new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

Enhancing Retrieval and Managing Retrieval: A Four-Module Synergy for Improved Quality and Efficiency in RAG Systems

Retrieval-augmented generation (RAG) techniques leverage the in-context learning capabilities of large language models (LLMs) to produce more accurate and relevant responses. Originating from the simple 'retrieve-then-read' approach, the RAG framework has evolved into a highly flexible and modular paradigm. A critical component, the Query Rewriter module, enhances knowledge retrieval by generating a search-friendly query. This method aligns input questions more closely with the knowledge base. Our research identifies opportunities to enhance the Query Rewriter module to Query Rewriter+ by generating multiple queries to overcome the Information Plateaus associated with a single query and by rewriting questions to eliminate Ambiguity, thereby clarifying the underlying intent. We also find that current RAG systems exhibit issues with Irrelevant Knowledge; to overcome this, we propose the Knowledge Filter. These two modules are both based on the instruction-tuned Gemma-2B model, which together enhance response quality. The final identified issue is Redundant Retrieval; we introduce the Memory Knowledge Reservoir and the Retriever Trigger to solve this. The former supports the dynamic expansion of the RAG system's knowledge base in a parameter-free manner, while the latter optimizes the cost for accessing external knowledge, thereby improving resource utilization and response efficiency. These four RAG modules synergistically improve the response quality and efficiency of the RAG system. The effectiveness of these modules has been validated through experiments and ablation studies across six common QA datasets. The source code can be accessed at https://github.com/Ancientshi/ERM4.

  • 6 authors
·
Jul 15, 2024

Backtracing: Retrieving the Cause of the Query

Many online content portals allow users to ask questions to supplement their understanding (e.g., of lectures). While information retrieval (IR) systems may provide answers for such user queries, they do not directly assist content creators -- such as lecturers who want to improve their content -- identify segments that _caused_ a user to ask those questions. We introduce the task of backtracing, in which systems retrieve the text segment that most likely caused a user query. We formalize three real-world domains for which backtracing is important in improving content delivery and communication: understanding the cause of (a) student confusion in the Lecture domain, (b) reader curiosity in the News Article domain, and (c) user emotion in the Conversation domain. We evaluate the zero-shot performance of popular information retrieval methods and language modeling methods, including bi-encoder, re-ranking and likelihood-based methods and ChatGPT. While traditional IR systems retrieve semantically relevant information (e.g., details on "projection matrices" for a query "does projecting multiple times still lead to the same point?"), they often miss the causally relevant context (e.g., the lecturer states "projecting twice gets me the same answer as one projection"). Our results show that there is room for improvement on backtracing and it requires new retrieval approaches. We hope our benchmark serves to improve future retrieval systems for backtracing, spawning systems that refine content generation and identify linguistic triggers influencing user queries. Our code and data are open-sourced: https://github.com/rosewang2008/backtracing.

  • 5 authors
·
Mar 6, 2024 1

Using clarification questions to improve software developers' Web search

Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals.

  • 2 authors
·
Jul 26, 2022

HANRAG: Heuristic Accurate Noise-resistant Retrieval-Augmented Generation for Multi-hop Question Answering

The Retrieval-Augmented Generation (RAG) approach enhances question-answering systems and dialogue generation tasks by integrating information retrieval (IR) technologies with large language models (LLMs). This strategy, which retrieves information from external knowledge bases to bolster the response capabilities of generative models, has achieved certain successes. However, current RAG methods still face numerous challenges when dealing with multi-hop queries. For instance, some approaches overly rely on iterative retrieval, wasting too many retrieval steps on compound queries. Additionally, using the original complex query for retrieval may fail to capture content relevant to specific sub-queries, resulting in noisy retrieved content. If the noise is not managed, it can lead to the problem of noise accumulation. To address these issues, we introduce HANRAG, a novel heuristic-based framework designed to efficiently tackle problems of varying complexity. Driven by a powerful revelator, HANRAG routes queries, decomposes them into sub-queries, and filters noise from retrieved documents. This enhances the system's adaptability and noise resistance, making it highly capable of handling diverse queries. We compare the proposed framework against other leading industry methods across various benchmarks. The results demonstrate that our framework obtains superior performance in both single-hop and multi-hop question-answering tasks.

