our work employs a learnable clustering method based on the Gaussian Mixture Model. Unlike other approaches, we represent slots not only as centers of clusters but also incorporate information about the distance between clusters and assigned vectors, leading to more expressive slot representations. Our experiments demonstrate that using this approach instead of Slot Attention improves performance in object-centric scenarios, achieving state-of-the-art results in the set property prediction task.
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order Information
We present a novel adaptive optimization algorithm for large-scale machine learning problems. Equipped with a low-cost estimate of local curvature and Lipschitz smoothness, our method dynamically adapts the search direction and step-size. The search direction contains gradient information preconditioned by a well-scaled diagonal preconditioning matrix that captures the local curvature information. Our methodology does not require the tedious task of learning rate tuning, as the learning rate is updated automatically without adding an extra hyperparameter. We provide convergence guarantees on a comprehensive collection of optimization problems, including convex, strongly convex, and nonconvex problems, in both deterministic and stochastic regimes. We also conduct an extensive empirical evaluation on standard machine learning problems, justifying our algorithm's versatility and demonstrating its strong performance compared to other start-of-the-art first-order and second-order methods.
Variance Reduction in Deep Learning: More Momentum is All You Need
Variance reduction (VR) techniques have contributed significantly to accelerating learning with massive datasets in the smooth and strongly convex setting (Schmidt et al., 2017; Johnson & Zhang, 2013; Roux et al., 2012). However, such techniques have not yet met the same success in the realm of large-scale deep learning due to various factors such as the use of data augmentation or regularization methods like dropout (Defazio & Bottou, 2019). This challenge has recently motivated the design of novel variance reduction techniques tailored explicitly for deep learning (Arnold et al., 2019; Ma & Yarats, 2018). This work is an additional step in this direction. In particular, we exploit the ubiquitous clustering structure of rich datasets used in deep learning to design a family of scalable variance reduced optimization procedures by combining existing optimizers (e.g., SGD+Momentum, Quasi Hyperbolic Momentum, Implicit Gradient Transport) with a multi-momentum strategy (Yuan et al., 2019). Our proposal leads to faster convergence than vanilla methods on standard benchmark datasets (e.g., CIFAR and ImageNet). It is robust to label noise and amenable to distributed optimization. We provide a parallel implementation in JAX.
ClusterFuG: Clustering Fully connected Graphs by Multicut
We propose a graph clustering formulation based on multicut (a.k.a. weighted correlation clustering) on the complete graph. Our formulation does not need specification of the graph topology as in the original sparse formulation of multicut, making our approach simpler and potentially better performing. In contrast to unweighted correlation clustering we allow for a more expressive weighted cost structure. In dense multicut, the clustering objective is given in a factorized form as inner products of node feature vectors. This allows for an efficient formulation and inference in contrast to multicut/weighted correlation clustering, which has at least quadratic representation and computation complexity when working on the complete graph. We show how to rewrite classical greedy algorithms for multicut in our dense setting and how to modify them for greater efficiency and solution quality. In particular, our algorithms scale to graphs with tens of thousands of nodes. Empirical evidence on instance segmentation on Cityscapes and clustering of ImageNet datasets shows the merits of our approach.
Asynchronous ε-Greedy Bayesian Optimisation
Batch Bayesian optimisation (BO) is a successful technique for the optimisation of expensive black-box functions. Asynchronous BO can reduce wallclock time by starting a new evaluation as soon as another finishes, thus maximising resource utilisation. To maximise resource allocation, we develop a novel asynchronous BO method, AEGiS (Asynchronous epsilon-Greedy Global Search) that combines greedy search, exploiting the surrogate's mean prediction, with Thompson sampling and random selection from the approximate Pareto set describing the trade-off between exploitation (surrogate mean prediction) and exploration (surrogate posterior variance). We demonstrate empirically the efficacy of AEGiS on synthetic benchmark problems, meta-surrogate hyperparameter tuning problems and real-world problems, showing that AEGiS generally outperforms existing methods for asynchronous BO. When a single worker is available performance is no worse than BO using expected improvement.
Unsupervised Deep Embedding for Clustering Analysis
Clustering is central to many data-driven application domains and has been studied extensively in terms of distance functions and grouping algorithms. Relatively little work has focused on learning representations for clustering. In this paper, we propose Deep Embedded Clustering (DEC), a method that simultaneously learns feature representations and cluster assignments using deep neural networks. DEC learns a mapping from the data space to a lower-dimensional feature space in which it iteratively optimizes a clustering objective. Our experimental evaluations on image and text corpora show significant improvement over state-of-the-art methods.
ClusterLLM: Large Language Models as a Guide for Text Clustering
We introduce ClusterLLM, a novel text clustering framework that leverages feedback from an instruction-tuned large language model, such as ChatGPT. Compared with traditional unsupervised methods that builds upon "small" embedders, ClusterLLM exhibits two intriguing advantages: (1) it enjoys the emergent capability of LLM even if its embeddings are inaccessible; and (2) it understands the user's preference on clustering through textual instruction and/or a few annotated data. First, we prompt ChatGPT for insights on clustering perspective by constructing hard triplet questions <does A better correspond to B than C>, where A, B and C are similar data points that belong to different clusters according to small embedder. We empirically show that this strategy is both effective for fine-tuning small embedder and cost-efficient to query ChatGPT. Second, we prompt ChatGPT for helps on clustering granularity by carefully designed pairwise questions <do A and B belong to the same category>, and tune the granularity from cluster hierarchies that is the most consistent with the ChatGPT answers. Extensive experiments on 14 datasets show that ClusterLLM consistently improves clustering quality, at an average cost of ~$0.6 per dataset.
Minimalistic Predictions to Schedule Jobs with Online Precedence Constraints
We consider non-clairvoyant scheduling with online precedence constraints, where an algorithm is oblivious to any job dependencies and learns about a job only if all of its predecessors have been completed. Given strong impossibility results in classical competitive analysis, we investigate the problem in a learning-augmented setting, where an algorithm has access to predictions without any quality guarantee. We discuss different prediction models: novel problem-specific models as well as general ones, which have been proposed in previous works. We present lower bounds and algorithmic upper bounds for different precedence topologies, and thereby give a structured overview on which and how additional (possibly erroneous) information helps for designing better algorithms. Along the way, we also improve bounds on traditional competitive ratios for existing algorithms.
An Analysis of Hyper-Parameter Optimization Methods for Retrieval Augmented Generation
Finding the optimal Retrieval-Augmented Generation (RAG) configuration for a given use case can be complex and expensive. Motivated by this challenge, frameworks for RAG hyper-parameter optimization (HPO) have recently emerged, yet their effectiveness has not been rigorously benchmarked. To address this gap, we present a comprehensive study involving 5 HPO algorithms over 5 datasets from diverse domains, including a new one collected for this work on real-world product documentation. Our study explores the largest HPO search space considered to date, with two optimized evaluation metrics. Analysis of the results shows that RAG HPO can be done efficiently, either greedily or with iterative random search, and that it significantly boosts RAG performance for all datasets. For greedy HPO approaches, we show that optimizing models first is preferable to the prevalent practice of optimizing sequentially according to the RAG pipeline order.
Theoretical bounds on the network community profile from low-rank semi-definite programming
We study a new connection between a technical measure called mu-conductance that arises in the study of Markov chains for sampling convex bodies and the network community profile that characterizes size-resolved properties of clusters and communities in social and information networks. The idea of mu-conductance is similar to the traditional graph conductance, but disregards sets with small volume. We derive a sequence of optimization problems including a low-rank semi-definite program from which we can derive a lower bound on the optimal mu-conductance value. These ideas give the first theoretically sound bound on the behavior of the network community profile for a wide range of cluster sizes. The algorithm scales up to graphs with hundreds of thousands of nodes and we demonstrate how our framework validates the predicted structures of real-world graphs.
