new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Sample-efficient Learning of Infinite-horizon Average-reward MDPs with General Function Approximation

We study infinite-horizon average-reward Markov decision processes (AMDPs) in the context of general function approximation. Specifically, we propose a novel algorithmic framework named Local-fitted Optimization with OPtimism (LOOP), which incorporates both model-based and value-based incarnations. In particular, LOOP features a novel construction of confidence sets and a low-switching policy updating scheme, which are tailored to the average-reward and function approximation setting. Moreover, for AMDPs, we propose a novel complexity measure -- average-reward generalized eluder coefficient (AGEC) -- which captures the challenge of exploration in AMDPs with general function approximation. Such a complexity measure encompasses almost all previously known tractable AMDP models, such as linear AMDPs and linear mixture AMDPs, and also includes newly identified cases such as kernel AMDPs and AMDPs with Bellman eluder dimensions. Using AGEC, we prove that LOOP achieves a sublinear mathcal{O}(poly(d, sp(V^*)) Tbeta ) regret, where d and beta correspond to AGEC and log-covering number of the hypothesis class respectively, sp(V^*) is the span of the optimal state bias function, T denotes the number of steps, and mathcal{O} (cdot) omits logarithmic factors. When specialized to concrete AMDP models, our regret bounds are comparable to those established by the existing algorithms designed specifically for these special cases. To the best of our knowledge, this paper presents the first comprehensive theoretical framework capable of handling nearly all AMDPs.

  • 3 authors
·
Apr 19, 2024

Multi-Agent Inverse Q-Learning from Demonstrations

When reward functions are hand-designed, deep reinforcement learning algorithms often suffer from reward misspecification, causing them to learn suboptimal policies in terms of the intended task objectives. In the single-agent case, inverse reinforcement learning (IRL) techniques attempt to address this issue by inferring the reward function from expert demonstrations. However, in multi-agent problems, misalignment between the learned and true objectives is exacerbated due to increased environment non-stationarity and variance that scales with multiple agents. As such, in multi-agent general-sum games, multi-agent IRL algorithms have difficulty balancing cooperative and competitive objectives. To address these issues, we propose Multi-Agent Marginal Q-Learning from Demonstrations (MAMQL), a novel sample-efficient framework for multi-agent IRL. For each agent, MAMQL learns a critic marginalized over the other agents' policies, allowing for a well-motivated use of Boltzmann policies in the multi-agent context. We identify a connection between optimal marginalized critics and single-agent soft-Q IRL, allowing us to apply a direct, simple optimization criterion from the single-agent domain. Across our experiments on three different simulated domains, MAMQL significantly outperforms previous multi-agent methods in average reward, sample efficiency, and reward recovery by often more than 2-5x. We make our code available at https://sites.google.com/view/mamql .

  • 5 authors
·
Mar 6

We-Math 2.0: A Versatile MathBook System for Incentivizing Visual Mathematical Reasoning

Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities across various tasks, but still struggle with complex mathematical reasoning. Existing research primarily focuses on dataset construction and method optimization, often overlooking two critical aspects: comprehensive knowledge-driven design and model-centric data space modeling. In this paper, we introduce We-Math 2.0, a unified system that integrates a structured mathematical knowledge system, model-centric data space modeling, and a reinforcement learning (RL)-based training paradigm to comprehensively enhance the mathematical reasoning abilities of MLLMs. The key contributions of We-Math 2.0 are fourfold: (1) MathBook Knowledge System: We construct a five-level hierarchical system encompassing 491 knowledge points and 1,819 fundamental principles. (2) MathBook-Standard & Pro: We develop MathBook-Standard, a dataset that ensures broad conceptual coverage and flexibility through dual expansion. Additionally, we define a three-dimensional difficulty space and generate 7 progressive variants per problem to build MathBook-Pro, a challenging dataset for robust training. (3) MathBook-RL: We propose a two-stage RL framework comprising: (i) Cold-Start Fine-tuning, which aligns the model with knowledge-oriented chain-of-thought reasoning; and (ii) Progressive Alignment RL, leveraging average-reward learning and dynamic data scheduling to achieve progressive alignment across difficulty levels. (4) MathBookEval: We introduce a comprehensive benchmark covering all 491 knowledge points with diverse reasoning step distributions. Experimental results show that MathBook-RL performs competitively with existing baselines on four widely-used benchmarks and achieves strong results on MathBookEval, suggesting promising generalization in mathematical reasoning.

  • 14 authors
·
Aug 14 8

ExCyTIn-Bench: Evaluating LLM agents on Cyber Threat Investigation

We present ExCyTIn-Bench, the first benchmark to Evaluate an LLM agent x on the task of Cyber Threat Investigation through security questions derived from investigation graphs. Real-world security analysts must sift through a large number of heterogeneous alert signals and security logs, follow multi-hop chains of evidence, and compile an incident report. With the developments of LLMs, building LLM-based agents for automatic thread investigation is a promising direction. To assist the development and evaluation of LLM agents, we construct a dataset from a controlled Azure tenant that covers 8 simulated real-world multi-step attacks, 57 log tables from Microsoft Sentinel and related services, and 589 automatically generated questions. We leverage security logs extracted with expert-crafted detection logic to build threat investigation graphs, and then generate questions with LLMs using paired nodes on the graph, taking the start node as background context and the end node as answer. Anchoring each question to these explicit nodes and edges not only provides automatic, explainable ground truth answers but also makes the pipeline reusable and readily extensible to new logs. This also enables the automatic generation of procedural tasks with verifiable rewards, which can be naturally extended to training agents via reinforcement learning. Our comprehensive experiments with different models confirm the difficulty of the task: with the base setting, the average reward across all evaluated models is 0.249, and the best achieved is 0.368, leaving substantial headroom for future research. Code and data are coming soon!

  • 12 authors
·
Jul 14

Asymmetric Graph Error Control with Low Complexity in Causal Bandits

In this paper, the causal bandit problem is investigated, in which the objective is to select an optimal sequence of interventions on nodes in a causal graph. It is assumed that the graph is governed by linear structural equations; it is further assumed that both the causal topology and the distribution of interventions are unknown. By exploiting the causal relationships between the nodes whose signals contribute to the reward, interventions are optimized. First, based on the difference between the two types of graph identification errors (false positives and negatives), a causal graph learning method is proposed, which strongly reduces sample complexity relative to the prior art by learning sub-graphs. Under the assumption of Gaussian exogenous inputs and minimum-mean squared error weight estimation, a new uncertainty bound tailored to the causal bandit problem is derived. This uncertainty bound drives an upper confidence bound based intervention selection to optimize the reward. To cope with non-stationary bandits, a sub-graph change detection mechanism is proposed, with high sample efficiency. Numerical results compare the new methodology to existing schemes and show a substantial performance improvement in both stationary and non-stationary settings. Compared to existing approaches, the proposed scheme takes 67% fewer samples to learn the causal structure and achieves an average reward gain of 85%.

  • 3 authors
·
Aug 20, 2024

One Step is Enough: Multi-Agent Reinforcement Learning based on One-Step Policy Optimization for Order Dispatch on Ride-Sharing Platforms

On-demand ride-sharing platforms face the fundamental challenge of dynamically bundling passengers with diverse origins and destinations and matching them with vehicles in real time, all under significant uncertainty. Recently, MARL has emerged as a promising solution for this problem, leveraging decentralized learning to address the curse of dimensionality caused by the large number of agents in the ride-hailing market and the resulting expansive state and action spaces. However, conventional MARL-based ride-sharing approaches heavily rely on the accurate estimation of Q-values or V-values, which becomes problematic in large-scale, highly uncertain environments. Specifically, most of these approaches adopt an independent paradigm, exacerbating this issue, as each agent treats others as part of the environment, leading to unstable training and substantial estimation bias in value functions. To address these challenges, we propose two novel alternative methods that bypass value function estimation. First, we adapt GRPO to ride-sharing, replacing the PPO baseline with the group average reward to eliminate critic estimation errors and reduce training bias. Second, inspired by GRPO's full utilization of group reward information, we customize the PPO framework for ride-sharing platforms and show that, under a homogeneous fleet, the optimal policy can be trained using only one-step rewards - a method we term One-Step Policy Optimization (OSPO). Experiments on a real-world Manhattan ride-hailing dataset demonstrate that both GRPO and OSPO achieve superior performance across most scenarios, efficiently optimizing pickup times and the number of served orders using simple MLP networks.

  • 2 authors
·
Jul 21

On The Expressivity of Objective-Specification Formalisms in Reinforcement Learning

Most algorithms in reinforcement learning (RL) require that the objective is formalised with a Markovian reward function. However, it is well-known that certain tasks cannot be expressed by means of an objective in the Markov rewards formalism, motivating the study of alternative objective-specification formalisms in RL such as Linear Temporal Logic and Multi-Objective Reinforcement Learning. To date, there has not yet been any thorough analysis of how these formalisms relate to each other in terms of their expressivity. We fill this gap in the existing literature by providing a comprehensive comparison of 17 salient objective-specification formalisms. We place these formalisms in a preorder based on their expressive power, and present this preorder as a Hasse diagram. We find a variety of limitations for the different formalisms, and argue that no formalism is both dominantly expressive and straightforward to optimise with current techniques. For example, we prove that each of Regularised RL, (Outer) Nonlinear Markov Rewards, Reward Machines, Linear Temporal Logic, and Limit Average Rewards can express a task that the others cannot. The significance of our results is twofold. First, we identify important expressivity limitations to consider when specifying objectives for policy optimization. Second, our results highlight the need for future research which adapts reward learning to work with a greater variety of formalisms, since many existing reward learning methods assume that the desired objective takes a Markovian form. Our work contributes towards a more cohesive understanding of the costs and benefits of different RL objective-specification formalisms.

  • 6 authors
·
Oct 18, 2023

ARM-Thinker: Reinforcing Multimodal Generative Reward Models with Agentic Tool Use and Visual Reasoning

Reward models are critical for aligning vision-language systems with human preferences, yet current approaches suffer from hallucination, weak visual grounding, and an inability to use tools for verification, limiting their reliability on complex multimodal reasoning tasks. We present ARM-Thinker, an A}gentic multimodal Reward Model that autonomously invokes external tools (e.g., image cropping, doc page retrieval) to ground judgments in verifiable evidence, replacing static, non-interactive reward scoring. This enables the model to verify fine-grained visual details, cross-reference multi-page evidence, and validate reasoning claims, which are capabilities absent in existing reward models. We train ARM-Thinker with multi-stage reinforcement learning, jointly optimizing tool-calling decisions and judgment accuracy. To evaluate agentic reward modeling, we introduce ARMBench-VL, comprising three benchmarks that assess fine-grained visual grounding (image-level tools), multi-page document understanding (retrieval tools), and instruction following (text-level verification). ARM-Thinker achieves +16.2% average improvement on reward modeling benchmarks, +9.6% on tool-use tasks, and outperforms baselines on multimodal math and logical reasoning benchmarks. Our results demonstrate that agentic capabilities significantly enhance both accuracy and interpretability of reward models.

RewardBench 2: Advancing Reward Model Evaluation

Reward models are used throughout the post-training of language models to capture nuanced signals from preference data and provide a training target for optimization across instruction following, reasoning, safety, and more domains. The community has begun establishing best practices for evaluating reward models, from the development of benchmarks that test capabilities in specific skill areas to others that test agreement with human preferences. At the same time, progress in evaluation has not been mirrored by the effectiveness of reward models in downstream tasks -- simpler direct alignment algorithms are reported to work better in many cases. This paper introduces RewardBench 2, a new multi-skill reward modeling benchmark designed to bring new, challenging data for accuracy-based reward model evaluation -- models score about 20 points on average lower on RewardBench 2 compared to the first RewardBench -- while being highly correlated with downstream performance. Compared to most other benchmarks, RewardBench 2 sources new human prompts instead of existing prompts from downstream evaluations, facilitating more rigorous evaluation practices. In this paper, we describe our benchmark construction process and report how existing models perform on it, while quantifying how performance on the benchmark correlates with downstream use of the models in both inference-time scaling algorithms, like best-of-N sampling, and RLHF training algorithms like proximal policy optimization.