LLM-R2: A Large Language Model Enhanced Rule-based Rewrite System for Boosting Query Efficiency

Query rewrite, which aims to generate more efficient queries by altering a SQL query's structure without changing the query result, has been an important research problem. In order to maintain equivalence between the rewritten query and the original one during rewriting, traditional query rewrite methods always rewrite the queries following certain rewrite rules. However, some problems still remain. Firstly, existing methods of finding the optimal choice or sequence of rewrite rules are still limited and the process always costs a lot of resources. Methods involving discovering new rewrite rules typically require complicated proofs of structural logic or extensive user interactions. Secondly, current query rewrite methods usually rely highly on DBMS cost estimators which are often not accurate. In this paper, we address these problems by proposing a novel method of query rewrite named LLM-R2, adopting a large language model (LLM) to propose possible rewrite rules for a database rewrite system. To further improve the inference ability of LLM in recommending rewrite rules, we train a contrastive model by curriculum to learn query representations and select effective query demonstrations for the LLM. Experimental results have shown that our method can significantly improve the query execution efficiency and outperform the baseline methods. In addition, our method enjoys high robustness across different datasets.

  • 5 authors
·
Apr 19, 2024 1

REST: Stress Testing Large Reasoning Models by Asking Multiple Problems at Once

Recent Large Reasoning Models (LRMs) have achieved remarkable progress on task-specific benchmarks, yet their evaluation methods remain constrained by isolated problem-solving paradigms. Existing benchmarks predominantly assess single-question reasoning through sequential testing, resulting critical limitations: (1) vulnerability to data contamination and less challenging (e.g., DeepSeek-R1 achieves 97.0% on MATH500), forcing costly and perpetual creation of new questions with large human efforts, (2) failure to evaluate models under multi-context pressure, a key requirement for real-world deployment. To bridge this gap, we present REST (Reasoning Evaluation through Simultaneous Testing), a stress-testing framework that concurrently exposes LRMs to multiple problems simultaneously. Beyond basic reasoning, REST specifically evaluates several under-tested capabilities: contextual priority allocation, cross-problem interference resistance, and dynamic cognitive load management. Our evaluation reveals several striking findings: Even state-of-the-art (SOTA) models like DeepSeek-R1 exhibit substantial performance degradation under stress testing. Crucially, REST demonstrates stronger discriminative power than existing benchmarks, revealing pronounced performance differences among models that exhibit similar, near-ceiling performance under single-question evaluations. Some key mechanistic insights emerge from our analysis: (1) the "overthinking trap" is a critical factor contributing to the performance degradation; (2) the models trained with "long2short" technique preserve more accuracy of their single-problem performance under REST, outperforming standard-trained counterparts. These results establish REST as a cost-efficient, future-proof evaluation paradigm that better reflects real-world reasoning demands while reducing reliance on continuous human annotation.

  • 8 authors
·
Jul 14 2

Query Understanding via Intent Description Generation

Query understanding is a fundamental problem in information retrieval (IR), which has attracted continuous attention through the past decades. Many different tasks have been proposed for understanding users' search queries, e.g., query classification or query clustering. However, it is not that precise to understand a search query at the intent class/cluster level due to the loss of many detailed information. As we may find in many benchmark datasets, e.g., TREC and SemEval, queries are often associated with a detailed description provided by human annotators which clearly describes its intent to help evaluate the relevance of the documents. If a system could automatically generate a detailed and precise intent description for a search query, like human annotators, that would indicate much better query understanding has been achieved. In this paper, therefore, we propose a novel Query-to-Intent-Description (Q2ID) task for query understanding. Unlike those existing ranking tasks which leverage the query and its description to compute the relevance of documents, Q2ID is a reverse task which aims to generate a natural language intent description based on both relevant and irrelevant documents of a given query. To address this new task, we propose a novel Contrastive Generation model, namely CtrsGen for short, to generate the intent description by contrasting the relevant documents with the irrelevant documents given a query. We demonstrate the effectiveness of our model by comparing with several state-of-the-art generation models on the Q2ID task. We discuss the potential usage of such Q2ID technique through an example application.