Faster k-Medoids Clustering: Improving the PAM, CLARA, and CLARANS Algorithms
Clustering non-Euclidean data is difficult, and one of the most used algorithms besides hierarchical clustering is the popular algorithm Partitioning Around Medoids (PAM), also simply referred to as k-medoids. In Euclidean geometry the mean-as used in k-means-is a good estimator for the cluster center, but this does not hold for arbitrary dissimilarities. PAM uses the medoid instead, the object with the smallest dissimilarity to all others in the cluster. This notion of centrality can be used with any (dis-)similarity, and thus is of high relevance to many domains such as biology that require the use of Jaccard, Gower, or more complex distances. A key issue with PAM is its high run time cost. We propose modifications to the PAM algorithm to achieve an O(k)-fold speedup in the second SWAP phase of the algorithm, but will still find the same results as the original PAM algorithm. If we slightly relax the choice of swaps performed (at comparable quality), we can further accelerate the algorithm by performing up to k swaps in each iteration. With the substantially faster SWAP, we can now also explore alternative strategies for choosing the initial medoids. We also show how the CLARA and CLARANS algorithms benefit from these modifications. It can easily be combined with earlier approaches to use PAM and CLARA on big data (some of which use PAM as a subroutine, hence can immediately benefit from these improvements), where the performance with high k becomes increasingly important. In experiments on real data with k=100, we observed a 200-fold speedup compared to the original PAM SWAP algorithm, making PAM applicable to larger data sets as long as we can afford to compute a distance matrix, and in particular to higher k (at k=2, the new SWAP was only 1.5 times faster, as the speedup is expected to increase with k).
Weighted Flow Diffusion for Local Graph Clustering with Node Attributes: an Algorithm and Statistical Guarantees
Local graph clustering methods aim to detect small clusters in very large graphs without the need to process the whole graph. They are fundamental and scalable tools for a wide range of tasks such as local community detection, node ranking and node embedding. While prior work on local graph clustering mainly focuses on graphs without node attributes, modern real-world graph datasets typically come with node attributes that provide valuable additional information. We present a simple local graph clustering algorithm for graphs with node attributes, based on the idea of diffusing mass locally in the graph while accounting for both structural and attribute proximities. Using high-dimensional concentration results, we provide statistical guarantees on the performance of the algorithm for the recovery of a target cluster with a single seed node. We give conditions under which a target cluster generated from a fairly general contextual random graph model, which includes both the stochastic block model and the planted cluster model as special cases, can be fully recovered with bounded false positives. Empirically, we validate all theoretical claims using synthetic data, and we show that incorporating node attributes leads to superior local clustering performances using real-world graph datasets.
Mixing predictions for online metric algorithms
A major technique in learning-augmented online algorithms is combining multiple algorithms or predictors. Since the performance of each predictor may vary over time, it is desirable to use not the single best predictor as a benchmark, but rather a dynamic combination which follows different predictors at different times. We design algorithms that combine predictions and are competitive against such dynamic combinations for a wide class of online problems, namely, metrical task systems. Against the best (in hindsight) unconstrained combination of ell predictors, we obtain a competitive ratio of O(ell^2), and show that this is best possible. However, for a benchmark with slightly constrained number of switches between different predictors, we can get a (1+epsilon)-competitive algorithm. Moreover, our algorithms can be adapted to access predictors in a bandit-like fashion, querying only one predictor at a time. An unexpected implication of one of our lower bounds is a new structural insight about covering formulations for the k-server problem.
Bayesian Optimization for Selecting Efficient Machine Learning Models
The performance of many machine learning models depends on their hyper-parameter settings. Bayesian Optimization has become a successful tool for hyper-parameter optimization of machine learning algorithms, which aims to identify optimal hyper-parameters during an iterative sequential process. However, most of the Bayesian Optimization algorithms are designed to select models for effectiveness only and ignore the important issue of model training efficiency. Given that both model effectiveness and training time are important for real-world applications, models selected for effectiveness may not meet the strict training time requirements necessary to deploy in a production environment. In this work, we present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency. We propose an objective that captures the tradeoff between these two metrics and demonstrate how we can jointly optimize them in a principled Bayesian Optimization framework. Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency while maintaining strong effectiveness as compared to state-of-the-art Bayesian Optimization algorithms.
Splitwise: Efficient generative LLM inference using phase splitting
Recent innovations in generative large language models (LLMs) have made their applications and use-cases ubiquitous. This has led to large-scale deployments of these models, using complex, expensive, and power-hungry AI accelerators, most commonly GPUs. These developments make LLM inference efficiency an important challenge. Based on our extensive characterization, we find that there are two main phases during an LLM inference request: a compute-intensive prompt computation, and a memory-intensive token generation, each with distinct latency, throughput, memory, and power characteristics. Despite state-of-the-art batching and scheduling, the token generation phase underutilizes compute resources. Specifically, unlike compute-intensive prompt computation phases, token generation phases do not require the compute capability of the latest GPUs, and can be run with lower power and cost. With Splitwise, we propose splitting the two phases of a LLM inference request on to separate machines. This allows us to use hardware that is well-suited for each phase, and provision resources independently per phase. However, splitting an inference request across machines requires state transfer from the machine running prompt computation over to the machine generating tokens. We implement and optimize this state transfer using the fast back-plane interconnects available in today's GPU clusters. We use the Splitwise technique to design LLM inference clusters using the same or different types of machines for the prompt computation and token generation phases. Our clusters are optimized for three key objectives: throughput, cost, and power. In particular, we show that we can achieve 1.4x higher throughput at 20% lower cost than current designs. Alternatively, we can achieve 2.35x more throughput with the same cost and power budgets.
Multi-Objective GFlowNets
In many applications of machine learning, like drug discovery and material design, the goal is to generate candidates that simultaneously maximize a set of objectives. As these objectives are often conflicting, there is no single candidate that simultaneously maximizes all objectives, but rather a set of Pareto-optimal candidates where one objective cannot be improved without worsening another. Moreover, in practice, these objectives are often under-specified, making the diversity of candidates a key consideration. The existing multi-objective optimization methods focus predominantly on covering the Pareto front, failing to capture diversity in the space of candidates. Motivated by the success of GFlowNets for generation of diverse candidates in a single objective setting, in this paper we consider Multi-Objective GFlowNets (MOGFNs). MOGFNs consist of a novel Conditional GFlowNet which models a family of single-objective sub-problems derived by decomposing the multi-objective optimization problem. Our work is the first to empirically demonstrate conditional GFlowNets. Through a series of experiments on synthetic and benchmark tasks, we empirically demonstrate that MOGFNs outperform existing methods in terms of Hypervolume, R2-distance and candidate diversity. We also demonstrate the effectiveness of MOGFNs over existing methods in active learning settings. Finally, we supplement our empirical results with a careful analysis of each component of MOGFNs.
Holmes: Towards Distributed Training Across Clusters with Heterogeneous NIC Environment
Large language models (LLMs) such as GPT-3, OPT, and LLaMA have demonstrated remarkable accuracy in a wide range of tasks. However, training these models can incur significant expenses, often requiring tens of thousands of GPUs for months of continuous operation. Typically, this training is carried out in specialized GPU clusters equipped with homogeneous high-speed Remote Direct Memory Access (RDMA) network interface cards (NICs). The acquisition and maintenance of such dedicated clusters is challenging. Current LLM training frameworks, like Megatron-LM and Megatron-DeepSpeed, focus primarily on optimizing training within homogeneous cluster settings. In this paper, we introduce Holmes, a training framework for LLMs that employs thoughtfully crafted data and model parallelism strategies over the heterogeneous NIC environment. Our primary technical contribution lies in a novel scheduling method that intelligently allocates distinct computational tasklets in LLM training to specific groups of GPU devices based on the characteristics of their connected NICs. Furthermore, our proposed framework, utilizing pipeline parallel techniques, demonstrates scalability to multiple GPU clusters, even in scenarios without high-speed interconnects between nodes in distinct clusters. We conducted comprehensive experiments that involved various scenarios in the heterogeneous NIC environment. In most cases, our framework achieves performance levels close to those achievable with homogeneous RDMA-capable networks (InfiniBand or RoCE), significantly exceeding training efficiency within the pure Ethernet environment. Additionally, we verified that our framework outperforms other mainstream LLM frameworks under heterogeneous NIC environment in terms of training efficiency and can be seamlessly integrated with them.
A Generic First-Order Algorithmic Framework for Bi-Level Programming Beyond Lower-Level Singleton
In recent years, a variety of gradient-based first-order methods have been developed to solve bi-level optimization problems for learning applications. However, theoretical guarantees of these existing approaches heavily rely on the simplification that for each fixed upper-level variable, the lower-level solution must be a singleton (a.k.a., Lower-Level Singleton, LLS). In this work, we first design a counter-example to illustrate the invalidation of such LLS condition. Then by formulating BLPs from the view point of optimistic bi-level and aggregating hierarchical objective information, we establish Bi-level Descent Aggregation (BDA), a flexible and modularized algorithmic framework for generic bi-level optimization. Theoretically, we derive a new methodology to prove the convergence of BDA without the LLS condition. Our investigations also demonstrate that BDA is indeed compatible to a verify of particular first-order computation modules. Additionally, as an interesting byproduct, we also improve these conventional first-order bi-level schemes (under the LLS simplification). Particularly, we establish their convergences with weaker assumptions. Extensive experiments justify our theoretical results and demonstrate the superiority of the proposed BDA for different tasks, including hyper-parameter optimization and meta learning.