  • 7 authors
·
Jun 2

Taming Overconfidence in LLMs: Reward Calibration in RLHF

Language model calibration refers to the alignment between the confidence of the model and the actual performance of its responses. While previous studies point out the overconfidence phenomenon in Large Language Models (LLMs) and show that LLMs trained with Reinforcement Learning from Human Feedback (RLHF) are overconfident with a more sharpened output probability, in this study, we reveal that RLHF tends to lead models to express verbalized overconfidence in their own responses. We investigate the underlying cause of this overconfidence and demonstrate that reward models used for Proximal Policy Optimization (PPO) exhibit inherent biases towards high-confidence scores regardless of the actual quality of responses. Building upon this insight, we propose two PPO variants: PPO-M: PPO with Calibrated Reward Modeling and PPO-C: PPO with Calibrated Reward Calculation. PPO-M integrates explicit confidence scores in reward model training, which calibrates reward models to better capture the alignment between response quality and verbalized confidence. PPO-C adjusts the reward score during PPO based on the difference between the current reward and the moving average of past rewards. Both PPO-M and PPO-C can be seamlessly integrated into the current PPO pipeline and do not require additional golden labels. We evaluate our methods on both Llama3-8B and Mistral-7B across six diverse datasets including multiple-choice and open-ended generation. Experiment results demonstrate that both of our methods can reduce calibration error and maintain performance comparable to standard PPO. We further show that they do not compromise model capabilities in open-ended conversation settings.

  • 4 authors
·
Oct 13, 2024 2

A Deep Reinforcement Learning Framework for Dynamic Portfolio Optimization: Evidence from China's Stock Market

Artificial intelligence is transforming financial investment decision-making frameworks, with deep reinforcement learning demonstrating substantial potential in robo-advisory applications. This paper addresses the limitations of traditional portfolio optimization methods in dynamic asset weight adjustment through the development of a deep reinforcement learning-based dynamic optimization model grounded in practical trading processes. The research advances two key innovations: first, the introduction of a novel Sharpe ratio reward function engineered for Actor-Critic deep reinforcement learning algorithms, which ensures stable convergence during training while consistently achieving positive average Sharpe ratios; second, the development of an innovative comprehensive approach to portfolio optimization utilizing deep reinforcement learning, which significantly enhances model optimization capability through the integration of random sampling strategies during training with image-based deep neural network architectures for multi-dimensional financial time series data processing, average Sharpe ratio reward functions, and deep reinforcement learning algorithms. The empirical analysis validates the model using randomly selected constituent stocks from the CSI 300 Index, benchmarking against established financial econometric optimization models. Backtesting results demonstrate the model's efficacy in optimizing portfolio allocation and mitigating investment risk, yielding superior comprehensive performance metrics.

  • 3 authors
·
Dec 24, 2024

RewardMap: Tackling Sparse Rewards in Fine-grained Visual Reasoning via Multi-Stage Reinforcement Learning

Fine-grained visual reasoning remains a core challenge for multimodal large language models (MLLMs). The recently introduced ReasonMap highlights this gap by showing that even advanced MLLMs struggle with spatial reasoning in structured and information-rich settings such as transit maps, a task of clear practical and scientific importance. However, standard reinforcement learning (RL) on such tasks is impeded by sparse rewards and unstable optimization. To address this, we first construct ReasonMap-Plus, an extended dataset that introduces dense reward signals through Visual Question Answering (VQA) tasks, enabling effective cold-start training of fine-grained visual understanding skills. Next, we propose RewardMap, a multi-stage RL framework designed to improve both visual understanding and reasoning capabilities of MLLMs. RewardMap incorporates two key designs. First, we introduce a difficulty-aware reward design that incorporates detail rewards, directly tackling the sparse rewards while providing richer supervision. Second, we propose a multi-stage RL scheme that bootstraps training from simple perception to complex reasoning tasks, offering a more effective cold-start strategy than conventional Supervised Fine-Tuning (SFT). Experiments on ReasonMap and ReasonMap-Plus demonstrate that each component of RewardMap contributes to consistent performance gains, while their combination yields the best results. Moreover, models trained with RewardMap achieve an average improvement of 3.47% across 6 benchmarks spanning spatial reasoning, fine-grained visual reasoning, and general tasks beyond transit maps, underscoring enhanced visual understanding and reasoning capabilities.

Beyond Monolithic Rewards: A Hybrid and Multi-Aspect Reward Optimization for MLLM Alignment

Aligning multimodal large language models (MLLMs) with human preferences often relies on single-signal, model-based reward methods. Such monolithic rewards often lack confidence calibration across domain-specific tasks, fail to capture diverse aspects of human preferences, and require extensive data annotation and reward model training. In this work, we propose a hybrid reward modeling framework that integrates complementary reward paradigms: (i) model-based rewards, where a learned reward model predicts scalar or vector scores from synthetic and human feedback, and (ii) rule-based rewards, where domain-specific heuristics provide explicit correctness signals with confidence. Beyond accuracy, we further incorporate multi-aspect rewards to enforce instruction adherence and introduce a generalized length-penalty reward to stabilize training and improve performance. The proposed framework provides a flexible and effective approach to aligning MLLMs through reinforcement learning policy optimization. Our experiments show consistent improvements across different multimodal benchmarks when applying hybrid and multi-aspect reward modeling. Our best performing model in the 3B family achieves an overall average improvement of ~9.5% across general and math reasoning tasks. Focusing specifically on mathematical benchmarks, the model achieves a significant average improvement of ~16%, highlighting its effectiveness in mathematical reasoning and problem solving.

  • 2 authors
·
Oct 6

Robust Reward Modeling via Causal Rubrics

Reward models (RMs) are fundamental to aligning Large Language Models (LLMs) via human feedback, yet they often suffer from reward hacking. They tend to latch on to superficial or spurious attributes, such as response length or formatting, mistaking these cues learned from correlations in training data for the true causal drivers of quality (e.g., factuality, relevance). This occurs because standard training objectives struggle to disentangle these factors, leading to brittle RMs and misaligned policies. We introduce Crome (Causally Robust Reward Modeling), a novel framework grounded in an explicit causal model designed to mitigate reward hacking. Crome employs the following synthetic targeted augmentations during training: (1) Causal Augmentations, which are pairs that differ along specific causal attributes, to enforce sensitivity along each causal attribute individually, and (2) Neutral Augmentations, which are tie-label pairs varying primarily in spurious attributes, to enforce invariance along spurious attributes. Notably, our augmentations are produced without any knowledge of spurious factors, via answer interventions only along causal rubrics, that are identified by querying an oracle LLM. Empirically, Crome significantly outperforms standard baselines on RewardBench, improving average accuracy by up to 5.4% and achieving gains of up to 13.2% and 7.2% in specific categories. The robustness of Crome is further testified by the consistent gains obtained in a Best-of-N inference setting across increasing N, across various benchmarks, including the popular RewardBench (covering chat, chat-hard, safety, and reasoning tasks), the safety-focused WildGuardTest, and the reasoning-specific GSM8k.

  • 12 authors
·
Jun 19 3

Reward-Augmented Data Enhances Direct Preference Alignment of LLMs

Preference alignment in Large Language Models (LLMs) has significantly improved their ability to adhere to human instructions and intentions. However, existing direct alignment algorithms primarily focus on relative preferences and often overlook the qualitative aspects of responses. Striving to maximize the implicit reward gap between the chosen and the slightly inferior rejected responses can cause overfitting and unnecessary unlearning of the high-quality rejected responses. The unawareness of the reward scores also drives the LLM to indiscriminately favor the low-quality chosen responses and fail to generalize to responses with the highest rewards, which are sparse in data. To overcome these shortcomings, our study introduces reward-conditioned LLM policies that discern and learn from the entire spectrum of response quality within the dataset, helping extrapolate to more optimal regions. We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset. This dataset is easily integrated with existing direct alignment algorithms and is applicable to any preference dataset. The experimental results across instruction-following benchmarks including AlpacaEval, MT-Bench, and Arena-Hard-Auto demonstrate that our approach consistently boosts the performance of DPO by a considerable margin across diverse models. Additionally, our method improves the average accuracy on various academic benchmarks. When applying our method to on-policy data, the resulting DPO model achieves SOTA results on AlpacaEval. Through ablation studies, we demonstrate that our method not only maximizes the utility of preference data but also mitigates the issue of unlearning, demonstrating its broad effectiveness beyond mere dataset expansion. Our code is available at https://github.com/shenao-zhang/reward-augmented-preference.

  • 9 authors
·
Oct 10, 2024

Reward Generalization in RLHF: A Topological Perspective

Existing alignment methods share a common topology of information flow, where reward information is collected from humans, modeled with preference learning, and used to tune language models. However, this shared topology has not been systematically characterized, nor have its alternatives been thoroughly explored, leaving the problems of low data efficiency and unreliable generalization unaddressed. As a solution, we introduce a theoretical framework for investigating reward generalization in reinforcement learning from human feedback (RLHF), focusing on the topology of information flow at both macro and micro levels. At the macro level, we portray the RLHF information flow as an autoencoding process over behavior distributions, formalizing the RLHF objective of distributional consistency between human preference and model behavior. At the micro level, we present induced Bayesian networks as a theory of reward generalization in RLHF, introducing fine-grained dataset topologies into generalization bounds. Combining analysis on both levels, we propose reward modeling from tree-structured preference information. It is shown to reduce reward uncertainty by up to Theta(log n/loglog n) times compared to baselines, where n is the dataset size. Validation on three NLP tasks shows that our tree-based reward model achieves an average win rate of 65% against baseline methods, thus improving reward generalization for free via topology design.

  • 10 authors
·
Feb 15, 2024

SPARK: Synergistic Policy And Reward Co-Evolving Framework

Recent Large Language Models (LLMs) and Large Vision-Language Models (LVLMs) increasingly use Reinforcement Learning (RL) for post-pretraining, such as RL with Verifiable Rewards (RLVR) for objective tasks and RL from Human Feedback (RLHF) for subjective tasks. However, RLHF incurs high costs and potential reward-policy mismatch due to reliance on human preferences, while RLVR still wastes supervision by discarding rollouts and correctness signals after each update. To address these challenges, we introduce the Synergistic Policy And Reward Co-Evolving Framework (SPARK), an efficient, on-policy, and stable method that builds on RLVR. Instead of discarding rollouts and correctness data, SPARK recycles this valuable information to simultaneously train the model itself as a generative reward model. This auxiliary training uses a mix of objectives, such as pointwise reward score, pairwise comparison, and evaluation conditioned on further-reflection responses, to teach the model to evaluate and improve its own responses. Our process eliminates the need for a separate reward model and costly human preference data. SPARK creates a positive co-evolving feedback loop: improved reward accuracy yields better policy gradients, which in turn produce higher-quality rollouts that further refine the reward model. Our unified framework supports test-time scaling via self-reflection without external reward models and their associated costs. We show that SPARK achieves significant performance gains on multiple LLM and LVLM models and multiple reasoning, reward models, and general benchmarks. For example, SPARK-VL-7B achieves an average 9.7% gain on 7 reasoning benchmarks, 12.1% on 2 reward benchmarks, and 1.5% on 8 general benchmarks over the baselines, demonstrating robustness and broad generalization.