  • 5 authors
·
Aug 25, 2020

LLM+Reasoning+Planning for supporting incomplete user queries in presence of APIs

Recent availability of Large Language Models (LLMs) has led to the development of numerous LLM-based approaches aimed at providing natural language interfaces for various end-user tasks. These end-user tasks in turn can typically be accomplished by orchestrating a given set of APIs. In practice, natural language task requests (user queries) are often incomplete, i.e., they may not contain all the information required by the APIs. While LLMs excel at natural language processing (NLP) tasks, they frequently hallucinate on missing information or struggle with orchestrating the APIs. The key idea behind our proposed approach is to leverage logical reasoning and classical AI planning along with an LLM for accurately answering user queries including identification and gathering of any missing information in these queries. Our approach uses an LLM and ASP (Answer Set Programming) solver to translate a user query to a representation in Planning Domain Definition Language (PDDL) via an intermediate representation in ASP. We introduce a special API "get_info_api" for gathering missing information. We model all the APIs as PDDL actions in a way that supports dataflow between the APIs. Our approach then uses a classical AI planner to generate an orchestration of API calls (including calls to get_info_api) to answer the user query. Our evaluation results show that our approach significantly outperforms a pure LLM based approach by achieving over 95\% success rate in most cases on a dataset containing complete and incomplete single goal and multi-goal queries where the multi-goal queries may or may not require dataflow among the APIs.

  • 4 authors
·
May 20, 2024

Session-level Normalization and Click-through Data Enhancement for Session-based Evaluation

Since a user usually has to issue a sequence of queries and examine multiple documents to resolve a complex information need in a search session, researchers have paid much attention to evaluating search systems at the session level rather than the single-query level. Most existing session-level metrics evaluate each query separately and then aggregate the query-level scores using a session-level weighting function. The assumptions behind these metrics are that all queries in the session should be involved, and their orders are fixed. However, if a search system could make the user satisfied with her first few queries, she may not need any subsequent queries. Besides, in most real-world search scenarios, due to a lack of explicit feedback from real users, we can only leverage some implicit feedback, such as users' clicks, as relevance labels for offline evaluation. Such implicit feedback might be different from the real relevance in a search session as some documents may be omitted in the previous query but identified in the later reformulations. To address the above issues, we make two assumptions about session-based evaluation, which explicitly describe an ideal session-search system and how to enhance click-through data in computing session-level evaluation metrics. Based on our assumptions, we design a session-level metric called Normalized U-Measure (NUM). NUM evaluates a session as a whole and utilizes an ideal session to normalize the result of the actual session. Besides, it infers session-level relevance labels based on implicit feedback. Experiments on two public datasets demonstrate the effectiveness of NUM by comparing it with existing session-based metrics in terms of correlation with user satisfaction and intuitiveness. We also conduct ablation studies to explore whether these assumptions hold.

  • 3 authors
·
Jan 22, 2024

KITAB: Evaluating LLMs on Constraint Satisfaction for Information Retrieval

We study the ability of state-of-the art models to answer constraint satisfaction queries for information retrieval (e.g., 'a list of ice cream shops in San Diego'). In the past, such queries were considered to be tasks that could only be solved via web-search or knowledge bases. More recently, large language models (LLMs) have demonstrated initial emergent abilities in this task. However, many current retrieval benchmarks are either saturated or do not measure constraint satisfaction. Motivated by rising concerns around factual incorrectness and hallucinations of LLMs, we present KITAB, a new dataset for measuring constraint satisfaction abilities of language models. KITAB consists of book-related data across more than 600 authors and 13,000 queries, and also offers an associated dynamic data collection and constraint verification approach for acquiring similar test data for other authors. Our extended experiments on GPT4 and GPT3.5 characterize and decouple common failure modes across dimensions such as information popularity, constraint types, and context availability. Results show that in the absence of context, models exhibit severe limitations as measured by irrelevant information, factual errors, and incompleteness, many of which exacerbate as information popularity decreases. While context availability mitigates irrelevant information, it is not helpful for satisfying constraints, identifying fundamental barriers to constraint satisfaction. We open source our contributions to foster further research on improving constraint satisfaction abilities of future models.