Versatile Black-Box Optimization
Choosing automatically the right algorithm using problem descriptors is a classical component of combinatorial optimization. It is also a good tool for making evolutionary algorithms fast, robust and versatile. We present Shiwa, an algorithm good at both discrete and continuous, noisy and noise-free, sequential and parallel, black-box optimization. Our algorithm is experimentally compared to competitors on YABBOB, a BBOB comparable testbed, and on some variants of it, and then validated on several real world testbeds.
Sparse Reward Exploration via Novelty Search and Emitters
Reward-based optimization algorithms require both exploration, to find rewards, and exploitation, to maximize performance. The need for efficient exploration is even more significant in sparse reward settings, in which performance feedback is given sparingly, thus rendering it unsuitable for guiding the search process. In this work, we introduce the SparsE Reward Exploration via Novelty and Emitters (SERENE) algorithm, capable of efficiently exploring a search space, as well as optimizing rewards found in potentially disparate areas. Contrary to existing emitters-based approaches, SERENE separates the search space exploration and reward exploitation into two alternating processes. The first process performs exploration through Novelty Search, a divergent search algorithm. The second one exploits discovered reward areas through emitters, i.e. local instances of population-based optimization algorithms. A meta-scheduler allocates a global computational budget by alternating between the two processes, ensuring the discovery and efficient exploitation of disjoint reward areas. SERENE returns both a collection of diverse solutions covering the search space and a collection of high-performing solutions for each distinct reward area. We evaluate SERENE on various sparse reward environments and show it compares favorably to existing baselines.
Symbol: Generating Flexible Black-Box Optimizers through Symbolic Equation Learning
Recent Meta-learning for Black-Box Optimization (MetaBBO) methods harness neural networks to meta-learn configurations of traditional black-box optimizers. Despite their success, they are inevitably restricted by the limitations of predefined hand-crafted optimizers. In this paper, we present Symbol, a novel framework that promotes the automated discovery of black-box optimizers through symbolic equation learning. Specifically, we propose a Symbolic Equation Generator (SEG) that allows closed-form optimization rules to be dynamically generated for specific tasks and optimization steps. Within Symbol, we then develop three distinct strategies based on reinforcement learning, so as to meta-learn the SEG efficiently. Extensive experiments reveal that the optimizers generated by Symbol not only surpass the state-of-the-art BBO and MetaBBO baselines, but also exhibit exceptional zero-shot generalization abilities across entirely unseen tasks with different problem dimensions, population sizes, and optimization horizons. Furthermore, we conduct in-depth analyses of our Symbol framework and the optimization rules that it generates, underscoring its desirable flexibility and interpretability.
Neural Optimal Transport with General Cost Functionals
We introduce a novel neural network-based algorithm to compute optimal transport (OT) plans for general cost functionals. In contrast to common Euclidean costs, i.e., ell^1 or ell^2, such functionals provide more flexibility and allow using auxiliary information, such as class labels, to construct the required transport map. Existing methods for general costs are discrete and have limitations in practice, i.e. they do not provide an out-of-sample estimation. We address the challenge of designing a continuous OT approach for general costs that generalizes to new data points in high-dimensional spaces, such as images. Additionally, we provide the theoretical error analysis for our recovered transport plans. As an application, we construct a cost functional to map data distributions while preserving the class-wise structure.
Priority Matters: Optimising Kubernetes Clusters Usage with Constraint-Based Pod Packing
Distributed applications employ Kubernetes for scalable, fault-tolerant deployments over computer clusters, where application components run in groups of containers called pods. The scheduler, at the heart of Kubernetes' architecture, determines the placement of pods given their priority and resource requirements on cluster nodes. To quickly allocate pods, the scheduler uses lightweight heuristics that can lead to suboptimal placements and resource fragmentation, preventing allocations of otherwise deployable pods on the available nodes. We propose the usage of constraint programming to find the optimal allocation of pods satisfying all their priorities and resource requests. Implementation-wise, our solution comes as a plug-in to the default scheduler that operates as a fallback mechanism when some pods cannot be allocated. Using the OR-Tools constraint solver, our experiments on small-to-mid-sized clusters indicate that, within a 1-second scheduling window, our approach places more higher-priority pods than the default scheduler (possibly demonstrating allocation optimality) in over 44\% of realisable allocation scenarios where the default scheduler fails, while certifying that the default scheduler's placement is already optimal in over 19\% of scenarios. With a 10-second window, our approach improves placements in over 73\% and still certifies that the default scheduler's placement is already optimal in over 19\% of scenarios.
Approximation Algorithms for Fair Range Clustering
This paper studies the fair range clustering problem in which the data points are from different demographic groups and the goal is to pick k centers with the minimum clustering cost such that each group is at least minimally represented in the centers set and no group dominates the centers set. More precisely, given a set of n points in a metric space (P,d) where each point belongs to one of the ell different demographics (i.e., P = P_1 uplus P_2 uplus cdots uplus P_ell) and a set of ell intervals [alpha_1, beta_1], cdots, [alpha_ell, beta_ell] on desired number of centers from each group, the goal is to pick a set of k centers C with minimum ell_p-clustering cost (i.e., (sum_{vin P} d(v,C)^p)^{1/p}) such that for each group iin ell, |Ccap P_i| in [alpha_i, beta_i]. In particular, the fair range ell_p-clustering captures fair range k-center, k-median and k-means as its special cases. In this work, we provide efficient constant factor approximation algorithms for fair range ell_p-clustering for all values of pin [1,infty).
Physics-informed cluster analysis and a priori efficiency criterion for the construction of local reduced-order bases
Nonlinear model order reduction has opened the door to parameter optimization and uncertainty quantification in complex physics problems governed by nonlinear equations. In particular, the computational cost of solving these equations can be reduced by means of local reduced-order bases. This article examines the benefits of a physics-informed cluster analysis for the construction of cluster-specific reduced-order bases. We illustrate that the choice of the dissimilarity measure for clustering is fundamental and highly affects the performances of the local reduced-order bases. It is shown that clustering with an angle-based dissimilarity on simulation data efficiently decreases the intra-cluster Kolmogorov N-width. Additionally, an a priori efficiency criterion is introduced to assess the relevance of a ROM-net, a methodology for the reduction of nonlinear physics problems introduced in our previous work in [T. Daniel, F. Casenave, N. Akkari, D. Ryckelynck, Model order reduction assisted by deep neural networks (ROM-net), Advanced Modeling and Simulation in Engineering Sciences 7 (16), 2020]. This criterion also provides engineers with a very practical method for ROM-nets' hyperparameters calibration under constrained computational costs for the training phase. On five different physics problems, our physics-informed clustering strategy significantly outperforms classic strategies for the construction of local reduced-order bases in terms of projection errors.
Cephalo: Harnessing Heterogeneous GPU Clusters for Training Transformer Models
Training transformer models requires substantial GPU compute and memory resources. In homogeneous clusters, distributed strategies allocate resources evenly, but this approach is inefficient for heterogeneous clusters, where GPUs differ in power and memory. As high-end GPUs are costly and limited in availability, heterogeneous clusters with diverse GPU types are becoming more common. Existing methods attempt to balance compute across GPUs based on capacity but often underutilize compute due to memory constraints. We present Cephalo, a system that optimizes compute and memory usage by decoupling compute distribution from training state assignment. Cephalo outperforms state-of-the-art methods by achieving significantly higher training throughput while supporting larger models and batch sizes.
Adaptive Sampling Strategies to Construct Equitable Training Datasets
In domains ranging from computer vision to natural language processing, machine learning models have been shown to exhibit stark disparities, often performing worse for members of traditionally underserved groups. One factor contributing to these performance gaps is a lack of representation in the data the models are trained on. It is often unclear, however, how to operationalize representativeness in specific applications. Here we formalize the problem of creating equitable training datasets, and propose a statistical framework for addressing this problem. We consider a setting where a model builder must decide how to allocate a fixed data collection budget to gather training data from different subgroups. We then frame dataset creation as a constrained optimization problem, in which one maximizes a function of group-specific performance metrics based on (estimated) group-specific learning rates and costs per sample. This flexible approach incorporates preferences of model-builders and other stakeholders, as well as the statistical properties of the learning task. When data collection decisions are made sequentially, we show that under certain conditions this optimization problem can be efficiently solved even without prior knowledge of the learning rates. To illustrate our approach, we conduct a simulation study of polygenic risk scores on synthetic genomic data -- an application domain that often suffers from non-representative data collection. We find that our adaptive sampling strategy outperforms several common data collection heuristics, including equal and proportional sampling, demonstrating the value of strategic dataset design for building equitable models.