Tool-Augmented Reward Modeling

Reward modeling (a.k.a., preference modeling) is instrumental for aligning large language models with human preferences, particularly within the context of reinforcement learning from human feedback (RLHF). While conventional reward models (RMs) have exhibited remarkable scalability, they oft struggle with fundamental functionality such as arithmetic computation, code execution, and factual lookup. In this paper, we propose a tool-augmented preference modeling approach, named Themis, to address these limitations by empowering RMs with access to external environments, including calculators and search engines. This approach not only fosters synergy between tool utilization and reward grading but also enhances interpretive capacity and scoring reliability. Our study delves into the integration of external tools into RMs, enabling them to interact with diverse external sources and construct task-specific tool engagement and reasoning traces in an autoregressive manner. We validate our approach across a wide range of domains, incorporating seven distinct external tools. Our experimental results demonstrate a noteworthy overall improvement of 17.7% across eight tasks in preference ranking. Furthermore, our approach outperforms Gopher 280B by 7.3% on TruthfulQA task in zero-shot evaluation. In human evaluations, RLHF trained with Themis attains an average win rate of 32% when compared to baselines across four distinct tasks. Additionally, we provide a comprehensive collection of tool-related RM datasets, incorporating data from seven distinct tool APIs, totaling 15,000 instances. We have made the code, data, and model checkpoints publicly available to facilitate and inspire further research advancements\url{https://github.com/ernie-research/Tool-Augmented-Reward-Model}.

  • 7 authors
·
Oct 2, 2023

Bridging the Semantic Gap: Contrastive Rewards for Multilingual Text-to-SQL

Current Text-to-SQL methods are evaluated and only focused on executable queries, overlooking the semantic alignment challenge -- both in terms of the semantic meaning of the query and the correctness of the execution results. Even execution accuracy itself shows significant drops when moving from English to other languages, with an average decline of 6 percentage points across non-English languages. We address these challenges by presenting a new framework that combines Group Relative Policy Optimization (GRPO) within a multilingual contrastive reward signal to enhance both task efficiency and semantic accuracy in Text-to-SQL systems in cross-lingual scenarios. Our method teaches models to obtain better correspondence between SQL generation and user intent by combining a reward signal based on semantic similarity. On the seven-language MultiSpider dataset, fine-tuning the LLaMA-3-3B model with GRPO improved the execution accuracy up to 87.4 percent (+26 pp over zero-shot) and semantic accuracy up to 52.29 percent (+32.86 pp). Adding our contrastive reward signal in the GRPO framework further improved the average semantic accuracy to 59.14 percent (+6.85 pp, up to +10 pp for Vietnamese). Our experiments showcase that a smaller, parameter-efficient 3B LLaMA model fine-tuned with our contrastive reward signal outperforms a much larger zero-shot 8B LLaMA model, with an uplift of 7.43 pp in execution accuracy (from 81.43 percent on the 8B model to 88.86 percent on the 3B model), and nearly matches its semantic accuracy (59.14 percent vs. 68.57 percent) -- all using just 3,000 reinforcement learning training examples. These results demonstrate how we can improve the performance of Text-to-SQL systems with contrastive rewards for directed semantic alignment, without requiring large-scale training datasets.

  • 6 authors
·
Oct 9

Reward and Guidance through Rubrics: Promoting Exploration to Improve Multi-Domain Reasoning

Recent advances in reinforcement learning (RL) have significantly improved the complex reasoning capabilities of large language models (LLMs). Despite these successes, existing methods mainly focus on single-domain RL (e.g., mathematics) with verifiable rewards (RLVR), and their reliance on purely online RL frameworks restricts the exploration space, thereby limiting reasoning performance. In this paper, we address these limitations by leveraging rubrics to provide both fine-grained reward signals and offline guidance. We propose RGR-GRPO (Reward and Guidance through Rubrics), a rubric-driven RL framework for multi-domain reasoning. RGR-GRPO enables LLMs to receive dense and informative rewards while exploring a larger solution space during GRPO training. Extensive experiments across 14 benchmarks spanning multiple domains demonstrate that RGR-GRPO consistently outperforms RL methods that rely solely on alternative reward schemes or offline guidance. Compared with verifiable online RL baseline, RGR-GRPO achieves average improvements of +7.0%, +5.4%, +8.4%, and +6.6% on mathematics, physics, chemistry, and general reasoning tasks, respectively. Notably, RGR-GRPO maintains stable entropy fluctuations during off-policy training and achieves superior pass@k performance, reflecting sustained exploration and effective breakthrough beyond existing performance bottlenecks.

  • 9 authors
·
Nov 15

SPARK: Stepwise Process-Aware Rewards for Reference-Free Reinforcement Learning

Process reward models (PRMs) that provide dense, step-level feedback have shown promise for reinforcement learning, yet their adoption remains limited by the need for expensive step-level annotations or ground truth references. We propose SPARK: a three-stage framework where in the first stage a generator model produces diverse solutions and a verifier model evaluates them using parallel scaling (self-consistency) and sequential scaling (meta-critique). In the second stage, we use these verification outputs as synthetic training data to fine-tune generative process reward models, which subsequently serve as reward signals during training. We show that aggregating multiple independent verifications at the step level produces training data for process reward models that surpass ground-truth outcome supervision, achieving 67.5 F1 on ProcessBench (a benchmark for identifying erroneous steps in mathematical reasoning) compared to 66.4 for reference-guided training and 61.9 for GPT-4o. In the final stage, we apply our generative PRM with chain-of-thought verification (PRM-CoT) as the reward model in RL experiments on mathematical reasoning, and introduce format constraints to prevent reward hacking. Using Qwen2.5-Math-7B, we achieve 47.4% average accuracy across six mathematical reasoning benchmarks, outperforming ground-truth-based RLVR (43.9%). Our work enables reference-free RL training that exceeds ground-truth methods, opening new possibilities for domains lacking verifiable answers or accessible ground truth.

DRAGON: Distributional Rewards Optimize Diffusion Generative Models

We present Distributional RewArds for Generative OptimizatioN (DRAGON), a versatile framework for fine-tuning media generation models towards a desired outcome. Compared with traditional reinforcement learning with human feedback (RLHF) or pairwise preference approaches such as direct preference optimization (DPO), DRAGON is more flexible. It can optimize reward functions that evaluate either individual examples or distributions of them, making it compatible with a broad spectrum of instance-wise, instance-to-distribution, and distribution-to-distribution rewards. Leveraging this versatility, we construct novel reward functions by selecting an encoder and a set of reference examples to create an exemplar distribution. When cross-modality encoders such as CLAP are used, the reference examples may be of a different modality (e.g., text versus audio). Then, DRAGON gathers online and on-policy generations, scores them to construct a positive demonstration set and a negative set, and leverages the contrast between the two sets to maximize the reward. For evaluation, we fine-tune an audio-domain text-to-music diffusion model with 20 different reward functions, including a custom music aesthetics model, CLAP score, Vendi diversity, and Frechet audio distance (FAD). We further compare instance-wise (per-song) and full-dataset FAD settings while ablating multiple FAD encoders and reference sets. Over all 20 target rewards, DRAGON achieves an 81.45% average win rate. Moreover, reward functions based on exemplar sets indeed enhance generations and are comparable to model-based rewards. With an appropriate exemplar set, DRAGON achieves a 60.95% human-voted music quality win rate without training on human preference annotations. As such, DRAGON exhibits a new approach to designing and optimizing reward functions for improving human-perceived quality. Sound examples at https://ml-dragon.github.io/web.

  • 4 authors
·
Apr 21 2

Reward Forcing: Efficient Streaming Video Generation with Rewarded Distribution Matching Distillation

Efficient streaming video generation is critical for simulating interactive and dynamic worlds. Existing methods distill few-step video diffusion models with sliding window attention, using initial frames as sink tokens to maintain attention performance and reduce error accumulation. However, video frames become overly dependent on these static tokens, resulting in copied initial frames and diminished motion dynamics. To address this, we introduce Reward Forcing, a novel framework with two key designs. First, we propose EMA-Sink, which maintains fixed-size tokens initialized from initial frames and continuously updated by fusing evicted tokens via exponential moving average as they exit the sliding window. Without additional computation cost, EMA-Sink tokens capture both long-term context and recent dynamics, preventing initial frame copying while maintaining long-horizon consistency. Second, to better distill motion dynamics from teacher models, we propose a novel Rewarded Distribution Matching Distillation (Re-DMD). Vanilla distribution matching treats every training sample equally, limiting the model's ability to prioritize dynamic content. Instead, Re-DMD biases the model's output distribution toward high-reward regions by prioritizing samples with greater dynamics rated by a vision-language model. Re-DMD significantly enhances motion quality while preserving data fidelity. We include both quantitative and qualitative experiments to show that Reward Forcing achieves state-of-the-art performance on standard benchmarks while enabling high-quality streaming video generation at 23.1 FPS on a single H100 GPU.

SimPO: Simple Preference Optimization with a Reference-Free Reward

Direct Preference Optimization (DPO) is a widely used offline preference optimization algorithm that reparameterizes reward functions in reinforcement learning from human feedback (RLHF) to enhance simplicity and training stability. In this work, we propose SimPO, a simpler yet more effective approach. The effectiveness of SimPO is attributed to a key design: using the average log probability of a sequence as the implicit reward. This reward formulation better aligns with model generation and eliminates the need for a reference model, making it more compute and memory efficient. Additionally, we introduce a target reward margin to the Bradley-Terry objective to encourage a larger margin between the winning and losing responses, further enhancing the algorithm's performance. We compare SimPO to DPO and its latest variants across various state-of-the-art training setups, including both base and instruction-tuned models like Mistral and Llama3. We evaluated on extensive instruction-following benchmarks, including AlpacaEval 2, MT-Bench, and the recent challenging Arena-Hard benchmark. Our results demonstrate that SimPO consistently and significantly outperforms existing approaches without substantially increasing response length. Specifically, SimPO outperforms DPO by up to 6.4 points on AlpacaEval 2 and by up to 7.5 points on Arena-Hard. Our top-performing model, built on Llama3-8B-Instruct, achieves a remarkable 44.7 length-controlled win rate on AlpacaEval 2 -- surpassing Claude 3 Opus on the leaderboard, and a 33.8 win rate on Arena-Hard -- making it the strongest 8B open-source model.

  • 3 authors
·
May 23, 2024 1

The Trickle-down Impact of Reward (In-)consistency on RLHF

Standard practice within Reinforcement Learning from Human Feedback (RLHF) involves optimizing against a Reward Model (RM), which itself is trained to reflect human preferences for desirable generations. A notable subject that is understudied is the (in-)consistency of RMs -- whether they can recognize the semantic changes to different prompts and appropriately adapt their reward assignments -- and their impact on the downstream RLHF model. In this paper, we visit a series of research questions relevant to RM inconsistency: (1) How can we measure the consistency of reward models? (2) How consistent are the existing RMs and how can we improve them? (3) In what ways does reward inconsistency influence the chatbots resulting from the RLHF model training? We propose Contrast Instructions -- a benchmarking strategy for the consistency of RM. Each example in Contrast Instructions features a pair of lexically similar instructions with different ground truth responses. A consistent RM is expected to rank the corresponding instruction and response higher than other combinations. We observe that current RMs trained with the standard ranking objective fail miserably on Contrast Instructions compared to average humans. To show that RM consistency can be improved efficiently without using extra training budget, we propose two techniques ConvexDA and RewardFusion, which enhance reward consistency through extrapolation during the RM training and inference stage, respectively. We show that RLHF models trained with a more consistent RM yield more useful responses, suggesting that reward inconsistency exhibits a trickle-down effect on the downstream RLHF process.

  • 8 authors
·
Sep 28, 2023

CARINOX: Inference-time Scaling with Category-Aware Reward-based Initial Noise Optimization and Exploration

Text-to-image diffusion models, such as Stable Diffusion, can produce high-quality and diverse images but often fail to achieve compositional alignment, particularly when prompts describe complex object relationships, attributes, or spatial arrangements. Recent inference-time approaches address this by optimizing or exploring the initial noise under the guidance of reward functions that score text-image alignment without requiring model fine-tuning. While promising, each strategy has intrinsic limitations when used alone: optimization can stall due to poor initialization or unfavorable search trajectories, whereas exploration may require a prohibitively large number of samples to locate a satisfactory output. Our analysis further shows that neither single reward metrics nor ad-hoc combinations reliably capture all aspects of compositionality, leading to weak or inconsistent guidance. To overcome these challenges, we present Category-Aware Reward-based Initial Noise Optimization and Exploration (CARINOX), a unified framework that combines noise optimization and exploration with a principled reward selection procedure grounded in correlation with human judgments. Evaluations on two complementary benchmarks covering diverse compositional challenges show that CARINOX raises average alignment scores by +16% on T2I-CompBench++ and +11% on the HRS benchmark, consistently outperforming state-of-the-art optimization and exploration-based methods across all major categories, while preserving image quality and diversity. The project page is available at https://amirkasaei.com/carinox/{this URL}.