  • 8 authors
·
Oct 24, 2023 1

FIRESPARQL: A LLM-based Framework for SPARQL Query Generation over Scholarly Knowledge Graphs

Question answering over Scholarly Knowledge Graphs (SKGs) remains a challenging task due to the complexity of scholarly content and the intricate structure of these graphs. Large Language Model (LLM) approaches could be used to translate natural language questions (NLQs) into SPARQL queries; however, these LLM-based approaches struggle with SPARQL query generation due to limited exposure to SKG-specific content and the underlying schema. We identified two main types of errors in the LLM-generated SPARQL queries: (i) structural inconsistencies, such as missing or redundant triples in the queries, and (ii) semantic inaccuracies, where incorrect entities or properties are shown in the queries despite a correct query structure. To address these issues, we propose FIRESPARQL, a modular framework that supports fine-tuned LLMs as a core component, with optional context provided via retrieval-augmented generation (RAG) and a SPARQL query correction layer. We evaluate the framework on the SciQA Benchmark using various configurations (zero-shot, zero-shot with RAG, one-shot, fine-tuning, and fine-tuning with RAG) and compare the performance with baseline and state-of-the-art approaches. We measure query accuracy using BLEU and ROUGE metrics, and query result accuracy using relaxed exact match(RelaxedEM), with respect to the gold standards containing the NLQs, SPARQL queries, and the results of the queries. Experimental results demonstrate that fine-tuning achieves the highest overall performance, reaching 0.90 ROUGE-L for query accuracy and 0.85 RelaxedEM for result accuracy on the test set.

  • 3 authors
·
Aug 14

Conformal Information Pursuit for Interactively Guiding Large Language Models

A significant use case of instruction-finetuned Large Language Models (LLMs) is to solve question-answering tasks interactively. In this setting, an LLM agent is tasked with making a prediction by sequentially querying relevant information from the user, as opposed to a single-turn conversation. This paper explores sequential querying strategies that aim to minimize the expected number of queries. One such strategy is Information Pursuit (IP), a greedy algorithm that at each iteration selects the query that maximizes information gain or equivalently minimizes uncertainty. However, obtaining accurate estimates of mutual information or conditional entropy for LLMs is very difficult in practice due to over- or under-confident LLM probabilities, which leads to suboptimal query selection and predictive performance. To better estimate the uncertainty at each iteration, we propose Conformal Information Pursuit (C-IP), an alternative approach to sequential information gain based on conformal prediction sets. More specifically, C-IP leverages a relationship between prediction sets and conditional entropy at each iteration to estimate uncertainty based on the average size of conformal prediction sets. In contrast to conditional entropy, we find that conformal prediction sets are a distribution-free and robust method of measuring uncertainty. Experiments with 20 Questions show that C-IP obtains better predictive performance and shorter query-answer chains compared to previous approaches to IP and uncertainty-based chain-of-thought methods. Furthermore, extending to an interactive medical setting between a doctor and a patient on the MediQ dataset, C-IP achieves competitive performance with direct single-turn prediction while offering greater interpretability.

  • 5 authors
·
Jul 3

Query Rewriting via Large Language Models

Query rewriting is one of the most effective techniques for coping with poorly written queries before passing them down to the query optimizer. Manual rewriting is not scalable, as it is error-prone and requires deep expertise. Similarly, traditional query rewriting algorithms can only handle a small subset of queries: rule-based techniques do not generalize to new query patterns and synthesis-based techniques cannot handle complex queries. Fortunately, the rise of Large Language Models (LLMs), equipped with broad general knowledge and advanced reasoning capabilities, has created hopes for solving some of these previously open problems. In this paper, we present GenRewrite, the first holistic system that leverages LLMs for query rewriting. We introduce the notion of Natural Language Rewrite Rules (NLR2s), and use them as hints to the LLM but also a means for transferring knowledge from rewriting one query to another, and thus becoming smarter and more effective over time. We present a novel counterexample-guided technique that iteratively corrects the syntactic and semantic errors in the rewritten query, significantly reducing the LLM costs and the manual effort required for verification. GenRewrite speeds up 22 out of 99 TPC queries (the most complex public benchmark) by more than 2x, which is 2.5x--3.2x higher coverage than state-of-the-art traditional query rewriting and 2.1x higher than the out-of-the-box LLM baseline.