High-dimensional Clustering onto Hamiltonian Cycle
Clustering aims to group unlabelled samples based on their similarities. It has become a significant tool for the analysis of high-dimensional data. However, most of the clustering methods merely generate pseudo labels and thus are unable to simultaneously present the similarities between different clusters and outliers. This paper proposes a new framework called High-dimensional Clustering onto Hamiltonian Cycle (HCHC) to solve the above problems. First, HCHC combines global structure with local structure in one objective function for deep clustering, improving the labels as relative probabilities, to mine the similarities between different clusters while keeping the local structure in each cluster. Then, the anchors of different clusters are sorted on the optimal Hamiltonian cycle generated by the cluster similarities and mapped on the circumference of a circle. Finally, a sample with a higher probability of a cluster will be mapped closer to the corresponding anchor. In this way, our framework allows us to appreciate three aspects visually and simultaneously - clusters (formed by samples with high probabilities), cluster similarities (represented as circular distances), and outliers (recognized as dots far away from all clusters). The experiments illustrate the superiority of HCHC.
A Meta-Heuristic Load Balancer for Cloud Computing Systems
This paper presents a strategy to allocate services on a Cloud system without overloading nodes and maintaining the system stability with minimum cost. We specify an abstract model of cloud resources utilization, including multiple types of resources as well as considerations for the service migration costs. A prototype meta-heuristic load balancer is demonstrated and experimental results are presented and discussed. We also propose a novel genetic algorithm, where population is seeded with the outputs of other meta-heuristic algorithms.
LLMOPT: Learning to Define and Solve General Optimization Problems from Scratch
Optimization problems are prevalent across various scenarios. Formulating and then solving optimization problems described by natural language often requires highly specialized human expertise, which could block the widespread application of optimization-based decision making. To automate problem formulation and solving, leveraging large language models (LLMs) has emerged as a potential way. However, this kind of approach suffers from the issue of optimization generalization. Namely, the accuracy of most current LLM-based methods and the generality of optimization problem types that they can model are still limited. In this paper, we propose a unified learning-based framework called LLMOPT to boost optimization generalization. Starting from the natural language descriptions of optimization problems and a pre-trained LLM, LLMOPT constructs the introduced five-element formulation as a universal model for learning to define diverse optimization problem types. Then, LLMOPT employs the multi-instruction tuning to enhance both problem formalization and solver code generation accuracy and generality. After that, to prevent hallucinations in LLMs, such as sacrificing solving accuracy to avoid execution errors, the model alignment and self-correction mechanism are adopted in LLMOPT. We evaluate the optimization generalization ability of LLMOPT and compared methods across six real-world datasets covering roughly 20 fields such as health, environment, energy and manufacturing, etc. Extensive experiment results show that LLMOPT is able to model various optimization problem types such as linear/nonlinear programming, mixed integer programming, and combinatorial optimization, and achieves a notable 11.08% average solving accuracy improvement compared with the state-of-the-art methods. The code is available at https://github.com/caigaojiang/LLMOPT.
Towards Modular LLMs by Building and Reusing a Library of LoRAs
The growing number of parameter-efficient adaptations of a base large language model (LLM) calls for studying whether we can reuse such trained adapters to improve performance for new tasks. We study how to best build a library of adapters given multi-task data and devise techniques for both zero-shot and supervised task generalization through routing in such library. We benchmark existing approaches to build this library and introduce model-based clustering, MBC, a method that groups tasks based on the similarity of their adapter parameters, indirectly optimizing for transfer across the multi-task dataset. To re-use the library, we present a novel zero-shot routing mechanism, Arrow, which enables dynamic selection of the most relevant adapters for new inputs without the need for retraining. We experiment with several LLMs, such as Phi-2 and Mistral, on a wide array of held-out tasks, verifying that MBC-based adapters and Arrow routing lead to superior generalization to new tasks. We make steps towards creating modular, adaptable LLMs that can match or outperform traditional joint training.
Learning to Relax: Setting Solver Parameters Across a Sequence of Linear System Instances
Solving a linear system Ax=b is a fundamental scientific computing primitive for which numerous solvers and preconditioners have been developed. These come with parameters whose optimal values depend on the system being solved and are often impossible or too expensive to identify; thus in practice sub-optimal heuristics are used. We consider the common setting in which many related linear systems need to be solved, e.g. during a single numerical simulation. In this scenario, can we sequentially choose parameters that attain a near-optimal overall number of iterations, without extra matrix computations? We answer in the affirmative for Successive Over-Relaxation (SOR), a standard solver whose parameter omega has a strong impact on its runtime. For this method, we prove that a bandit online learning algorithm--using only the number of iterations as feedback--can select parameters for a sequence of instances such that the overall cost approaches that of the best fixed omega as the sequence length increases. Furthermore, when given additional structural information, we show that a contextual bandit method asymptotically achieves the performance of the instance-optimal policy, which selects the best omega for each instance. Our work provides the first learning-theoretic treatment of high-precision linear system solvers and the first end-to-end guarantees for data-driven scientific computing, demonstrating theoretically the potential to speed up numerical methods using well-understood learning algorithms.
GeLLM^3O: Generalizing Large Language Models for Multi-property Molecule Optimization
Despite recent advancements, most computational methods for molecule optimization are constrained to single- or double-property optimization tasks and suffer from poor scalability and generalizability to novel optimization tasks. Meanwhile, Large Language Models (LLMs) demonstrate remarkable out-of-domain generalizability to novel tasks. To demonstrate LLMs' potential for molecule optimization, we introduce MoMUInstruct, the first high-quality instruction-tuning dataset specifically focused on complex multi-property molecule optimization tasks. Leveraging MoMUInstruct, we develop GeLLM^3Os, a series of instruction-tuned LLMs for molecule optimization. Extensive evaluations across 5 in-domain and 5 out-of-domain tasks demonstrate that GeLLM^3Os consistently outperform state-of-the-art baselines. GeLLM^3Os also exhibit outstanding zero-shot generalization to unseen tasks, significantly outperforming powerful closed-source LLMs. Such strong generalizability demonstrates the tremendous potential of GeLLM^3Os as foundational models for molecule optimization, thereby tackling novel optimization tasks without resource-intensive retraining. MoMUInstruct, models, and code are accessible through https://github.com/ninglab/GeLLMO.
Optimizing NOTEARS Objectives via Topological Swaps
Recently, an intriguing class of non-convex optimization problems has emerged in the context of learning directed acyclic graphs (DAGs). These problems involve minimizing a given loss or score function, subject to a non-convex continuous constraint that penalizes the presence of cycles in a graph. In this work, we delve into the optimization challenges associated with this class of non-convex programs. To address these challenges, we propose a bi-level algorithm that leverages the non-convex constraint in a novel way. The outer level of the algorithm optimizes over topological orders by iteratively swapping pairs of nodes within the topological order of a DAG. A key innovation of our approach is the development of an effective method for generating a set of candidate swapping pairs for each iteration. At the inner level, given a topological order, we utilize off-the-shelf solvers that can handle linear constraints. The key advantage of our proposed algorithm is that it is guaranteed to find a local minimum or a KKT point under weaker conditions compared to previous work and finds solutions with lower scores. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in terms of achieving a better score. Additionally, our method can also be used as a post-processing algorithm to significantly improve the score of other algorithms. Code implementing the proposed method is available at https://github.com/duntrain/topo.
CLUSTSEG: Clustering for Universal Segmentation
We present CLUSTSEG, a general, transformer-based framework that tackles different image segmentation tasks (i.e., superpixel, semantic, instance, and panoptic) through a unified neural clustering scheme. Regarding queries as cluster centers, CLUSTSEG is innovative in two aspects:1) cluster centers are initialized in heterogeneous ways so as to pointedly address task-specific demands (e.g., instance- or category-level distinctiveness), yet without modifying the architecture; and 2) pixel-cluster assignment, formalized in a cross-attention fashion, is alternated with cluster center update, yet without learning additional parameters. These innovations closely link CLUSTSEG to EM clustering and make it a transparent and powerful framework that yields superior results across the above segmentation tasks.