  • 8 authors
·
Sep 22

DeepSearch: Overcome the Bottleneck of Reinforcement Learning with Verifiable Rewards via Monte Carlo Tree Search

Although RLVR has become an essential component for developing advanced reasoning skills in LLMs, contemporary studies have documented training plateaus that emerge following thousands of optimization steps, demonstrating notable decreases in performance gains despite increased computational investment. This limitation stems from the sparse exploration patterns inherent in current RLVR practices, where models rely on limited rollouts that often miss critical reasoning paths and fail to provide systematic coverage of the solution space. We present DeepSearch, a framework that integrates Monte Carlo Tree Search directly into RLVR training. In contrast to existing methods that rely on tree search only at inference, DeepSearch embeds structured search into the training loop, enabling systematic exploration and fine-grained credit assignment across reasoning steps. Through training-time exploration, DeepSearch addresses the fundamental bottleneck of insufficient exploration, which leads to diminishing performance improvements over prolonged training steps. Our contributions include: (1) a global frontier selection strategy that prioritizes promising nodes across the search tree, (2) selection with entropy-based guidance that identifies confident paths for supervision, and (3) adaptive replay buffer training with solution caching for efficiency. Experiments on mathematical reasoning benchmarks show that DeepSearch achieves 62.95% average accuracy and establishes a new state-of-the-art for 1.5B reasoning models - using 5.7x fewer GPU hours than extended training approaches. These results highlight the importance of strategic exploration over brute-force scaling and demonstrate the promise of algorithmic innovation for advancing RLVR methodologies. DeepSearch establishes a new direction for scaling reasoning capabilities through systematic search rather than prolonged computation.

stanfordnlp Stanford NLP
·
Sep 29 3

Process Reinforcement through Implicit Rewards

Dense process rewards have proven a more effective alternative to the sparse outcome-level rewards in the inference-time scaling of large language models (LLMs), particularly in tasks requiring complex multi-step reasoning. While dense rewards also offer an appealing choice for the reinforcement learning (RL) of LLMs since their fine-grained rewards have the potential to address some inherent issues of outcome rewards, such as training efficiency and credit assignment, this potential remains largely unrealized. This can be primarily attributed to the challenges of training process reward models (PRMs) online, where collecting high-quality process labels is prohibitively expensive, making them particularly vulnerable to reward hacking. To address these challenges, we propose PRIME (Process Reinforcement through IMplicit rEwards), which enables online PRM updates using only policy rollouts and outcome labels through implict process rewards. PRIME combines well with various advantage functions and forgoes the dedicated reward model training phrase that existing approaches require, substantially reducing the development overhead. We demonstrate PRIME's effectiveness on competitional math and coding. Starting from Qwen2.5-Math-7B-Base, PRIME achieves a 15.1% average improvement across several key reasoning benchmarks over the SFT model. Notably, our resulting model, Eurus-2-7B-PRIME, surpasses Qwen2.5-Math-7B-Instruct on seven reasoning benchmarks with 10% of its training data.

Eureka: Human-Level Reward Design via Coding Large Language Models

Large Language Models (LLMs) have excelled as high-level semantic planners for sequential decision-making tasks. However, harnessing them to learn complex low-level manipulation tasks, such as dexterous pen spinning, remains an open problem. We bridge this fundamental gap and present Eureka, a human-level reward design algorithm powered by LLMs. Eureka exploits the remarkable zero-shot generation, code-writing, and in-context improvement capabilities of state-of-the-art LLMs, such as GPT-4, to perform evolutionary optimization over reward code. The resulting rewards can then be used to acquire complex skills via reinforcement learning. Without any task-specific prompting or pre-defined reward templates, Eureka generates reward functions that outperform expert human-engineered rewards. In a diverse suite of 29 open-source RL environments that include 10 distinct robot morphologies, Eureka outperforms human experts on 83% of the tasks, leading to an average normalized improvement of 52%. The generality of Eureka also enables a new gradient-free in-context learning approach to reinforcement learning from human feedback (RLHF), readily incorporating human inputs to improve the quality and the safety of the generated rewards without model updating. Finally, using Eureka rewards in a curriculum learning setting, we demonstrate for the first time, a simulated Shadow Hand capable of performing pen spinning tricks, adeptly manipulating a pen in circles at rapid speed.

  • 9 authors
·
Oct 19, 2023 3

Cooper: Co-Optimizing Policy and Reward Models in Reinforcement Learning for Large Language Models

Large language models (LLMs) have demonstrated remarkable performance in reasoning tasks, where reinforcement learning (RL) serves as a key algorithm for enhancing their reasoning capabilities. Currently, there are two mainstream reward paradigms: model-based rewards and rule-based rewards. However, both approaches suffer from limitations: rule-based rewards lack robustness, while model-based rewards are vulnerable to reward hacking. To address these issues, we propose Cooper(Co-optimizing Policy Model and Reward Model), a RL framework that jointly optimizes both the policy model and the reward model. Cooper leverages the high precision of rule-based rewards when identifying correct responses, and dynamically constructs and selects positive-negative sample pairs for continued training the reward model. This design enhances robustness and mitigates the risk of reward hacking. To further support Cooper, we introduce a hybrid annotation strategy that efficiently and accurately generates training data for the reward model. We also propose a reference-based reward modeling paradigm, where the reward model takes a reference answer as input. Based on this design, we train a reward model named VerifyRM, which achieves higher accuracy on VerifyBench compared to other models of the same size. We conduct reinforcement learning using both VerifyRM and Cooper. Our experiments show that Cooper not only alleviates reward hacking but also improves end-to-end RL performance, for instance, achieving a 0.54% gain in average accuracy on Qwen2.5-1.5B-Instruct. Our findings demonstrate that dynamically updating reward model is an effective way to combat reward hacking, providing a reference for better integrating reward models into RL.

  • 8 authors
·
Aug 7 2

GroundedPRM: Tree-Guided and Fidelity-Aware Process Reward Modeling for Step-Level Reasoning

Process Reward Models (PRMs) aim to improve multi-step reasoning in Large Language Models (LLMs) by supervising intermediate steps and identifying errors. However, building effective PRMs remains challenging due to the lack of scalable, high-quality annotations. Existing approaches rely on costly human labeling, LLM-based self-evaluation that is prone to hallucination, or Monte Carlo (MC) estimation, which infers step quality solely from rollout outcomes and often introduces noisy, misaligned supervision due to credit misattribution. These issues result in three core limitations: noisy rewards, low factual fidelity, and misalignment with step-level reasoning objectives. To address these challenges, we introduce GroundedPRM, a tree-guided and fidelity-aware framework for automatic process supervision. To reduce reward noise and enable fine-grained credit assignment, we construct structured reasoning paths via Monte Carlo Tree Search (MCTS). To eliminate hallucinated supervision, we validate each intermediate step using an external tool, providing execution-grounded correctness signals. To combine both step-level validation and global outcome assessment, we design a hybrid reward aggregation mechanism that fuses tool-based verification with MCTS-derived feedback. Finally, we format the reward signal into a rationale-enhanced, generative structure to promote interpretability and compatibility with instruction-tuned LLMs. GroundedPRM is trained on only 40K automatically labeled samples, amounting to just 10% of the data used by the best-performing PRM trained with auto-labeled supervision. Nevertheless, it achieves up to a 26% relative improvement in average performance on ProcessBench. When used for reward-guided greedy search, GroundedPRM outperforms even PRMs trained with human-labeled supervision, offering a scalable and verifiable path toward high-quality process-level reasoning.

URPO: A Unified Reward & Policy Optimization Framework for Large Language Models

Large-scale alignment pipelines typically pair a policy model with a separately trained reward model whose parameters remain frozen during reinforcement learning (RL). This separation creates a complex, resource-intensive pipeline and suffers from a performance ceiling due to a static reward signal. We propose a novel framework, Unified Reward & Policy Optimization (URPO), that unifies instruction-following ("player") and reward modeling ("referee") within a single model and a single training phase. Our method recasts all alignment data-including preference pairs, verifiable reasoning, and open-ended instructions-into a unified generative format optimized by a single Group-Relative Policy Optimization (GRPO) loop. This enables the model to learn from ground-truth preferences and verifiable logic while simultaneously generating its own rewards for open-ended tasks. Experiments on the Qwen2.5-7B model demonstrate URPO's superiority. Our unified model significantly outperforms a strong baseline using a separate generative reward model, boosting the instruction-following score on AlpacaEval from 42.24 to 44.84 and the composite reasoning average from 32.66 to 35.66. Furthermore, URPO cultivates a superior internal evaluator as a byproduct of training, achieving a RewardBench score of 85.15 and surpassing the dedicated reward model it replaces (83.55). By eliminating the need for a separate reward model and fostering a co-evolutionary dynamic between generation and evaluation, URPO presents a simpler, more efficient, and more effective path towards robustly aligned language models.

  • 4 authors
·
Jul 23

Perceptual Decoupling for Scalable Multi-modal Reasoning via Reward-Optimized Captioning

Recent advances in slow-thinking language models (e.g., OpenAI-o1 and DeepSeek-R1) have demonstrated remarkable abilities in complex reasoning tasks by emulating human-like reflective cognition. However, extending such capabilities to multi-modal large language models (MLLMs) remains challenging due to the high cost of retraining vision-language alignments when upgrading the underlying reasoner LLMs. A straightforward solution is to decouple perception from reasoning, i.e., converting visual inputs into language representations (e.g., captions) that are then passed to a powerful text-only reasoner. However, this decoupling introduces a critical challenge: the visual extractor must generate descriptions that are both faithful to the image and informative enough to support accurate downstream reasoning. To address this, we propose Reasoning-Aligned Perceptual Decoupling via Caption Reward Optimization (RACRO) - a reasoning-guided reinforcement learning strategy that aligns the extractor's captioning behavior with the reasoning objective. By closing the perception-reasoning loop via reward-based optimization, RACRO significantly enhances visual grounding and extracts reasoning-optimized representations. Experiments on multi-modal math and science benchmarks show that the proposed RACRO method achieves state-of-the-art average performance while enabling superior scalability and plug-and-play adaptation to more advanced reasoning LLMs without the necessity for costly multi-modal re-alignment.

  • 8 authors
·
Jun 4 1

Mixed-R1: Unified Reward Perspective For Reasoning Capability in Multimodal Large Language Models

Recent works on large language models (LLMs) have successfully demonstrated the emergence of reasoning capabilities via reinforcement learning (RL). Although recent efforts leverage group relative policy optimization (GRPO) for MLLMs post-training, they constantly explore one specific aspect, such as grounding tasks, math problems, or chart analysis. There are no works that can leverage multi-source MLLM tasks for stable reinforcement learning. In this work, we present a unified perspective to solve this problem. We present Mixed-R1, a unified yet straightforward framework that contains a mixed reward function design (Mixed-Reward) and a mixed post-training dataset (Mixed-45K). We first design a data engine to select high-quality examples to build the Mixed-45K post-training dataset. Then, we present a Mixed-Reward design, which contains various reward functions for various MLLM tasks. In particular, it has four different reward functions: matching reward for binary answer or multiple-choice problems, chart reward for chart-aware datasets, IoU reward for grounding problems, and open-ended reward for long-form text responses such as caption datasets. To handle the various long-form text content, we propose a new open-ended reward named Bidirectional Max-Average Similarity (BMAS) by leveraging tokenizer embedding matching between the generated response and the ground truth. Extensive experiments show the effectiveness of our proposed method on various MLLMs, including Qwen2.5-VL and Intern-VL on various sizes. Our dataset and model are available at https://github.com/xushilin1/mixed-r1.