  • 2 authors
·
Mar 13, 2024 1

Maybe you are looking for CroQS: Cross-modal Query Suggestion for Text-to-Image Retrieval

Query suggestion, a technique widely adopted in information retrieval, enhances system interactivity and the browsing experience of document collections. In cross-modal retrieval, many works have focused on retrieving relevant items from natural language queries, while few have explored query suggestion solutions. In this work, we address query suggestion in cross-modal retrieval, introducing a novel task that focuses on suggesting minimal textual modifications needed to explore visually consistent subsets of the collection, following the premise of ''Maybe you are looking for''. To facilitate the evaluation and development of methods, we present a tailored benchmark named CroQS. This dataset comprises initial queries, grouped result sets, and human-defined suggested queries for each group. We establish dedicated metrics to rigorously evaluate the performance of various methods on this task, measuring representativeness, cluster specificity, and similarity of the suggested queries to the original ones. Baseline methods from related fields, such as image captioning and content summarization, are adapted for this task to provide reference performance scores. Although relatively far from human performance, our experiments reveal that both LLM-based and captioning-based methods achieve competitive results on CroQS, improving the recall on cluster specificity by more than 115% and representativeness mAP by more than 52% with respect to the initial query. The dataset, the implementation of the baseline methods and the notebooks containing our experiments are available here: https://paciosoft.com/CroQS-benchmark/

  • 6 authors
·
Dec 18, 2024

Let Multimodal Embedders Learn When to Augment Query via Adaptive Query Augmentation

Query augmentation makes queries more meaningful by appending further information to the queries to find relevant documents. Current studies have proposed Large Language Model (LLM)-based embedders, which learn representation for embedding and generation for query augmentation in a multi-task manner by leveraging the generative capabilities of LLM. During inference, these jointly trained embedders have conducted query augmentation followed by embedding, showing effective results. However, augmenting every query leads to substantial embedding latency and query augmentation can be detrimental to performance for some queries. Also, previous methods have not been explored in multimodal environments. To tackle these problems, we propose M-Solomon, a universal multimodal embedder that can adaptively determine when to augment queries. Our approach first divides the queries of the training datasets into two groups at the dataset level. One includes queries that require augmentation and the other includes queries that do not. Then, we introduces a synthesis process that generates appropriate augmentations for queries that require them by leveraging a powerful Multimodal LLM (MLLM). Next, we present adaptive query augmentation. Through this step, M-Solomon can conduct query augmentation only when necessary by learning to generate synthetic augmentations with the prefix /augment for queries that demand them and to generate the simple string /embed for others. Experimental results showed that M-Solomon not only surpassed the baseline without augmentation by a large margin but also outperformed the baseline that always used augmentation, providing much faster embedding latency.

  • 5 authors
·
Nov 4 2

LoL: A Comparative Regularization Loss over Query Reformulation Losses for Pseudo-Relevance Feedback

Pseudo-relevance feedback (PRF) has proven to be an effective query reformulation technique to improve retrieval accuracy. It aims to alleviate the mismatch of linguistic expressions between a query and its potential relevant documents. Existing PRF methods independently treat revised queries originating from the same query but using different numbers of feedback documents, resulting in severe query drift. Without comparing the effects of two different revisions from the same query, a PRF model may incorrectly focus on the additional irrelevant information increased in the more feedback, and thus reformulate a query that is less effective than the revision using the less feedback. Ideally, if a PRF model can distinguish between irrelevant and relevant information in the feedback, the more feedback documents there are, the better the revised query will be. To bridge this gap, we propose the Loss-over-Loss (LoL) framework to compare the reformulation losses between different revisions of the same query during training. Concretely, we revise an original query multiple times in parallel using different amounts of feedback and compute their reformulation losses. Then, we introduce an additional regularization loss on these reformulation losses to penalize revisions that use more feedback but gain larger losses. With such comparative regularization, the PRF model is expected to learn to suppress the extra increased irrelevant information by comparing the effects of different revised queries. Further, we present a differentiable query reformulation method to implement this framework. This method revises queries in the vector space and directly optimizes the retrieval performance of query vectors, applicable for both sparse and dense retrieval models. Empirical evaluation demonstrates the effectiveness and robustness of our method for two typical sparse and dense retrieval models.