Relaxing the Additivity Constraints in Decentralized No-Regret High-Dimensional Bayesian Optimization
Bayesian Optimization (BO) is typically used to optimize an unknown function f that is noisy and costly to evaluate, by exploiting an acquisition function that must be maximized at each optimization step. Even if provably asymptotically optimal BO algorithms are efficient at optimizing low-dimensional functions, scaling them to high-dimensional spaces remains an open problem, often tackled by assuming an additive structure for f. By doing so, BO algorithms typically introduce additional restrictive assumptions on the additive structure that reduce their applicability domain. This paper contains two main contributions: (i) we relax the restrictive assumptions on the additive structure of f without weakening the maximization guarantees of the acquisition function, and (ii) we address the over-exploration problem for decentralized BO algorithms. To these ends, we propose DuMBO, an asymptotically optimal decentralized BO algorithm that achieves very competitive performance against state-of-the-art BO algorithms, especially when the additive structure of f comprises high-dimensional factors.
Universal Model Routing for Efficient LLM Inference
Large language models' significant advances in capabilities are accompanied by significant increases in inference costs. Model routing is a simple technique for reducing inference cost, wherein one maintains a pool of candidate LLMs, and learns to route each prompt to the smallest feasible LLM. Existing works focus on learning a router for a fixed pool of LLMs. In this paper, we consider the problem of dynamic routing, where new, previously unobserved LLMs are available at test time. We propose a new approach to this problem that relies on representing each LLM as a feature vector, derived based on predictions on a set of representative prompts. Based on this, we detail two effective strategies, relying on cluster-based routing and a learned cluster map respectively. We prove that these strategies are estimates of a theoretically optimal routing rule, and provide an excess risk bound to quantify their errors. Experiments on a range of public benchmarks show the effectiveness of the proposed strategies in routing amongst more than 30 unseen LLMs.
Mirror Sinkhorn: Fast Online Optimization on Transport Polytopes
Optimal transport is an important tool in machine learning, allowing to capture geometric properties of the data through a linear program on transport polytopes. We present a single-loop optimization algorithm for minimizing general convex objectives on these domains, utilizing the principles of Sinkhorn matrix scaling and mirror descent. The proposed algorithm is robust to noise, and can be used in an online setting. We provide theoretical guarantees for convex objectives and experimental results showcasing it effectiveness on both synthetic and real-world data.
Light Schrödinger Bridge
Despite the recent advances in the field of computational Schr\"odinger Bridges (SB), most existing SB solvers are still heavy-weighted and require complex optimization of several neural networks. It turns out that there is no principal solver which plays the role of simple-yet-effective baseline for SB just like, e.g., k-means method in clustering, logistic regression in classification or Sinkhorn algorithm in discrete optimal transport. We address this issue and propose a novel fast and simple SB solver. Our development is a smart combination of two ideas which recently appeared in the field: (a) parameterization of the Schr\"odinger potentials with sum-exp quadratic functions and (b) viewing the log-Schr\"odinger potentials as the energy functions. We show that combined together these ideas yield a lightweight, simulation-free and theoretically justified SB solver with a simple straightforward optimization objective. As a result, it allows solving SB in moderate dimensions in a matter of minutes on CPU without a painful hyperparameter selection. Our light solver resembles the Gaussian mixture model which is widely used for density estimation. Inspired by this similarity, we also prove an important theoretical result showing that our light solver is a universal approximator of SBs. Furthemore, we conduct the analysis of the generalization error of our light solver. The code for our solver can be found at https://github.com/ngushchin/LightSB
Understanding Reinforcement Learning for Model Training, and future directions with GRAPE
This paper provides a self-contained, from-scratch, exposition of key algorithms for instruction tuning of models: SFT, Rejection Sampling, REINFORCE, Trust Region Policy Optimization (TRPO), Proximal Policy Optimization (PPO), Group Relative Policy Optimization (GRPO), and Direct Preference Optimization (DPO). Explanations of these algorithms often assume prior knowledge, lack critical details, and/or are overly generalized and complex. Here, each method is discussed and developed step by step using simplified and explicit notation focused on LLMs, aiming to eliminate ambiguity and provide a clear and intuitive understanding of the concepts. By minimizing detours into the broader RL literature and connecting concepts to LLMs, we eliminate superfluous abstractions and reduce cognitive overhead. Following this exposition, we provide a literature review of new techniques and approaches beyond those detailed. Finally, new ideas for research and exploration in the form of GRAPE (Generalized Relative Advantage Policy Evolution) are presented.
COSMOS: A Hybrid Adaptive Optimizer for Memory-Efficient Training of LLMs
Large Language Models (LLMs) have demonstrated remarkable success across various domains, yet their optimization remains a significant challenge due to the complex and high-dimensional loss landscapes they inhabit. While adaptive optimizers such as AdamW are widely used, they suffer from critical limitations, including an inability to capture interdependencies between coordinates and high memory consumption. Subsequent research, exemplified by SOAP, attempts to better capture coordinate interdependence but incurs greater memory overhead, limiting scalability for massive LLMs. An alternative approach aims to reduce memory consumption through low-dimensional projection, but this leads to substantial approximation errors, resulting in less effective optimization (e.g., in terms of per-token efficiency). In this paper, we propose COSMOS, a novel hybrid optimizer that leverages the varying importance of eigensubspaces in the gradient matrix to achieve memory efficiency without compromising optimization performance. The design of COSMOS is motivated by our empirical insights and practical considerations. Specifically, COSMOS applies SOAP to the leading eigensubspace, which captures the primary optimization dynamics, and MUON to the remaining eigensubspace, which is less critical but computationally expensive to handle with SOAP. This hybrid strategy significantly reduces memory consumption while maintaining robust optimization performance, making it particularly suitable for massive LLMs. Numerical experiments on various datasets and transformer architectures are provided to demonstrate the effectiveness of COSMOS. Our code is available at https://github.com/lliu606/COSMOS.
Workflow decomposition algorithm for scheduling with quantum annealer-based hybrid solver
We introduce the Series-Parallel Workflow Decomposition (SP\-WD) heuristic algorithm for the Workflow Scheduling Problem (WSP) decomposition. We demonstrate that the SPWD algorithm facilitates the scheduling of large WSP instances with the hybrid D-Wave Constrained Quadratic Model solver, enabling the scheduling of instances that would otherwise exceed its capacity limitations. We also describe the accompanying execution environment used to obtain the results of the experiments with real-life workflow instances available in the WfCommons standardization initiative repository.
Gradient is All You Need?
In this paper we provide a novel analytical perspective on the theoretical understanding of gradient-based learning algorithms by interpreting consensus-based optimization (CBO), a recently proposed multi-particle derivative-free optimization method, as a stochastic relaxation of gradient descent. Remarkably, we observe that through communication of the particles, CBO exhibits a stochastic gradient descent (SGD)-like behavior despite solely relying on evaluations of the objective function. The fundamental value of such link between CBO and SGD lies in the fact that CBO is provably globally convergent to global minimizers for ample classes of nonsmooth and nonconvex objective functions, hence, on the one side, offering a novel explanation for the success of stochastic relaxations of gradient descent. On the other side, contrary to the conventional wisdom for which zero-order methods ought to be inefficient or not to possess generalization abilities, our results unveil an intrinsic gradient descent nature of such heuristics. This viewpoint furthermore complements previous insights into the working principles of CBO, which describe the dynamics in the mean-field limit through a nonlinear nonlocal partial differential equation that allows to alleviate complexities of the nonconvex function landscape. Our proofs leverage a completely nonsmooth analysis, which combines a novel quantitative version of the Laplace principle (log-sum-exp trick) and the minimizing movement scheme (proximal iteration). In doing so, we furnish useful and precise insights that explain how stochastic perturbations of gradient descent overcome energy barriers and reach deep levels of nonconvex functions. Instructive numerical illustrations support the provided theoretical insights.
carps: A Framework for Comparing N Hyperparameter Optimizers on M Benchmarks
Hyperparameter Optimization (HPO) is crucial to develop well-performing machine learning models. In order to ease prototyping and benchmarking of HPO methods, we propose carps, a benchmark framework for Comprehensive Automated Research Performance Studies allowing to evaluate N optimizers on M benchmark tasks. In this first release of carps, we focus on the four most important types of HPO task types: blackbox, multi-fidelity, multi-objective and multi-fidelity-multi-objective. With 3 336 tasks from 5 community benchmark collections and 28 variants of 9 optimizer families, we offer the biggest go-to library to date to evaluate and compare HPO methods. The carps framework relies on a purpose-built, lightweight interface, gluing together optimizers and benchmark tasks. It also features an analysis pipeline, facilitating the evaluation of optimizers on benchmarks. However, navigating a huge number of tasks while developing and comparing methods can be computationally infeasible. To address this, we obtain a subset of representative tasks by minimizing the star discrepancy of the subset, in the space spanned by the full set. As a result, we propose an initial subset of 10 to 30 diverse tasks for each task type, and include functionality to re-compute subsets as more benchmarks become available, enabling efficient evaluations. We also establish a first set of baseline results on these tasks as a measure for future comparisons. With carps (https://www.github.com/automl/CARP-S), we make an important step in the standardization of HPO evaluation.