ByteDance ByteDance
·
May 29

Sequence to Sequence Reward Modeling: Improving RLHF by Language Feedback

Aligning the behavior of Large language models (LLMs) with human intentions and values remains a critical challenge. Reinforcement learning from human feedback (RLHF) aligns LLMs by training a reward model (RM) on human preferences and fine-tuning the LLMs to maximize RM feedback. Despite its effectiveness and popularity, RLHF is prone to biased local optimization. It means RM fails to provide feedback that accurately aligns with human preference, causing LLMs to explore unexpected generalizations, and failing to achieve alignment objectives. To mitigate this issue, we propose a novel sequence-to-sequence (seq2seq) reward modeling method. Its key insight is that learning from language feedback rather than scalar feedback improves RLHF without additional annotations. We replaced the reward modeling target from binary maximum likelihood estimation (MLE) with sequence MLE. This method enables richer and fine-grained language feedback without additional annotations, models, or training stages. Our experiments demonstrated its effectiveness, specifically, reducing the refusal-to-response paradigm in single-turn safety dialogues and the long-response bias in text summarization tasks. We provide further analysis that seq2seq RM improves RLHF performance across 2B and 7B LLMs on 3 NLP tasks, achieving an average win rate of 76.9\%. We further show that seq2seq RM can still improve the performance of RLHF under out-of-distribution prompts.

  • 4 authors
·
Aug 30, 2024

Low-probability Tokens Sustain Exploration in Reinforcement Learning with Verifiable Reward

Reinforcement Learning with Verifiable Rewards (RLVR) has propelled Large Language Models in complex reasoning, yet its scalability is often hindered by a training bottleneck where performance plateaus as policy entropy collapses, signaling a loss of exploration. Previous methods typically address this by maintaining high policy entropy, yet the precise mechanisms that govern meaningful exploration have remained underexplored. Our analysis suggests that an unselective focus on entropy risks amplifying irrelevant tokens and destabilizing training. This paper investigates the exploration dynamics within RLVR and identifies a key issue: the gradual elimination of valuable low-probability exploratory tokens, which we term \textit{reasoning sparks}. We find that while abundant in pre-trained models, these sparks are systematically extinguished during RLVR due to over-penalization, leading to a degeneracy in exploration. To address this, we introduce Low-probability Regularization (Lp-Reg). Its core mechanism regularizes the policy towards a heuristic proxy distribution. This proxy is constructed by filtering out presumed noise tokens and re-normalizing the distribution over the remaining candidates. The result is a less-noisy proxy where the probability of reasoning sparks is amplified, which then serves as a soft regularization target to shield these valuable tokens from elimination via KL divergence. Experiments show that Lp-Reg enables stable on-policy training for around 1,000 steps, a regime where baseline entropy-control methods collapse. This sustained exploration leads to state-of-the-art performance, achieving a 60.17% average accuracy on five math benchmarks, an improvement of 2.66% over prior methods. Code is available at https://github.com/CarlanLark/Lp-Reg.

tencent Tencent
·
Oct 3 2

Pre-Trained Policy Discriminators are General Reward Models

We offer a novel perspective on reward modeling by formulating it as a policy discriminator, which quantifies the difference between two policies to generate a reward signal, guiding the training policy towards a target policy with desired behaviors. Based on this conceptual insight, we propose a scalable pre-training method named Policy Discriminative Learning (POLAR), which trains a reward model (RM) to discern identical policies and discriminate different ones. Unlike traditional reward modeling methods relying on absolute preferences, POLAR captures the relative difference between one policy and an arbitrary target policy, which is a scalable, high-level optimization objective suitable for modeling generic ranking relationships. Leveraging the POLAR pre-training paradigm, we present a series of RMs with parameter scales from 1.8B to 7B. Empirical results show that POLAR substantially outperforms traditional non-pre-trained methods, significantly enhancing RM performance. For instance, POLAR-7B could improve preference accuracy from 54.8% to 81.0% on STEM tasks and from 57.9% to 85.5% on creative writing tasks compared to SOTA baselines. POLAR also shows robust generalization capabilities in RLHF using Reinforcement Fine-tuning (RFT), providing reliable reward signals and markedly enhancing policy performance--improving LLaMa3.1-8B from an average of 47.36% to 56.33% and Qwen2.5-32B from 64.49% to 70.47% on 20 benchmarks. Moreover, scaling experiments reveal a clear power-law relationship between computation and performance, supported by linear correlation coefficients approaching 0.99. The impressive performance, strong generalization, and scaling properties suggest that POLAR is a promising direction for developing general and strong reward models.

ViLBench: A Suite for Vision-Language Process Reward Modeling

Process-supervised reward models serve as a fine-grained function that provides detailed step-wise feedback to model responses, facilitating effective selection of reasoning trajectories for complex tasks. Despite its advantages, evaluation on PRMs remains less explored, especially in the multimodal domain. To address this gap, this paper first benchmarks current vision large language models (VLLMs) as two types of reward models: output reward models (ORMs) and process reward models (PRMs) on multiple vision-language benchmarks, which reveal that neither ORM nor PRM consistently outperforms across all tasks, and superior VLLMs do not necessarily yield better rewarding performance. To further advance evaluation, we introduce ViLBench, a vision-language benchmark designed to require intensive process reward signals. Notably, OpenAI's GPT-4o with Chain-of-Thought (CoT) achieves only 27.3% accuracy, indicating the benchmark's challenge for current VLLMs. Lastly, we preliminarily showcase a promising pathway towards bridging the gap between general VLLMs and reward models -- by collecting 73.6K vision-language process reward data using an enhanced tree-search algorithm, our 3B model is able to achieve an average improvement of 3.3% over standard CoT and up to 2.5% compared to its untrained counterpart on ViLBench by selecting OpenAI o1's generations. We release the implementations at https://ucsc-vlaa.github.io/ViLBench with our code, model, and data.

  • 6 authors
·
Mar 26 2

Masked-and-Reordered Self-Supervision for Reinforcement Learning from Verifiable Rewards

Test-time scaling has been shown to substantially improve large language models' (LLMs) mathematical reasoning. However, for a large portion of mathematical corpora, especially theorem proving, RLVR's scalability is limited: intermediate reasoning is crucial, while final answers are difficult to directly and reliably verify. Meanwhile, token-level SFT often degenerates into rote memorization rather than inducing longer chains of thought. Inspired by BERT's self-supervised tasks, we propose MR-RLVR (Masked-and-Reordered RLVR), which constructs process-level self-supervised rewards via "masked-then-fill" and "step reordering" to extract learnable signals from intermediate reasoning. Our training pipeline comprises two stages: we first perform self-supervised training on sampled mathematical calculation and proof data; we then conduct RLVR fine-tuning on mathematical calculation datasets where only outcomes are verifiable. We implement MR-RLVR on Qwen2.5-3B and DeepSeek-R1-Distill-Qwen-1.5B, and evaluate on AIME24, AIME25, AMC23, and MATH500. Under a fixed sampling and decoding budget, MR-RLVR achieves average relative gains over the original RLVR of +9.86% Pass@1, +5.27% Pass@5, and +4.00% Pass@8. These results indicate that incorporating process-aware self-supervised signals can effectively enhance RLVR's scalability and performance in only outcome-verifiable settings.

  • 3 authors
·
Nov 21

Stop Summation: Min-Form Credit Assignment Is All Process Reward Model Needs for Reasoning

Process reward models (PRMs) have proven effective for test-time scaling of Large Language Models (LLMs) on challenging reasoning tasks. However, reward hacking issues with PRMs limit their successful application in reinforcement fine-tuning. In this paper, we identify the main cause of PRM-induced reward hacking: the canonical summation-form credit assignment in reinforcement learning (RL), which defines the value as cumulative gamma-decayed future rewards, easily induces LLMs to hack steps with high rewards. To address this, we propose PURE: Process sUpervised Reinforcement lEarning. The key innovation of PURE is a min-form credit assignment that formulates the value function as the minimum of future rewards. This method significantly alleviates reward hacking by limiting the value function range and distributing advantages more reasonably. Through extensive experiments on 3 base models, we show that PRM-based approaches enabling min-form credit assignment achieve comparable reasoning performance to verifiable reward-based methods within only 30% steps. In contrast, the canonical sum-form credit assignment collapses training even at the beginning! Additionally, when we supplement PRM-based fine-tuning with just 10% verifiable rewards, we further alleviate reward hacking and produce the best fine-tuned model based on Qwen2.5-Math-7B in our experiments, achieving 82.5% accuracy on AMC23 and 53.3% average accuracy across 5 benchmarks. Moreover, we summarize the observed reward hacking cases and analyze the causes of training collapse. Code and models are available at https://github.com/CJReinforce/PURE.

  • 8 authors
·
Apr 21

Lookahead Tree-Based Rollouts for Enhanced Trajectory-Level Exploration in Reinforcement Learning with Verifiable Rewards

Reinforcement Learning with Verifiable Rewards (RLVR), particularly with algorithms like Group Relative Policy Optimization (GRPO), has proven highly effective in enhancing the reasoning capabilities of large language models. However, a critical bottleneck in current pipelines lies in the limited diversity of sampled trajectories during group rollouts. Homogeneous trajectories and their associated rewards would diminish the return signals for policy updates, thereby hindering effective policy learning. This lack of diversity stems primarily from token-level stochastic sampling, where local variations are likely to collapse into near-identical reasoning paths. To address this limitation, we propose Lookahead Tree-Based Rollouts (LATR), a novel rollout strategy designed to explicitly promotes trajectory-level diversity by enforcing branching into different candidate tokens likely to yield distinct continuations. Specifically, LATR iteratively operates in three stages: (1) branching at high-uncertainty generation steps, (2) performing lookahead simulation for each new branch, and (3) pruning branches that exhibits prolonged similarity during simulation. Compared with stochastic Sampling, LATR accelerates policy learning by 131% on average and improves final pass@1 performance by 4.2% on both GRPO and Dynamic sAmpling Policy Optimization (DAPO) algorithms across different reasoning tasks. Our code and data are publicly available at https://github.com/starreeze/latr.

  • 5 authors
·
Oct 28

ReinFlow: Fine-tuning Flow Matching Policy with Online Reinforcement Learning

We propose ReinFlow, a simple yet effective online reinforcement learning (RL) framework that fine-tunes a family of flow matching policies for continuous robotic control. Derived from rigorous RL theory, ReinFlow injects learnable noise into a flow policy's deterministic path, converting the flow into a discrete-time Markov Process for exact and straightforward likelihood computation. This conversion facilitates exploration and ensures training stability, enabling ReinFlow to fine-tune diverse flow model variants, including Rectified Flow [35] and Shortcut Models [19], particularly at very few or even one denoising step. We benchmark ReinFlow in representative locomotion and manipulation tasks, including long-horizon planning with visual input and sparse reward. The episode reward of Rectified Flow policies obtained an average net growth of 135.36% after fine-tuning in challenging legged locomotion tasks while saving denoising steps and 82.63% of wall time compared to state-of-the-art diffusion RL fine-tuning method DPPO [43]. The success rate of the Shortcut Model policies in state and visual manipulation tasks achieved an average net increase of 40.34% after fine-tuning with ReinFlow at four or even one denoising step, whose performance is comparable to fine-tuned DDIM policies while saving computation time for an average of 23.20%. Project webpage: https://reinflow.github.io/

  • 4 authors
·
May 28

Learning Human-Perceived Fakeness in AI-Generated Videos via Multimodal LLMs

Can humans identify AI-generated (fake) videos and provide grounded reasons? While video generation models have advanced rapidly, a critical dimension -- whether humans can detect deepfake traces within a generated video, i.e., spatiotemporal grounded visual artifacts that reveal a video as machine generated -- has been largely overlooked. We introduce DeeptraceReward, the first fine-grained, spatially- and temporally- aware benchmark that annotates human-perceived fake traces for video generation reward. The dataset comprises 4.3K detailed annotations across 3.3K high-quality generated videos. Each annotation provides a natural-language explanation, pinpoints a bounding-box region containing the perceived trace, and marks precise onset and offset timestamps. We consolidate these annotations into 9 major categories of deepfake traces that lead humans to identify a video as AI-generated, and train multimodal language models (LMs) as reward models to mimic human judgments and localizations. On DeeptraceReward, our 7B reward model outperforms GPT-5 by 34.7% on average across fake clue identification, grounding, and explanation. Interestingly, we observe a consistent difficulty gradient: binary fake v.s. real classification is substantially easier than fine-grained deepfake trace detection; within the latter, performance degrades from natural language explanations (easiest), to spatial grounding, to temporal labeling (hardest). By foregrounding human-perceived deepfake traces, DeeptraceReward provides a rigorous testbed and training signal for socially aware and trustworthy video generation.