  • 5 authors
·
Apr 25, 2022

Semantic Decomposition of Question and SQL for Text-to-SQL Parsing

Text-to-SQL semantic parsing faces challenges in generalizing to cross-domain and complex queries. Recent research has employed a question decomposition strategy to enhance the parsing of complex SQL queries. However, this strategy encounters two major obstacles: (1) existing datasets lack question decomposition; (2) due to the syntactic complexity of SQL, most complex queries cannot be disentangled into sub-queries that can be readily recomposed. To address these challenges, we propose a new modular Query Plan Language (QPL) that systematically decomposes SQL queries into simple and regular sub-queries. We develop a translator from SQL to QPL by leveraging analysis of SQL server query optimization plans, and we augment the Spider dataset with QPL programs. Experimental results demonstrate that the modular nature of QPL benefits existing semantic-parsing architectures, and training text-to-QPL parsers is more effective than text-to-SQL parsing for semantically equivalent queries. The QPL approach offers two additional advantages: (1) QPL programs can be paraphrased as simple questions, which allows us to create a dataset of (complex question, decomposed questions). Training on this dataset, we obtain a Question Decomposer for data retrieval that is sensitive to database schemas. (2) QPL is more accessible to non-experts for complex queries, leading to more interpretable output from the semantic parser.

  • 5 authors
·
Oct 20, 2023

ScIRGen: Synthesize Realistic and Large-Scale RAG Dataset for Scientific Research

Scientific researchers need intensive information about datasets to effectively evaluate and develop theories and methodologies. The information needs regarding datasets are implicitly embedded in particular research tasks, rather than explicitly expressed in search queries. However, existing scientific retrieval and question-answering (QA) datasets typically address straightforward questions, which do not align with the distribution of real-world research inquiries. To bridge this gap, we developed ScIRGen, a dataset generation framework for scientific QA \& retrieval that more accurately reflects the information needs of professional science researchers, and uses it to create a large-scale scientific retrieval-augmented generation (RAG) dataset with realistic queries, datasets and papers. Technically, we designed a dataset-oriented information extraction method that leverages academic papers to augment the dataset representation. We then proposed a question generation framework by employing cognitive taxonomy to ensure the quality of synthesized questions. We also design a method to automatically filter synthetic answers based on the perplexity shift of LLMs, which is highly aligned with human judgment of answers' validity. Collectively, these methodologies culminated in the creation of the 61k QA dataset, ScIRGen-Geo. We benchmarked representative methods on the ScIRGen-Geo dataset for their question-answering and retrieval capabilities, finding out that current methods still suffer from reasoning from complex questions. This work advances the development of more sophisticated tools to support the intricate information needs of the scientific community.

  • 10 authors
·
Jun 9

Improving Retrieval-Augmented Generation in Medicine with Iterative Follow-up Questions