A Tutorial on Bayesian Optimization
Bayesian optimization is an approach to optimizing objective functions that take a long time (minutes or hours) to evaluate. It is best-suited for optimization over continuous domains of less than 20 dimensions, and tolerates stochastic noise in function evaluations. It builds a surrogate for the objective and quantifies the uncertainty in that surrogate using a Bayesian machine learning technique, Gaussian process regression, and then uses an acquisition function defined from this surrogate to decide where to sample. In this tutorial, we describe how Bayesian optimization works, including Gaussian process regression and three common acquisition functions: expected improvement, entropy search, and knowledge gradient. We then discuss more advanced techniques, including running multiple function evaluations in parallel, multi-fidelity and multi-information source optimization, expensive-to-evaluate constraints, random environmental conditions, multi-task Bayesian optimization, and the inclusion of derivative information. We conclude with a discussion of Bayesian optimization software and future research directions in the field. Within our tutorial material we provide a generalization of expected improvement to noisy evaluations, beyond the noise-free setting where it is more commonly applied. This generalization is justified by a formal decision-theoretic argument, standing in contrast to previous ad hoc modifications.
Taming LLMs by Scaling Learning Rates with Gradient Grouping
Training large language models (LLMs) poses challenges due to their massive scale and heterogeneous architectures. While adaptive optimizers like AdamW help address gradient variations, they still struggle with efficient and effective parameter-wise learning rate estimation, resulting in training instability, slow convergence, and poor compatibility with parameter-efficient fine-tuning (PEFT) techniques. This work introduces Scaling with Gradient Grouping (SGG), an optimizer wrapper that improves adaptive learning rate estimation by dynamic grouping and group-specific scaling. SGG first groups gradient statistics in each layer into clusters and then applies cluster-specific scaling to calibrate learning rates for each parameter, thus imposing collective group-wise constraints while maintaining precise per-parameter adaptation. Experiments on diverse (M)LLM benchmarks show that SGG integrates seamlessly with existing optimizers, and offers consistent gains and faster convergence over baselines, with various model sizes. Its stability across varying batch sizes and learning rates establishes SGG as a robust choice for LLM optimization.
MODE: Mixture of Document Experts for RAG
Retrieval-Augmented Generation (RAG) often relies on large vector databases and cross-encoders tuned for large-scale corpora, which can be excessive for small, domain-specific collections. We present MODE (Mixture of Document Experts), a lightweight alternative that replaces fine-grained nearest-neighbor search with cluster-and-route retrieval. Documents are embedded, grouped into semantically coherent clusters, and represented by cached centroids. At query time, we route to the top centroid(s) and retrieve context only within those clusters, eliminating external vector-database infrastructure and reranking while keeping latency low. On HotpotQA and SQuAD corpora with 100-500 chunks, MODE matches or exceeds a dense-retrieval baseline in answer quality while reducing end-to-end retrieval time. Ablations show that cluster granularity and multi-cluster routing control the recall/precision trade-off, and that tighter clusters improve downstream accuracy. MODE offers a practical recipe for small and medium corpora where simplicity, speed, and topical focus matter.
Using Sequential Runtime Distributions for the Parallel Speedup Prediction of SAT Local Search
This paper presents a detailed analysis of the scalability and parallelization of local search algorithms for the Satisfiability problem. We propose a framework to estimate the parallel performance of a given algorithm by analyzing the runtime behavior of its sequential version. Indeed, by approximating the runtime distribution of the sequential process with statistical methods, the runtime behavior of the parallel process can be predicted by a model based on order statistics. We apply this approach to study the parallel performance of two SAT local search solvers, namely Sparrow and CCASAT, and compare the predicted performances to the results of an actual experimentation on parallel hardware up to 384 cores. We show that the model is accurate and predicts performance close to the empirical data. Moreover, as we study different types of instances (random and crafted), we observe that the local search solvers exhibit different behaviors and that their runtime distributions can be approximated by two types of distributions: exponential (shifted and non-shifted) and lognormal.
Curator: Efficient Indexing for Multi-Tenant Vector Databases
Vector databases have emerged as key enablers for bridging intelligent applications with unstructured data, providing generic search and management support for embedding vectors extracted from the raw unstructured data. As multiple data users can share the same database infrastructure, multi-tenancy support for vector databases is increasingly desirable. This hinges on an efficient filtered search operation, i.e., only querying the vectors accessible to a particular tenant. Multi-tenancy in vector databases is currently achieved by building either a single, shared index among all tenants, or a per-tenant index. The former optimizes for memory efficiency at the expense of search performance, while the latter does the opposite. Instead, this paper presents Curator, an in-memory vector index design tailored for multi-tenant queries that simultaneously achieves the two conflicting goals, low memory overhead and high performance for queries, vector insertion, and deletion. Curator indexes each tenant's vectors with a tenant-specific clustering tree and encodes these trees compactly as sub-trees of a shared clustering tree. Each tenant's clustering tree adapts dynamically to its unique vector distribution, while maintaining a low per-tenant memory footprint. Our evaluation, based on two widely used data sets, confirms that Curator delivers search performance on par with per-tenant indexing, while maintaining memory consumption at the same level as metadata filtering on a single, shared index.
Performance Prediction for Large Systems via Text-to-Text Regression
In many industries, predicting metric outcomes of large systems is a fundamental problem, driven largely by traditional tabular regression. However, such methods struggle on complex systems data in the wild such as configuration files or system logs, where feature engineering is often infeasible. We propose text-to-text regression as a general, scalable alternative. For predicting resource efficiency on Borg, Google's massive compute cluster scheduling system, a 60M parameter encoder-decoder, trained from random initialization, achieves up to a near perfect 0.99 (0.9 average) rank correlation across the entire fleet, and 100x lower MSE than tabular approaches. The model also easily adapts to new tasks in only 500 few-shot examples and captures the densities of complex outcome distributions. Ablation studies highlight the importance of using encoders, increasing sequence length, and the model's inherent uncertainty quantification. These findings pave the way for universal simulators of real-world outcomes.
CO-Bench: Benchmarking Language Model Agents in Algorithm Search for Combinatorial Optimization
Although LLM-based agents have attracted significant attention in domains such as software engineering and machine learning research, their role in advancing combinatorial optimization (CO) remains relatively underexplored. This gap underscores the need for a deeper understanding of their potential in tackling structured, constraint-intensive problems-a pursuit currently limited by the absence of comprehensive benchmarks for systematic investigation. To address this, we introduce CO-Bench, a benchmark suite featuring 36 real-world CO problems drawn from a broad range of domains and complexity levels. CO-Bench includes structured problem formulations and curated data to support rigorous investigation of LLM agents. We evaluate multiple agent frameworks against established human-designed algorithms, revealing key strengths and limitations of current approaches and identifying promising directions for future research. CO-Bench is publicly available at https://github.com/sunnweiwei/CO-Bench.
Large Language Models for Combinatorial Optimization: A Systematic Review
This systematic review explores the application of Large Language Models (LLMs) in Combinatorial Optimization (CO). We report our findings using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We conduct a literature search via Scopus and Google Scholar, examining over 2,000 publications. We assess publications against four inclusion and four exclusion criteria related to their language, research focus, publication year, and type. Eventually, we select 103 studies. We classify these studies into semantic categories and topics to provide a comprehensive overview of the field, including the tasks performed by LLMs, the architectures of LLMs, the existing datasets specifically designed for evaluating LLMs in CO, and the field of application. Finally, we identify future directions for leveraging LLMs in this field.