AHA: A Vision-Language-Model for Detecting and Reasoning Over Failures in Robotic Manipulation

Robotic manipulation in open-world settings requires not only task execution but also the ability to detect and learn from failures. While recent advances in vision-language models (VLMs) and large language models (LLMs) have improved robots' spatial reasoning and problem-solving abilities, they still struggle with failure recognition, limiting their real-world applicability. We introduce AHA, an open-source VLM designed to detect and reason about failures in robotic manipulation using natural language. By framing failure detection as a free-form reasoning task, AHA identifies failures and provides detailed, adaptable explanations across different robots, tasks, and environments. We fine-tuned AHA using FailGen, a scalable framework that generates the first large-scale dataset of robotic failure trajectories, the AHA dataset. FailGen achieves this by procedurally perturbing successful demonstrations from simulation. Despite being trained solely on the AHA dataset, AHA generalizes effectively to real-world failure datasets, robotic systems, and unseen tasks. It surpasses the second-best model (GPT-4o in-context learning) by 10.3% and exceeds the average performance of six compared models including five state-of-the-art VLMs by 35.3% across multiple metrics and datasets. We integrate AHA into three manipulation frameworks that utilize LLMs/VLMs for reinforcement learning, task and motion planning, and zero-shot trajectory generation. AHA's failure feedback enhances these policies' performances by refining dense reward functions, optimizing task planning, and improving sub-task verification, boosting task success rates by an average of 21.4% across all three tasks compared to GPT-4 models.

  • 10 authors
·
Sep 30, 2024

Personalizing Reinforcement Learning from Human Feedback with Variational Preference Learning

Reinforcement Learning from Human Feedback (RLHF) is a powerful paradigm for aligning foundation models to human values and preferences. However, current RLHF techniques cannot account for the naturally occurring differences in individual human preferences across a diverse population. When these differences arise, traditional RLHF frameworks simply average over them, leading to inaccurate rewards and poor performance for individual subgroups. To address the need for pluralistic alignment, we develop a class of multimodal RLHF methods. Our proposed techniques are based on a latent variable formulation - inferring a novel user-specific latent and learning reward models and policies conditioned on this latent without additional user-specific data. While conceptually simple, we show that in practice, this reward modeling requires careful algorithmic considerations around model architecture and reward scaling. To empirically validate our proposed technique, we first show that it can provide a way to combat underspecification in simulated control problems, inferring and optimizing user-specific reward functions. Next, we conduct experiments on pluralistic language datasets representing diverse user preferences and demonstrate improved reward function accuracy. We additionally show the benefits of this probabilistic framework in terms of measuring uncertainty, and actively learning user preferences. This work enables learning from diverse populations of users with divergent preferences, an important challenge that naturally occurs in problems from robot learning to foundation model alignment.

  • 5 authors
·
Aug 19, 2024

VideoScore2: Think before You Score in Generative Video Evaluation

Recent advances in text-to-video generation have produced increasingly realistic and diverse content, yet evaluating such videos remains a fundamental challenge due to their multi-faceted nature encompassing visual quality, semantic alignment, and physical consistency. Existing evaluators and reward models are limited to single opaque scores, lack interpretability, or provide only coarse analysis, making them insufficient for capturing the comprehensive nature of video quality assessment. We present VideoScore2, a multi-dimensional, interpretable, and human-aligned framework that explicitly evaluates visual quality, text-to-video alignment, and physical/common-sense consistency while producing detailed chain-of-thought rationales. Our model is trained on a large-scale dataset VideoFeedback2 containing 27,168 human-annotated videos with both scores and reasoning traces across three dimensions, using a two-stage pipeline of supervised fine-tuning followed by reinforcement learning with Group Relative Policy Optimization (GRPO) to enhance analytical robustness. Extensive experiments demonstrate that VideoScore2 achieves superior performance with 44.35 (+5.94) accuracy on our in-domain benchmark VideoScore-Bench-v2 and 50.37 (+4.32) average performance across four out-of-domain benchmarks (VideoGenReward-Bench, VideoPhy2, etc), while providing interpretable assessments that bridge the gap between evaluation and controllable generation through effective reward modeling for Best-of-N sampling. Project Page: https://tiger-ai-lab.github.io/VideoScore2/

TIGER-Lab TIGER-Lab
·
Sep 26 2

Shrinking the Generation-Verification Gap with Weak Verifiers

Verifiers can improve language model capabilities by scoring and ranking responses from generated candidates. Currently, high-quality verifiers are either unscalable (e.g., humans) or limited in utility (e.g., tools like Lean). While LM judges and reward models have become broadly useful as general-purpose verifiers, a significant performance gap remains between them and oracle verifiers (verifiers with perfect accuracy). To help close this gap, we introduce Weaver, a framework for designing a strong verifier by combining multiple weak, imperfect verifiers. We find weighted ensembles of verifiers, which typically require learning from labeled data, significantly outperform unweighted combinations due to differences in verifier accuracies. To reduce dependency on labeled data, Weaver leverages weak supervision to estimate each verifier's accuracy and combines outputs into a unified score that better reflects true response quality. However, directly applying weak supervision algorithms poses challenges, including inconsistent verifier output formats and handling low-quality verifiers. Weaver addresses these using dataset statistics to normalize outputs and filter specific verifiers. We study Weaver's effectiveness in test-time repeated sampling, where a model generates multiple candidate responses and selects one. Our evaluations show Weaver significantly improves over Pass@1-performance when selecting the first candidate-across reasoning and math tasks, achieving o3-mini-level accuracy with Llama 3.3 70B Instruct as generator, and an ensemble of 70B or smaller judge and reward models as verifiers (87.7% average). This gain mirrors the jump between GPT-4o and o3-mini (69.0% vs. 86.7%), which required extensive finetuning and post-training. To reduce computational costs of verifier ensembles, we train a 400M cross-encoder using Weaver's combined output scores.

  • 12 authors
·
Jun 22

AutoEnv: Automated Environments for Measuring Cross-Environment Agent Learning

Humans naturally adapt to diverse environments by learning underlying rules across worlds with different dynamics, observations, and reward structures. In contrast, existing agents typically demonstrate improvements via self-evolving within a single domain, implicitly assuming a fixed environment distribution. Cross-environment learning has remained largely unmeasured: there is no standard collection of controllable, heterogeneous environments, nor a unified way to represent how agents learn. We address these gaps in two steps. First, we propose AutoEnv, an automated framework that treats environments as factorizable distributions over transitions, observations, and rewards, enabling low-cost (4.12 USD on average) generation of heterogeneous worlds. Using AutoEnv, we construct AutoEnv-36, a dataset of 36 environments with 358 validated levels, on which seven language models achieve 12-49% normalized reward, demonstrating the challenge of AutoEnv-36. Second, we formalize agent learning as a component-centric process driven by three stages of Selection, Optimization, and Evaluation applied to an improvable agent component. Using this formulation, we design eight learning methods and evaluate them on AutoEnv-36. Empirically, the gain of any single learning method quickly decrease as the number of environments increases, revealing that fixed learning methods do not scale across heterogeneous environments. Environment-adaptive selection of learning methods substantially improves performance but exhibits diminishing returns as the method space expands. These results highlight both the necessity and the current limitations of agent learning for scalable cross-environment generalization, and position AutoEnv and AutoEnv-36 as a testbed for studying cross-environment agent learning. The code is avaiable at https://github.com/FoundationAgents/AutoEnv.

  • 15 authors
·
Nov 24 3

STARC: A General Framework For Quantifying Differences Between Reward Functions

In order to solve a task using reinforcement learning, it is necessary to first formalise the goal of that task as a reward function. However, for many real-world tasks, it is very difficult to manually specify a reward function that never incentivises undesirable behaviour. As a result, it is increasingly popular to use reward learning algorithms, which attempt to learn a reward function from data. However, the theoretical foundations of reward learning are not yet well-developed. In particular, it is typically not known when a given reward learning algorithm with high probability will learn a reward function that is safe to optimise. This means that reward learning algorithms generally must be evaluated empirically, which is expensive, and that their failure modes are difficult to anticipate in advance. One of the roadblocks to deriving better theoretical guarantees is the lack of good methods for quantifying the difference between reward functions. In this paper we provide a solution to this problem, in the form of a class of pseudometrics on the space of all reward functions that we call STARC (STAndardised Reward Comparison) metrics. We show that STARC metrics induce both an upper and a lower bound on worst-case regret, which implies that our metrics are tight, and that any metric with the same properties must be bilipschitz equivalent to ours. Moreover, we also identify a number of issues with reward metrics proposed by earlier works. Finally, we evaluate our metrics empirically, to demonstrate their practical efficacy. STARC metrics can be used to make both theoretical and empirical analysis of reward learning algorithms both easier and more principled.

  • 6 authors
·
Sep 26, 2023

Online Intrinsic Rewards for Decision Making Agents from Large Language Model Feedback

Automatically synthesizing dense rewards from natural language descriptions is a promising paradigm in reinforcement learning (RL), with applications to sparse reward problems, open-ended exploration, and hierarchical skill design. Recent works have made promising steps by exploiting the prior knowledge of large language models (LLMs). However, these approaches suffer from important limitations: they are either not scalable to problems requiring billions of environment samples, due to requiring LLM annotations for each observation, or they require a diverse offline dataset, which may not exist or be impossible to collect. In this work, we address these limitations through a combination of algorithmic and systems-level contributions. We propose \oni, a distributed architecture that simultaneously learns an RL policy and an intrinsic reward function using LLM feedback. Our approach annotates the agent's collected experience via an asynchronous LLM server, which is then distilled into an intrinsic reward model. We explore a range of algorithmic choices for reward modeling with varying complexity, including hashing, classification, and ranking models. By studying their relative tradeoffs, we shed light on questions regarding intrinsic reward design for sparse reward problems. Our approach achieves state-of-the-art performance across a range of challenging, sparse reward tasks from the NetHack Learning Environment in a simple unified process, solely using the agent's gathered experience, without requiring external datasets. We make our code available at https://github.com/facebookresearch/oni.

  • 5 authors
·
Oct 30, 2024

On Designing Effective RL Reward at Training Time for LLM Reasoning

Reward models have been increasingly critical for improving the reasoning capability of LLMs. Existing research has shown that a well-trained reward model can substantially improve model performances at inference time via search. However, the potential of reward models during RL training time still remains largely under-explored. It is currently unclear whether these reward models can provide additional training signals to enhance the reasoning capabilities of LLMs in RL training that uses sparse success rewards, which verify the correctness of solutions. In this work, we evaluate popular reward models for RL training, including the Outcome-supervised Reward Model (ORM) and the Process-supervised Reward Model (PRM), and train a collection of LLMs for math problems using RL by combining these learned rewards with success rewards. Surprisingly, even though these learned reward models have strong inference-time performances, they may NOT help or even hurt RL training, producing worse performances than LLMs trained with the success reward only. Our analysis reveals that an LLM can receive high rewards from some of these reward models by repeating correct but unnecessary reasoning steps, leading to a severe reward hacking issue. Therefore, we introduce two novel reward refinement techniques, including Clipping and Delta. The key idea is to ensure the accumulative reward of any reasoning trajectory is upper-bounded to keep a learned reward model effective without being exploited. We evaluate our techniques with multiple reward models over a set of 1.5B and 7B LLMs on MATH and GSM8K benchmarks and demonstrate that with a carefully designed reward function, RL training without any additional supervised tuning can improve all the evaluated LLMs, including the state-of-the-art 7B LLM Qwen2.5-Math-7B-Instruct on MATH and GSM8K benchmarks.

