1 Vector Quantization using Gaussian Variational Autoencoder Vector quantized variational autoencoder (VQ-VAE) is a discrete auto-encoder that compresses images into discrete tokens. It is difficult to train due to discretization. In this paper, we propose a simple yet effective technique, dubbed Gaussian Quant (GQ), that converts a Gaussian VAE with certain constraint into a VQ-VAE without training. GQ generates random Gaussian noise as a codebook and finds the closest noise to the posterior mean. Theoretically, we prove that when the logarithm of the codebook size exceeds the bits-back coding rate of the Gaussian VAE, a small quantization error is guaranteed. Practically, we propose a heuristic to train Gaussian VAE for effective GQ, named target divergence constraint (TDC). Empirically, we show that GQ outperforms previous VQ-VAEs, such as VQGAN, FSQ, LFQ, and BSQ, on both UNet and ViT architectures. Furthermore, TDC also improves upon previous Gaussian VAE discretization methods, such as TokenBridge. The source code is provided in https://github.com/tongdaxu/VQ-VAE-from-Gaussian-VAE. 7 authors · Dec 6 2
- Lossless Compression with Probabilistic Circuits Despite extensive progress on image generation, common deep generative model architectures are not easily applied to lossless compression. For example, VAEs suffer from a compression cost overhead due to their latent variables. This overhead can only be partially eliminated with elaborate schemes such as bits-back coding, often resulting in poor single-sample compression rates. To overcome such problems, we establish a new class of tractable lossless compression models that permit efficient encoding and decoding: Probabilistic Circuits (PCs). These are a class of neural networks involving |p| computational units that support efficient marginalization over arbitrary subsets of the D feature dimensions, enabling efficient arithmetic coding. We derive efficient encoding and decoding schemes that both have time complexity O (log(D) cdot |p|), where a naive scheme would have linear costs in D and |p|, making the approach highly scalable. Empirically, our PC-based (de)compression algorithm runs 5-40 times faster than neural compression algorithms that achieve similar bitrates. By scaling up the traditional PC structure learning pipeline, we achieve state-of-the-art results on image datasets such as MNIST. Furthermore, PCs can be naturally integrated with existing neural compression algorithms to improve the performance of these base models on natural image datasets. Our results highlight the potential impact that non-standard learning architectures may have on neural data compression. 3 authors · Nov 22, 2021