Rich Feature Construction for the Optimization-Generalization Dilemma
There often is a dilemma between ease of optimization and robust out-of-distribution (OoD) generalization. For instance, many OoD methods rely on penalty terms whose optimization is challenging. They are either too strong to optimize reliably or too weak to achieve their goals. We propose to initialize the networks with a rich representation containing a palette of potentially useful features, ready to be used by even simple models. On the one hand, a rich representation provides a good initialization for the optimizer. On the other hand, it also provides an inductive bias that helps OoD generalization. Such a representation is constructed with the Rich Feature Construction (RFC) algorithm, also called the Bonsai algorithm, which consists of a succession of training episodes. During discovery episodes, we craft a multi-objective optimization criterion and its associated datasets in a manner that prevents the network from using the features constructed in the previous iterations. During synthesis episodes, we use knowledge distillation to force the network to simultaneously represent all the previously discovered features. Initializing the networks with Bonsai representations consistently helps six OoD methods achieve top performance on ColoredMNIST benchmark. The same technique substantially outperforms comparable results on the Wilds Camelyon17 task, eliminates the high result variance that plagues other methods, and makes hyperparameter tuning and model selection more reliable.
Learning to Schedule: A Supervised Learning Framework for Network-Aware Scheduling of Data-Intensive Workloads
Distributed cloud environments hosting data-intensive applications often experience slowdowns due to network congestion, asymmetric bandwidth, and inter-node data shuffling. These factors are typically not captured by traditional host-level metrics like CPU or memory. Scheduling without accounting for these conditions can lead to poor placement decisions, longer data transfers, and suboptimal job performance. We present a network-aware job scheduler that uses supervised learning to predict the completion time of candidate jobs. Our system introduces a prediction-and-ranking mechanism that collects real-time telemetry from all nodes, uses a trained supervised model to estimate job duration per node, and ranks them to select the best placement. We evaluate the scheduler on a geo-distributed Kubernetes cluster deployed on the FABRIC testbed by running network-intensive Spark workloads. Compared to the default Kubernetes scheduler, which makes placement decisions based on current resource availability alone, our proposed supervised scheduler achieved 34-54% higher accuracy in selecting optimal nodes for job placement. The novelty of our work lies in the demonstration of supervised learning for real-time, network-aware job scheduling on a multi-site cluster.
PerfDojo: Automated ML Library Generation for Heterogeneous Architectures
The increasing complexity of machine learning models and the proliferation of diverse hardware architectures (CPUs, GPUs, accelerators) make achieving optimal performance a significant challenge. Heterogeneity in instruction sets, specialized kernel requirements for different data types and model features (e.g., sparsity, quantization), and architecture-specific optimizations complicate performance tuning. Manual optimization is resource-intensive, while existing automatic approaches often rely on complex hardware-specific heuristics and uninterpretable intermediate representations, hindering performance portability. We introduce PerfLLM, a novel automatic optimization methodology leveraging Large Language Models (LLMs) and Reinforcement Learning (RL). Central to this is PerfDojo, an environment framing optimization as an RL game using a human-readable, mathematically-inspired code representation that guarantees semantic validity through transformations. This allows effective optimization without prior hardware knowledge, facilitating both human analysis and RL agent training. We demonstrate PerfLLM's ability to achieve significant performance gains across diverse CPU (x86, Arm, RISC-V) and GPU architectures.
Moreau Envelope for Nonconvex Bi-Level Optimization: A Single-loop and Hessian-free Solution Strategy
This work focuses on addressing two major challenges in the context of large-scale nonconvex Bi-Level Optimization (BLO) problems, which are increasingly applied in machine learning due to their ability to model nested structures. These challenges involve ensuring computational efficiency and providing theoretical guarantees. While recent advances in scalable BLO algorithms have primarily relied on lower-level convexity simplification, our work specifically tackles large-scale BLO problems involving nonconvexity in both the upper and lower levels. We simultaneously address computational and theoretical challenges by introducing an innovative single-loop gradient-based algorithm, utilizing the Moreau envelope-based reformulation, and providing non-asymptotic convergence analysis for general nonconvex BLO problems. Notably, our algorithm relies solely on first-order gradient information, enhancing its practicality and efficiency, especially for large-scale BLO learning tasks. We validate our approach's effectiveness through experiments on various synthetic problems, two typical hyper-parameter learning tasks, and a real-world neural architecture search application, collectively demonstrating its superior performance.
Maximum Optimality Margin: A Unified Approach for Contextual Linear Programming and Inverse Linear Programming
In this paper, we study the predict-then-optimize problem where the output of a machine learning prediction task is used as the input of some downstream optimization problem, say, the objective coefficient vector of a linear program. The problem is also known as predictive analytics or contextual linear programming. The existing approaches largely suffer from either (i) optimization intractability (a non-convex objective function)/statistical inefficiency (a suboptimal generalization bound) or (ii) requiring strong condition(s) such as no constraint or loss calibration. We develop a new approach to the problem called maximum optimality margin which designs the machine learning loss function by the optimality condition of the downstream optimization. The max-margin formulation enjoys both computational efficiency and good theoretical properties for the learning procedure. More importantly, our new approach only needs the observations of the optimal solution in the training data rather than the objective function, which makes it a new and natural approach to the inverse linear programming problem under both contextual and context-free settings; we also analyze the proposed method under both offline and online settings, and demonstrate its performance using numerical experiments.
Are Random Decompositions all we need in High Dimensional Bayesian Optimisation?
Learning decompositions of expensive-to-evaluate black-box functions promises to scale Bayesian optimisation (BO) to high-dimensional problems. However, the success of these techniques depends on finding proper decompositions that accurately represent the black-box. While previous works learn those decompositions based on data, we investigate data-independent decomposition sampling rules in this paper. We find that data-driven learners of decompositions can be easily misled towards local decompositions that do not hold globally across the search space. Then, we formally show that a random tree-based decomposition sampler exhibits favourable theoretical guarantees that effectively trade off maximal information gain and functional mismatch between the actual black-box and its surrogate as provided by the decomposition. Those results motivate the development of the random decomposition upper-confidence bound algorithm (RDUCB) that is straightforward to implement - (almost) plug-and-play - and, surprisingly, yields significant empirical gains compared to the previous state-of-the-art on a comprehensive set of benchmarks. We also confirm the plug-and-play nature of our modelling component by integrating our method with HEBO, showing improved practical gains in the highest dimensional tasks from Bayesmark.
Plum: Prompt Learning using Metaheuristic
Since the emergence of large language models, prompt learning has become a popular method for optimizing and customizing these models. Special prompts, such as Chain-of-Thought, have even revealed previously unknown reasoning capabilities within these models. However, the progress of discovering effective prompts has been slow, driving a desire for general prompt optimization methods. Unfortunately, few existing prompt learning methods satisfy the criteria of being truly "general", i.e., automatic, discrete, black-box, gradient-free, and interpretable all at once. In this paper, we introduce metaheuristics, a branch of discrete non-convex optimization methods with over 100 options, as a promising approach to prompt learning. Within our paradigm, we test six typical methods: hill climbing, simulated annealing, genetic algorithms with/without crossover, tabu search, and harmony search, demonstrating their effectiveness in black-box prompt learning and Chain-of-Thought prompt tuning. Furthermore, we show that these methods can be used to discover more human-understandable prompts that were previously unknown, opening the door to a cornucopia of possibilities in prompt optimization. We release all the codes in https://github.com/research4pan/Plum.
Convex Optimization: Algorithms and Complexity
This monograph presents the main complexity theorems in convex optimization and their corresponding algorithms. Starting from the fundamental theory of black-box optimization, the material progresses towards recent advances in structural optimization and stochastic optimization. Our presentation of black-box optimization, strongly influenced by Nesterov's seminal book and Nemirovski's lecture notes, includes the analysis of cutting plane methods, as well as (accelerated) gradient descent schemes. We also pay special attention to non-Euclidean settings (relevant algorithms include Frank-Wolfe, mirror descent, and dual averaging) and discuss their relevance in machine learning. We provide a gentle introduction to structural optimization with FISTA (to optimize a sum of a smooth and a simple non-smooth term), saddle-point mirror prox (Nemirovski's alternative to Nesterov's smoothing), and a concise description of interior point methods. In stochastic optimization we discuss stochastic gradient descent, mini-batches, random coordinate descent, and sublinear algorithms. We also briefly touch upon convex relaxation of combinatorial problems and the use of randomness to round solutions, as well as random walks based methods.
iHAS: Instance-wise Hierarchical Architecture Search for Deep Learning Recommendation Models
Current recommender systems employ large-sized embedding tables with uniform dimensions for all features, leading to overfitting, high computational cost, and suboptimal generalizing performance. Many techniques aim to solve this issue by feature selection or embedding dimension search. However, these techniques typically select a fixed subset of features or embedding dimensions for all instances and feed all instances into one recommender model without considering heterogeneity between items or users. This paper proposes a novel instance-wise Hierarchical Architecture Search framework, iHAS, which automates neural architecture search at the instance level. Specifically, iHAS incorporates three stages: searching, clustering, and retraining. The searching stage identifies optimal instance-wise embedding dimensions across different field features via carefully designed Bernoulli gates with stochastic selection and regularizers. After obtaining these dimensions, the clustering stage divides samples into distinct groups via a deterministic selection approach of Bernoulli gates. The retraining stage then constructs different recommender models, each one designed with optimal dimensions for the corresponding group. We conduct extensive experiments to evaluate the proposed iHAS on two public benchmark datasets from a real-world recommender system. The experimental results demonstrate the effectiveness of iHAS and its outstanding transferability to widely-used deep recommendation models.