  • 9 authors
·
Oct 19, 2024

Evaluating Robustness of Reward Models for Mathematical Reasoning

Reward models are key in reinforcement learning from human feedback (RLHF) systems, aligning the model behavior with human preferences. Particularly in the math domain, there have been plenty of studies using reward models to align policies for improving reasoning capabilities. Recently, as the importance of reward models has been emphasized, RewardBench is proposed to understand their behavior. However, we figure out that the math subset of RewardBench has different representations between chosen and rejected completions, and relies on a single comparison, which may lead to unreliable results as it only see an isolated case. Therefore, it fails to accurately present the robustness of reward models, leading to a misunderstanding of its performance and potentially resulting in reward hacking. In this work, we introduce a new design for reliable evaluation of reward models, and to validate this, we construct RewardMATH, a benchmark that effectively represents the robustness of reward models in mathematical reasoning tasks. We demonstrate that the scores on RewardMATH strongly correlate with the results of optimized policy and effectively estimate reward overoptimization, whereas the existing benchmark shows almost no correlation. The results underscore the potential of our design to enhance the reliability of evaluation, and represent the robustness of reward model. We make our code and data publicly available.

  • 7 authors
·
Oct 2, 2024

BaseReward: A Strong Baseline for Multimodal Reward Model

The rapid advancement of Multimodal Large Language Models (MLLMs) has made aligning them with human preferences a critical challenge. Reward Models (RMs) are a core technology for achieving this goal, but a systematic guide for building state-of-the-art Multimodal Reward Models (MRMs) is currently lacking in both academia and industry. Through exhaustive experimental analysis, this paper aims to provide a clear ``recipe'' for constructing high-performance MRMs. We systematically investigate every crucial component in the MRM development pipeline, including reward modeling paradigms (e.g., Naive-RM, Critic-based RM, and Generative RM), reward head architecture, training strategies, data curation (covering over ten multimodal and text-only preference datasets), backbone model and model scale, and ensemble methods. Based on these experimental insights, we introduce BaseReward, a powerful and efficient baseline for multimodal reward modeling. BaseReward adopts a simple yet effective architecture, built upon a {Qwen2.5-VL} backbone, featuring an optimized two-layer reward head, and is trained on a carefully curated mixture of high-quality multimodal and text-only preference data. Our results show that BaseReward establishes a new SOTA on major benchmarks such as MM-RLHF-Reward Bench, VL-Reward Bench, and Multimodal Reward Bench, outperforming previous models. Furthermore, to validate its practical utility beyond static benchmarks, we integrate BaseReward into a real-world reinforcement learning pipeline, successfully enhancing an MLLM's performance across various perception, reasoning, and conversational tasks. This work not only delivers a top-tier MRM but, more importantly, provides the community with a clear, empirically-backed guide for developing robust reward models for the next generation of MLLMs.

  • 15 authors
·
Sep 19 2

The Climb Carves Wisdom Deeper Than the Summit: On the Noisy Rewards in Learning to Reason

Recent studies on post-training large language models (LLMs) for reasoning through reinforcement learning (RL) typically focus on tasks that can be accurately verified and rewarded, such as solving math problems. In contrast, our research investigates the impact of reward noise, a more practical consideration for real-world scenarios involving the post-training of LLMs using reward models. We found that LLMs demonstrate strong robustness to substantial reward noise. For example, manually flipping 40% of the reward function's outputs in math tasks still allows a Qwen-2.5-7B model to achieve rapid convergence, improving its performance on math tasks from 5% to 72%, compared to the 75% accuracy achieved by a model trained with noiseless rewards. Surprisingly, by only rewarding the appearance of key reasoning phrases (namely reasoning pattern reward, RPR), such as ``first, I need to''-without verifying the correctness of answers, the model achieved peak downstream performance (over 70% accuracy for Qwen-2.5-7B) comparable to models trained with strict correctness verification and accurate rewards. Recognizing the importance of the reasoning process over the final results, we combined RPR with noisy reward models. RPR helped calibrate the noisy reward models, mitigating potential false negatives and enhancing the LLM's performance on open-ended tasks. These findings suggest the importance of improving models' foundational abilities during the pre-training phase while providing insights for advancing post-training techniques. Our code and scripts are available at https://github.com/trestad/Noisy-Rewards-in-Learning-to-Reason.

  • 5 authors
·
May 28 2

Helping or Herding? Reward Model Ensembles Mitigate but do not Eliminate Reward Hacking

Reward models play a key role in aligning language model applications towards human preferences. However, this setup creates an incentive for the language model to exploit errors in the reward model to achieve high estimated reward, a phenomenon often termed reward hacking. A natural mitigation is to train an ensemble of reward models, aggregating over model outputs to obtain a more robust reward estimate. We explore the application of reward ensembles to alignment at both training time (through reinforcement learning) and inference time (through reranking). First, we show that reward models are underspecified: reward models that perform similarly in-distribution can yield very different rewards when used in alignment, due to distribution shift. Second, underspecification results in overoptimization, where alignment to one reward model does not improve reward as measured by another reward model trained on the same data. Third, overoptimization is mitigated by the use of reward ensembles, and ensembles that vary by their pretraining seeds lead to better generalization than ensembles that differ only by their fine-tuning seeds, with both outperforming individual reward models. However, even pretrain reward ensembles do not eliminate reward hacking: we show several qualitative reward hacking phenomena that are not mitigated by ensembling because all reward models in the ensemble exhibit similar error patterns.

  • 12 authors
·
Dec 14, 2023 1

MM-RLHF: The Next Step Forward in Multimodal LLM Alignment

Despite notable advancements in Multimodal Large Language Models (MLLMs), most state-of-the-art models have not undergone thorough alignment with human preferences. This gap exists because current alignment research has primarily achieved progress in specific areas (e.g., hallucination reduction), while the broader question of whether aligning models with human preferences can systematically enhance MLLM capability remains largely unexplored. To this end, we introduce MM-RLHF, a dataset containing 120k fine-grained, human-annotated preference comparison pairs. This dataset represents a substantial advancement over existing resources, offering superior size, diversity, annotation granularity, and quality. Leveraging this dataset, we propose several key innovations to improve both the quality of reward models and the efficiency of alignment algorithms. Notably, we introduce a Critique-Based Reward Model, which generates critiques of model outputs before assigning scores, offering enhanced interpretability and more informative feedback compared to traditional scalar reward mechanisms. Additionally, we propose Dynamic Reward Scaling, a method that adjusts the loss weight of each sample according to the reward signal, thereby optimizing the use of high-quality comparison pairs. Our approach is rigorously evaluated across 10 distinct dimensions and 27 benchmarks, with results demonstrating significant and consistent improvements in model performance. Specifically, fine-tuning LLaVA-ov-7B with MM-RLHF and our alignment algorithm leads to a 19.5% increase in conversational abilities and a 60% improvement in safety. We have open-sourced the preference dataset, reward model, training and evaluation code, as well as reward modeling and safety benchmarks. For more details, please visit our project page: https://mm-rlhf.github.io.

  • 20 authors
·
Feb 14 5

The Image as Its Own Reward: Reinforcement Learning with Adversarial Reward for Image Generation

A reliable reward function is essential for reinforcement learning (RL) in image generation. Most current RL approaches depend on pre-trained preference models that output scalar rewards to approximate human preferences. However, these rewards often fail to capture human perception and are vulnerable to reward hacking, where higher scores do not correspond to better images. To address this, we introduce Adv-GRPO, an RL framework with an adversarial reward that iteratively updates both the reward model and the generator. The reward model is supervised using reference images as positive samples and can largely avoid being hacked. Unlike KL regularization that constrains parameter updates, our learned reward directly guides the generator through its visual outputs, leading to higher-quality images. Moreover, while optimizing existing reward functions can alleviate reward hacking, their inherent biases remain. For instance, PickScore may degrade image quality, whereas OCR-based rewards often reduce aesthetic fidelity. To address this, we take the image itself as a reward, using reference images and vision foundation models (e.g., DINO) to provide rich visual rewards. These dense visual signals, instead of a single scalar, lead to consistent gains across image quality, aesthetics, and task-specific metrics. Finally, we show that combining reference samples with foundation-model rewards enables distribution transfer and flexible style customization. In human evaluation, our method outperforms Flow-GRPO and SD3, achieving 70.0% and 72.4% win rates in image quality and aesthetics, respectively. Code and models have been released.

  • 4 authors
·
Nov 25 3

M-RewardBench: Evaluating Reward Models in Multilingual Settings

Reward models (RMs) have driven the state-of-the-art performance of LLMs today by enabling the integration of human feedback into the language modeling process. However, RMs are primarily trained and evaluated in English, and their capabilities in multilingual settings remain largely understudied. In this work, we conduct a systematic evaluation of several reward models in multilingual settings. We first construct the first-of-its-kind multilingual RM evaluation benchmark, M-RewardBench, consisting of 2.87k preference instances for 23 typologically diverse languages, that tests the chat, safety, reasoning, and translation capabilities of RMs. We then rigorously evaluate a wide range of reward models on M-RewardBench, offering fresh insights into their performance across diverse languages. We identify a significant gap in RMs' performances between English and non-English languages and show that RM preferences can change substantially from one language to another. We also present several findings on how different multilingual aspects impact RM performance. Specifically, we show that the performance of RMs is improved with improved translation quality. Similarly, we demonstrate that the models exhibit better performance for high-resource languages. We release M-RewardBench dataset and the codebase in this study to facilitate a better understanding of RM evaluation in multilingual settings.

  • 10 authors
·
Oct 20, 2024 3

Asymptotics of Language Model Alignment

Let p denote a generative language model. Let r denote a reward model that returns a scalar that captures the degree at which a draw from p is preferred. The goal of language model alignment is to alter p to a new distribution phi that results in a higher expected reward while keeping phi close to p. A popular alignment method is the KL-constrained reinforcement learning (RL), which chooses a distribution phi_Delta that maximizes E_{phi_{Delta}} r(y) subject to a relative entropy constraint KL(phi_Delta || p) leq Delta. Another simple alignment method is best-of-N, where N samples are drawn from p and one with highest reward is selected. In this paper, we offer a closed-form characterization of the optimal KL-constrained RL solution. We demonstrate that any alignment method that achieves a comparable trade-off between KL divergence and reward must approximate the optimal KL-constrained RL solution in terms of relative entropy. To further analyze the properties of alignment methods, we introduce two simplifying assumptions: we let the language model be memoryless, and the reward model be linear. Although these assumptions may not reflect complex real-world scenarios, they enable a precise characterization of the asymptotic behavior of both the best-of-N alignment, and the KL-constrained RL method, in terms of information-theoretic quantities. We prove that the reward of the optimal KL-constrained RL solution satisfies a large deviation principle, and we fully characterize its rate function. We also show that the rate of growth of the scaled cumulants of the reward is characterized by a proper Renyi cross entropy. Finally, we show that best-of-N is asymptotically equivalent to KL-constrained RL solution by proving that their expected rewards are asymptotically equal, and concluding that the two distributions must be close in KL divergence.

