new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

UrbanCLIP: Learning Text-enhanced Urban Region Profiling with Contrastive Language-Image Pretraining from the Web

Urban region profiling from web-sourced data is of utmost importance for urban planning and sustainable development. We are witnessing a rising trend of LLMs for various fields, especially dealing with multi-modal data research such as vision-language learning, where the text modality serves as a supplement information for the image. Since textual modality has never been introduced into modality combinations in urban region profiling, we aim to answer two fundamental questions in this paper: i) Can textual modality enhance urban region profiling? ii) and if so, in what ways and with regard to which aspects? To answer the questions, we leverage the power of Large Language Models (LLMs) and introduce the first-ever LLM-enhanced framework that integrates the knowledge of textual modality into urban imagery profiling, named LLM-enhanced Urban Region Profiling with Contrastive Language-Image Pretraining (UrbanCLIP). Specifically, it first generates a detailed textual description for each satellite image by an open-source Image-to-Text LLM. Then, the model is trained on the image-text pairs, seamlessly unifying natural language supervision for urban visual representation learning, jointly with contrastive loss and language modeling loss. Results on predicting three urban indicators in four major Chinese metropolises demonstrate its superior performance, with an average improvement of 6.1% on R^2 compared to the state-of-the-art methods. Our code and the image-language dataset will be released upon paper notification.

  • 8 authors
·
Oct 21, 2023

Regions are Who Walk Them: a Large Pre-trained Spatiotemporal Model Based on Human Mobility for Ubiquitous Urban Sensing

User profiling and region analysis are two tasks of significant commercial value. However, in practical applications, modeling different features typically involves four main steps: data preparation, data processing, model establishment, evaluation, and optimization. This process is time-consuming and labor-intensive. Repeating this workflow for each feature results in abundant development time for tasks and a reduced overall volume of task development. Indeed, human mobility data contains a wealth of information. Several successful cases suggest that conducting in-depth analysis of population movement data could potentially yield meaningful profiles about users and areas. Nonetheless, most related works have not thoroughly utilized the semantic information within human mobility data and trained on a fixed number of the regions. To tap into the rich information within population movement, based on the perspective that Regions Are Who walk them, we propose a large spatiotemporal model based on trajectories (RAW). It possesses the following characteristics: 1) Tailored for trajectory data, introducing a GPT-like structure with a parameter count of up to 1B; 2) Introducing a spatiotemporal fine-tuning module, interpreting trajectories as collection of users to derive arbitrary region embedding. This framework allows rapid task development based on the large spatiotemporal model. We conducted extensive experiments to validate the effectiveness of our proposed large spatiotemporal model. It's evident that our proposed method, relying solely on human mobility data without additional features, exhibits a certain level of relevance in user profiling and region analysis. Moreover, our model showcases promising predictive capabilities in trajectory generation tasks based on the current state, offering the potential for further innovative work utilizing this large spatiotemporal model.

  • 6 authors
·
Nov 17, 2023

Urban In-Context Learning: Bridging Pretraining and Inference through Masked Diffusion for Urban Profiling

Urban profiling aims to predict urban profiles in unknown regions and plays a critical role in economic and social censuses. Existing approaches typically follow a two-stage paradigm: first, learning representations of urban areas; second, performing downstream prediction via linear probing, which originates from the BERT era. Inspired by the development of GPT style models, recent studies have shown that novel self-supervised pretraining schemes can endow models with direct applicability to downstream tasks, thereby eliminating the need for task-specific fine-tuning. This is largely because GPT unifies the form of pretraining and inference through next-token prediction. However, urban data exhibit structural characteristics that differ fundamentally from language, making it challenging to design a one-stage model that unifies both pretraining and inference. In this work, we propose Urban In-Context Learning, a framework that unifies pretraining and inference via a masked autoencoding process over urban regions. To capture the distribution of urban profiles, we introduce the Urban Masked Diffusion Transformer, which enables each region' s prediction to be represented as a distribution rather than a deterministic value. Furthermore, to stabilize diffusion training, we propose the Urban Representation Alignment Mechanism, which regularizes the model's intermediate features by aligning them with those from classical urban profiling methods. Extensive experiments on three indicators across two cities demonstrate that our one-stage method consistently outperforms state-of-the-art two-stage approaches. Ablation studies and case studies further validate the effectiveness of each proposed module, particularly the use of diffusion modeling.

  • 5 authors
·
Aug 4, 2025