NoLoCo: No-all-reduce Low Communication Training Method for Large Models
Training large language models is generally done via optimization methods on clusters containing tens of thousands of accelerators, communicating over a high-bandwidth interconnect. Scaling up these clusters is expensive and can become impractical, imposing limits on the size of models that can be trained. Several recent studies have proposed training methods that are less communication intensive, avoiding the need for a highly connected compute cluster. These state-of-the-art low communication training methods still employ a synchronization step for model parameters, which, when performed over all model replicas, can become costly on a low-bandwidth network. In this work, we propose a novel optimization method, NoLoCo, that does not explicitly synchronize all model parameters during training and, as a result, does not require any collective communication. NoLoCo implicitly synchronizes model weights via a novel variant of the Nesterov momentum optimizer by partially averaging model weights with a randomly selected other one. We provide both a theoretical convergence analysis for our proposed optimizer as well as empirical results from language model training. We benchmark NoLoCo on a wide range of accelerator counts and model sizes, between 125M to 6.8B parameters. Our method requires significantly less communication overhead than fully sharded data parallel training or even widely used low communication training method, DiLoCo. The synchronization step itself is estimated to be one magnitude faster than the all-reduce used in DiLoCo for few hundred accelerators training over the internet. We also do not have any global blocking communication that reduces accelerator idling time. Compared to DiLoCo, we also observe up to 4% faster convergence rate with wide range of model sizes and accelerator counts.
Fairness in Streaming Submodular Maximization over a Matroid Constraint
Streaming submodular maximization is a natural model for the task of selecting a representative subset from a large-scale dataset. If datapoints have sensitive attributes such as gender or race, it becomes important to enforce fairness to avoid bias and discrimination. This has spurred significant interest in developing fair machine learning algorithms. Recently, such algorithms have been developed for monotone submodular maximization under a cardinality constraint. In this paper, we study the natural generalization of this problem to a matroid constraint. We give streaming algorithms as well as impossibility results that provide trade-offs between efficiency, quality and fairness. We validate our findings empirically on a range of well-known real-world applications: exemplar-based clustering, movie recommendation, and maximum coverage in social networks.
Differentiability and Optimization of Multiparameter Persistent Homology
Real-valued functions on geometric data -- such as node attributes on a graph -- can be optimized using descriptors from persistent homology, allowing the user to incorporate topological terms in the loss function. When optimizing a single real-valued function (the one-parameter setting), there is a canonical choice of descriptor for persistent homology: the barcode. The operation mapping a real-valued function to its barcode is differentiable almost everywhere, and the convergence of gradient descent for losses using barcodes is relatively well understood. When optimizing a vector-valued function (the multiparameter setting), there is no unique choice of descriptor for multiparameter persistent homology, and many distinct descriptors have been proposed. This calls for the development of a general framework for differentiability and optimization that applies to a wide range of multiparameter homological descriptors. In this article, we develop such a framework and show that it encompasses well-known descriptors of different flavors, such as signed barcodes and the multiparameter persistence landscape. We complement the theory with numerical experiments supporting the idea that optimizing multiparameter homological descriptors can lead to improved performances compared to optimizing one-parameter descriptors, even when using the simplest and most efficiently computable multiparameter descriptors.
Revisiting Dynamic Graph Clustering via Matrix Factorization
Dynamic graph clustering aims to detect and track time-varying clusters in dynamic graphs, revealing the evolutionary mechanisms of complex real-world dynamic systems. Matrix factorization-based methods are promising approaches for this task; however, these methods often struggle with scalability and can be time-consuming when applied to large-scale dynamic graphs. Moreover, they tend to lack robustness and are vulnerable to real-world noisy data. To address these issues, we make three key contributions. First, to improve scalability, we propose temporal separated matrix factorization, where a single matrix is divided into multiple smaller matrices for independent factorization, resulting in faster computation. Second, to improve robustness, we introduce bi-clustering regularization, which jointly optimizes graph embedding and clustering, thereby filtering out noisy features from the graph embeddings. Third, to further enhance effectiveness and efficiency, we propose selective embedding updating, where we update only the embeddings of dynamic nodes while the embeddings of static nodes are fixed among different timestamps. Experimental results on six synthetic and five real-world benchmarks demonstrate the scalability, robustness and effectiveness of our proposed method. Source code is available at https://github.com/Clearloveyuan/DyG-MF.
Clustering and Ranking: Diversity-preserved Instruction Selection through Expert-aligned Quality Estimation
With contributions from the open-source community, a vast amount of instruction tuning (IT) data has emerged. Given the significant resource allocation required for training and evaluating models, it is advantageous to have an efficient method for selecting high-quality IT data. However, existing methods for instruction data selection have limitations such as relying on fragile external APIs, being affected by biases in GPT models, or reducing the diversity of the selected instruction dataset. In this paper, we propose an industrial-friendly, expert-aligned and diversity-preserved instruction data selection method: Clustering and Ranking (CaR). CaR employs a two-step process: first, it ranks instruction pairs using a high-accuracy (84.25%) scoring model aligned with expert preferences; second, it preserves dataset diversity through clustering. In our experiment, CaR efficiently selected a mere 1.96% of Alpaca's IT data, yet the resulting AlpaCaR model surpassed Alpaca's performance by an average of 32.1% in GPT-4 evaluations. Moreover, we find that data selecting is a consistent paradigm whether the pre-trained model is more capable or the model parameters scaling up. Our approach employs compact models with 550M parameters and incurs just 11.2% of the financial outlay of current methods, enhancing its industrial deployability.
Training Foundation Models on a Full-Stack AMD Platform: Compute, Networking, and System Design
We report on the first large-scale mixture-of-experts (MoE) pretraining study on pure AMD hardware, utilizing both MI300X GPUs with Pollara interconnect. We distill practical guidance for both systems and model design. On the systems side, we deliver a comprehensive cluster and networking characterization: microbenchmarks for all core collectives (all-reduce, reduce-scatter, all-gather, broadcast) across message sizes and GPU counts on Pollara. To our knowledge, this is the first at this scale. We further provide MI300X microbenchmarks on kernel sizing and memory bandwidth to inform model design. On the modeling side, we introduce and apply MI300X-aware transformer sizing rules for attention and MLP blocks and justify MoE widths that jointly optimize training throughput and inference latency. We describe our training stack in depth, including often-ignored utilities such as fault-tolerance and checkpoint-reshaping, as well as detailed information on our training recipe. We also provide a preview of our model architecture and base model - ZAYA1 (760M active, 8.3B total parameters MoE) - which will be further improved upon in forthcoming papers. ZAYA1-base achieves performance comparable to leading base models such as Qwen3-4B and Gemma3-12B at its scale and larger, and outperforms models including Llama-3-8B and OLMoE across reasoning, mathematics, and coding benchmarks. Together, these results demonstrate that the AMD hardware, network, and software stack are mature and optimized enough for competitive large-scale pretraining.
Automatic Data Curation for Self-Supervised Learning: A Clustering-Based Approach
Self-supervised features are the cornerstone of modern machine learning systems. They are typically pre-trained on data collections whose construction and curation typically require extensive human effort. This manual process has some limitations similar to those encountered in supervised learning, e.g., the crowd-sourced selection of data is costly and time-consuming, preventing scaling the dataset size. In this work, we consider the problem of automatic curation of high-quality datasets for self-supervised pre-training. We posit that such datasets should be large, diverse and balanced, and propose a clustering-based approach for building ones satisfying all these criteria. Our method involves successive and hierarchical applications of k-means on a large and diverse data repository to obtain clusters that distribute uniformly among data concepts, followed by a hierarchical, balanced sampling step from these clusters. Extensive experiments on three different data domains including web-based images, satellite images and text show that features trained on our automatically curated datasets outperform those trained on uncurated data while being on par or better than ones trained on manually curated data.
