new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 2

Multimodal Lecture Presentations Dataset: Understanding Multimodality in Educational Slides

Lecture slide presentations, a sequence of pages that contain text and figures accompanied by speech, are constructed and presented carefully in order to optimally transfer knowledge to students. Previous studies in multimedia and psychology attribute the effectiveness of lecture presentations to their multimodal nature. As a step toward developing AI to aid in student learning as intelligent teacher assistants, we introduce the Multimodal Lecture Presentations dataset as a large-scale benchmark testing the capabilities of machine learning models in multimodal understanding of educational content. Our dataset contains aligned slides and spoken language, for 180+ hours of video and 9000+ slides, with 10 lecturers from various subjects (e.g., computer science, dentistry, biology). We introduce two research tasks which are designed as stepping stones towards AI agents that can explain (automatically captioning a lecture presentation) and illustrate (synthesizing visual figures to accompany spoken explanations) educational content. We provide manual annotations to help implement these two research tasks and evaluate state-of-the-art models on them. Comparing baselines and human student performances, we find that current models struggle in (1) weak crossmodal alignment between slides and spoken text, (2) learning novel visual mediums, (3) technical language, and (4) long-range sequences. Towards addressing this issue, we also introduce PolyViLT, a multimodal transformer trained with a multi-instance learning loss that is more effective than current approaches. We conclude by shedding light on the challenges and opportunities in multimodal understanding of educational presentations.

  • 5 authors
·
Aug 17, 2022

SlideTailor: Personalized Presentation Slide Generation for Scientific Papers

Automatic presentation slide generation can greatly streamline content creation. However, since preferences of each user may vary, existing under-specified formulations often lead to suboptimal results that fail to align with individual user needs. We introduce a novel task that conditions paper-to-slides generation on user-specified preferences. We propose a human behavior-inspired agentic framework, SlideTailor, that progressively generates editable slides in a user-aligned manner. Instead of requiring users to write their preferences in detailed textual form, our system only asks for a paper-slides example pair and a visual template - natural and easy-to-provide artifacts that implicitly encode rich user preferences across content and visual style. Despite the implicit and unlabeled nature of these inputs, our framework effectively distills and generalizes the preferences to guide customized slide generation. We also introduce a novel chain-of-speech mechanism to align slide content with planned oral narration. Such a design significantly enhances the quality of generated slides and enables downstream applications like video presentations. To support this new task, we construct a benchmark dataset that captures diverse user preferences, with carefully designed interpretable metrics for robust evaluation. Extensive experiments demonstrate the effectiveness of our framework.

Autonomous labeling of surgical resection margins using a foundation model

Assessing resection margins is central to pathological specimen evaluation and has profound implications for patient outcomes. Current practice employs physical inking, which is applied variably, and cautery artifacts can obscure the true margin on histological sections. We present a virtual inking network (VIN) that autonomously localizes the surgical cut surface on whole-slide images, reducing reliance on inks and standardizing margin-focused review. VIN uses a frozen foundation model as the feature extractor and a compact two-layer multilayer perceptron trained for patch-level classification of cautery-consistent features. The dataset comprised 120 hematoxylin and eosin (H&E) stained slides from 12 human tonsil tissue blocks, resulting in ~2 TB of uncompressed raw image data, where a board-certified pathologist provided boundary annotations. In blind testing with 20 slides from previously unseen blocks, VIN produced coherent margin overlays that qualitatively aligned with expert annotations across serial sections. Quantitatively, region-level accuracy was ~73.3% across the test set, with errors largely confined to limited areas that did not disrupt continuity of the whole-slide margin map. These results indicate that VIN captures cautery-related histomorphology and can provide a reproducible, ink-free margin delineation suitable for integration into routine digital pathology workflows and for downstream measurement of margin distances.

  • 12 authors
·
Nov 27, 2025

Paper2Video: Automatic Video Generation from Scientific Papers

Academic presentation videos have become an essential medium for research communication, yet producing them remains highly labor-intensive, often requiring hours of slide design, recording, and editing for a short 2 to 10 minutes video. Unlike natural video, presentation video generation involves distinctive challenges: inputs from research papers, dense multi-modal information (text, figures, tables), and the need to coordinate multiple aligned channels such as slides, subtitles, speech, and human talker. To address these challenges, we introduce PaperTalker, the first benchmark of 101 research papers paired with author-created presentation videos, slides, and speaker metadata. We further design four tailored evaluation metrics--Meta Similarity, PresentArena, PresentQuiz, and IP Memory--to measure how videos convey the paper's information to the audience. Building on this foundation, we propose PaperTalker, the first multi-agent framework for academic presentation video generation. It integrates slide generation with effective layout refinement by a novel effective tree search visual choice, cursor grounding, subtitling, speech synthesis, and talking-head rendering, while parallelizing slide-wise generation for efficiency. Experiments on Paper2Video demonstrate that the presentation videos produced by our approach are more faithful and informative than existing baselines, establishing a practical step toward automated and ready-to-use academic video generation. Our dataset, agent, and code are available at https://github.com/showlab/Paper2Video.

showlab Show Lab
·
Oct 6, 2025 2