  • 5 authors
·
Apr 2, 2024

RewardAnything: Generalizable Principle-Following Reward Models

Reward Models, essential for guiding Large Language Model optimization, are typically trained on fixed preference datasets, resulting in rigid alignment to single, implicit preference distributions. This prevents adaptation to diverse real-world needs-from conciseness in one task to detailed explanations in another. The standard practice of collecting task-specific preference data and retraining reward models is resource-intensive, often producing biased rewards, and limits practical application. We introduce generalizable, principle-following reward models. We propose that RMs should understand and adhere to dynamically provided natural language specifications of reward principles, similar to instruction-following in LLMs. To measure this capability, we develop RABench, a comprehensive benchmark for RMs focusing on generalization across diverse principles. Evaluations on RABench reveal poor generalization of current RMs. As a solution, we present RewardAnything, a novel RM designed and trained to explicitly follow natural language principles. We achieve SotA performance with RewardAnything in traditional RM benchmark simply by specifying a well-defined principle, and results on RABench show we excel in adapting to novel principles without retraining. Furthermore, RewardAnything integrates seamlessly with existing RLHF methods and we show by a case study on how to automatically and efficiently align LLMs with only natural language principles.

  • 10 authors
·
Jun 4

CDR: Customizable Density Ratios of Strong-over-weak LLMs for Preference Annotation

Preference tuning of large language models (LLMs) relies on high-quality human preference data, which is often expensive and time-consuming to gather. While existing methods can use trained reward models or proprietary model as judges for preference annotation, they have notable drawbacks: training reward models remain dependent on initial human data, and using proprietary model imposes license restrictions that inhibits commercial usage. In this paper, we introduce customized density ratio (CDR), a training-free and highly effective method that leverages off-the-shelf LLMs for preference data annotation. Our approach uses the log-density ratio between a better-aligned LLM and a less aligned LLM as a reward signal. We explores 221 different LLMs pairs and empirically demonstrate that increasing the performance gap between paired LLMs correlates with better reward generalization. Furthermore, we show that tailoring the density ratio reward function with specific criteria and preference exemplars enhances performance across domains and within target areas. In our experiment using density ratio from a pair of Mistral-7B models, CDR achieves a RewardBench score of 82.6, outperforming the best trained reward functions from same model class and demonstrating competitive performance against SoTA models in Safety (91.0) and Reasoning (88.0) domains. We use CDR to annotate an on-policy preference dataset with which we preference tune Llama-3-8B-Instruct with SimPO. Using reward signals from two relatively weak models, our approach pushes Llama-3-8B to achieve a 37.4% (+15.1%) win rate on ArenaHard and a 40.7% (+17.8%) win rate on Length-Controlled AlpacaEval 2.0, along with a score of 8.0 on MT-Bench.

  • 5 authors
·
Nov 4, 2024

WildBench: Benchmarking LLMs with Challenging Tasks from Real Users in the Wild

We introduce WildBench, an automated evaluation framework designed to benchmark large language models (LLMs) using challenging, real-world user queries. WildBench consists of 1,024 tasks carefully selected from over one million human-chatbot conversation logs. For automated evaluation with WildBench, we have developed two metrics, WB-Reward and WB-Score, which are computable using advanced LLMs such as GPT-4-turbo. WildBench evaluation uses task-specific checklists to evaluate model outputs systematically and provides structured explanations that justify the scores and comparisons, resulting in more reliable and interpretable automatic judgments. WB-Reward employs fine-grained pairwise comparisons between model responses, generating five potential outcomes: much better, slightly better, slightly worse, much worse, or a tie. Unlike previous evaluations that employed a single baseline model, we selected three baseline models at varying performance levels to ensure a comprehensive pairwise evaluation. Additionally, we propose a simple method to mitigate length bias, by converting outcomes of ``slightly better/worse'' to ``tie'' if the winner response exceeds the loser one by more than K characters. WB-Score evaluates the quality of model outputs individually, making it a fast and cost-efficient evaluation metric. WildBench results demonstrate a strong correlation with the human-voted Elo ratings from Chatbot Arena on hard tasks. Specifically, WB-Reward achieves a Pearson correlation of 0.98 with top-ranking models. Additionally, WB-Score reaches 0.95, surpassing both ArenaHard's 0.91 and AlpacaEval2.0's 0.89 for length-controlled win rates, as well as the 0.87 for regular win rates.

  • 9 authors
·
Jun 7, 2024 1

R1-Reward: Training Multimodal Reward Model Through Stable Reinforcement Learning

Multimodal Reward Models (MRMs) play a crucial role in enhancing the performance of Multimodal Large Language Models (MLLMs). While recent advancements have primarily focused on improving the model structure and training data of MRMs, there has been limited exploration into the effectiveness of long-term reasoning capabilities for reward modeling and how to activate these capabilities in MRMs. In this paper, we explore how Reinforcement Learning (RL) can be used to improve reward modeling. Specifically, we reformulate the reward modeling problem as a rule-based RL task. However, we observe that directly applying existing RL algorithms, such as Reinforce++, to reward modeling often leads to training instability or even collapse due to the inherent limitations of these algorithms. To address this issue, we propose the StableReinforce algorithm, which refines the training loss, advantage estimation strategy, and reward design of existing RL methods. These refinements result in more stable training dynamics and superior performance. To facilitate MRM training, we collect 200K preference data from diverse datasets. Our reward model, R1-Reward, trained using the StableReinforce algorithm on this dataset, significantly improves performance on multimodal reward modeling benchmarks. Compared to previous SOTA models, R1-Reward achieves a 8.4% improvement on the VL Reward-Bench and a 14.3% improvement on the Multimodal Reward Bench. Moreover, with more inference compute, R1-Reward's performance is further enhanced, highlighting the potential of RL algorithms in optimizing MRMs.

Transforming and Combining Rewards for Aligning Large Language Models

A common approach for aligning language models to human preferences is to first learn a reward model from preference data, and then use this reward model to update the language model. We study two closely related problems that arise in this approach. First, any monotone transformation of the reward model preserves preference ranking; is there a choice that is ``better'' than others? Second, we often wish to align language models to multiple properties: how should we combine multiple reward models? Using a probabilistic interpretation of the alignment procedure, we identify a natural choice for transformation for (the common case of) rewards learned from Bradley-Terry preference models. This derived transformation has two important properties. First, it emphasizes improving poorly-performing outputs, rather than outputs that already score well. This mitigates both underfitting (where some prompts are not improved) and reward hacking (where the model learns to exploit misspecification of the reward model). Second, it enables principled aggregation of rewards by linking summation to logical conjunction: the sum of transformed rewards corresponds to the probability that the output is ``good'' in all measured properties, in a sense we make precise. Experiments aligning language models to be both helpful and harmless using RLHF show substantial improvements over the baseline (non-transformed) approach.

  • 7 authors
·
Feb 1, 2024 1

CaRL: Learning Scalable Planning Policies with Simple Rewards

We investigate reinforcement learning (RL) for privileged planning in autonomous driving. State-of-the-art approaches for this task are rule-based, but these methods do not scale to the long tail. RL, on the other hand, is scalable and does not suffer from compounding errors like imitation learning. Contemporary RL approaches for driving use complex shaped rewards that sum multiple individual rewards, \eg~progress, position, or orientation rewards. We show that PPO fails to optimize a popular version of these rewards when the mini-batch size is increased, which limits the scalability of these approaches. Instead, we propose a new reward design based primarily on optimizing a single intuitive reward term: route completion. Infractions are penalized by terminating the episode or multiplicatively reducing route completion. We find that PPO scales well with higher mini-batch sizes when trained with our simple reward, even improving performance. Training with large mini-batch sizes enables efficient scaling via distributed data parallelism. We scale PPO to 300M samples in CARLA and 500M samples in nuPlan with a single 8-GPU node. The resulting model achieves 64 DS on the CARLA longest6 v2 benchmark, outperforming other RL methods with more complex rewards by a large margin. Requiring only minimal adaptations from its use in CARLA, the same method is the best learning-based approach on nuPlan. It scores 91.3 in non-reactive and 90.6 in reactive traffic on the Val14 benchmark while being an order of magnitude faster than prior work.

  • 6 authors
·
Apr 24 2

ExTrans: Multilingual Deep Reasoning Translation via Exemplar-Enhanced Reinforcement Learning

In recent years, the emergence of large reasoning models (LRMs), such as OpenAI-o1 and DeepSeek-R1, has shown impressive capabilities in complex problems, e.g., mathematics and coding. Some pioneering studies attempt to bring the success of LRMs in neural machine translation (MT). They try to build LRMs with deep reasoning MT ability via reinforcement learning (RL). Despite some progress that has been made, these attempts generally focus on several high-resource languages, e.g., English and Chinese, leaving the performance on other languages unclear. Besides, the reward modeling methods in previous work do not fully unleash the potential of reinforcement learning in MT. In this work, we first design a new reward modeling method that compares the translation results of the policy MT model with a strong LRM (i.e., DeepSeek-R1-671B), and quantifies the comparisons to provide rewards. Experimental results demonstrate the superiority of the reward modeling method. Using Qwen2.5-7B-Instruct as the backbone, the trained model achieves the new state-of-the-art performance in literary translation, and outperforms strong LRMs including OpenAI-o1 and DeepSeeK-R1. Furthermore, we extend our method to the multilingual settings with 11 languages. With a carefully designed lightweight reward modeling in RL, we can simply transfer the strong MT ability from a single direction into multiple (i.e., 90) translation directions and achieve impressive multilingual MT performance.

  • 3 authors
·
May 19 2

Auto MC-Reward: Automated Dense Reward Design with Large Language Models for Minecraft

Many reinforcement learning environments (e.g., Minecraft) provide only sparse rewards that indicate task completion or failure with binary values. The challenge in exploration efficiency in such environments makes it difficult for reinforcement-learning-based agents to learn complex tasks. To address this, this paper introduces an advanced learning system, named Auto MC-Reward, that leverages Large Language Models (LLMs) to automatically design dense reward functions, thereby enhancing the learning efficiency. Auto MC-Reward consists of three important components: Reward Designer, Reward Critic, and Trajectory Analyzer. Given the environment information and task descriptions, the Reward Designer first design the reward function by coding an executable Python function with predefined observation inputs. Then, our Reward Critic will be responsible for verifying the code, checking whether the code is self-consistent and free of syntax and semantic errors. Further, the Trajectory Analyzer summarizes possible failure causes and provides refinement suggestions according to collected trajectories. In the next round, Reward Designer will further refine and iterate the dense reward function based on feedback. Experiments demonstrate a significant improvement in the success rate and learning efficiency of our agents in complex tasks in Minecraft, such as obtaining diamond with the efficient ability to avoid lava, and efficiently explore trees and animals that are sparse in the plains biome.

  • 10 authors
·
Dec 14, 2023

Reward Shaping to Mitigate Reward Hacking in RLHF

Reinforcement Learning from Human Feedback (RLHF) is essential for aligning large language models (LLMs) with human values. However, RLHF is susceptible to reward hacking, where the agent exploits flaws in the reward function rather than learning the intended behavior, thus degrading alignment. While reward shaping helps stabilize RLHF and partially mitigate reward hacking, a systematic investigation into shaping techniques and their underlying principles remains lacking. To bridge this gap, we present a comprehensive study of the prevalent reward shaping methods. Our analysis suggests three key design principles: (1) RL reward is ideally bounded, (2) RL benefits from rapid initial growth followed by gradual convergence, and (3) RL reward is best formulated as a function of centered reward. Guided by these insights, we propose Preference As Reward (PAR), a novel approach that leverages the latent preferences embedded within the reward model itself as the signal for reinforcement learning. We evaluated PAR on two base models, Gemma2-2B and Llama3-8B, using two datasets, Ultrafeedback-Binarized and HH-RLHF. Experimental results demonstrate PAR's superior performance over other reward shaping methods. On the AlpacaEval 2.0 benchmark, PAR achieves a win rate at least 5 percentage points higher than competing approaches. Furthermore, PAR exhibits remarkable data efficiency, requiring only a single reference reward for optimal performance, and maintains robustness against reward hacking even after two full epochs of training. Code is available at https://github.com/PorUna-byte/PAR.

  • 6 authors
·
Feb 25