The emergent abilities of large language models (LLMs) have demonstrated great potential in solving medical questions. They can possess considerable medical knowledge, but may still hallucinate and are inflexible in the knowledge updates. While Retrieval-Augmented Generation (RAG) has been proposed to enhance the medical question-answering capabilities of LLMs with external knowledge bases, it may still fail in complex cases where multiple rounds of information-seeking are required. To address such an issue, we propose iterative RAG for medicine (i-MedRAG), where LLMs can iteratively ask follow-up queries based on previous information-seeking attempts. In each iteration of i-MedRAG, the follow-up queries will be answered by a vanilla RAG system and they will be further used to guide the query generation in the next iteration. Our experiments show the improved performance of various LLMs brought by i-MedRAG compared with vanilla RAG on complex questions from clinical vignettes in the United States Medical Licensing Examination (USMLE), as well as various knowledge tests in the Massive Multitask Language Understanding (MMLU) dataset. Notably, our zero-shot i-MedRAG outperforms all existing prompt engineering and fine-tuning methods on GPT-3.5, achieving an accuracy of 69.68\% on the MedQA dataset. In addition, we characterize the scaling properties of i-MedRAG with different iterations of follow-up queries and different numbers of queries per iteration. Our case studies show that i-MedRAG can flexibly ask follow-up queries to form reasoning chains, providing an in-depth analysis of medical questions. To the best of our knowledge, this is the first-of-its-kind study on incorporating follow-up queries into medical RAG.

  • 6 authors
·
Aug 1, 2024

From Local to Global: A Graph RAG Approach to Query-Focused Summarization

The use of retrieval-augmented generation (RAG) to retrieve relevant information from an external knowledge source enables large language models (LLMs) to answer questions over private and/or previously unseen document collections. However, RAG fails on global questions directed at an entire text corpus, such as "What are the main themes in the dataset?", since this is inherently a query-focused summarization (QFS) task, rather than an explicit retrieval task. Prior QFS methods, meanwhile, fail to scale to the quantities of text indexed by typical RAG systems. To combine the strengths of these contrasting methods, we propose a Graph RAG approach to question answering over private text corpora that scales with both the generality of user questions and the quantity of source text to be indexed. Our approach uses an LLM to build a graph-based text index in two stages: first to derive an entity knowledge graph from the source documents, then to pregenerate community summaries for all groups of closely-related entities. Given a question, each community summary is used to generate a partial response, before all partial responses are again summarized in a final response to the user. For a class of global sensemaking questions over datasets in the 1 million token range, we show that Graph RAG leads to substantial improvements over a na\"ive RAG baseline for both the comprehensiveness and diversity of generated answers. An open-source, Python-based implementation of both global and local Graph RAG approaches is forthcoming at https://aka.ms/graphrag.

  • 8 authors
·
Apr 24, 2024

When to Retrieve: Teaching LLMs to Utilize Information Retrieval Effectively

In this paper, we demonstrate how Large Language Models (LLMs) can effectively learn to use an off-the-shelf information retrieval (IR) system specifically when additional context is required to answer a given question. Given the performance of IR systems, the optimal strategy for question answering does not always entail external information retrieval; rather, it often involves leveraging the parametric memory of the LLM itself. Prior research has identified this phenomenon in the PopQA dataset, wherein the most popular questions are effectively addressed using the LLM's parametric memory, while less popular ones require IR system usage. Following this, we propose a tailored training approach for LLMs, leveraging existing open-domain question answering datasets. Here, LLMs are trained to generate a special token, <RET>, when they do not know the answer to a question. Our evaluation of the Adaptive Retrieval LLM (Adapt-LLM) on the PopQA dataset showcases improvements over the same LLM under three configurations: (i) retrieving information for all the questions, (ii) using always the parametric memory of the LLM, and (iii) using a popularity threshold to decide when to use a retriever. Through our analysis, we demonstrate that Adapt-LLM is able to generate the <RET> token when it determines that it does not know how to answer a question, indicating the need for IR, while it achieves notably high accuracy levels when it chooses to rely only on its parametric memory.

  • 3 authors
·
Apr 30, 2024

Guarded Query Routing for Large Language Models

Query routing, the task to route user queries to different large language model (LLM) endpoints, can be considered as a text classification problem. However, out-of-distribution queries must be handled properly, as those could be about unrelated domains, queries in other languages, or even contain unsafe text. Here, we thus study a guarded query routing problem, for which we first introduce the Guarded Query Routing Benchmark (GQR-Bench, released as Python package gqr), covers three exemplary target domains (law, finance, and healthcare), and seven datasets to test robustness against out-of-distribution queries. We then use GQR-Bench to contrast the effectiveness and efficiency of LLM-based routing mechanisms (GPT-4o-mini, Llama-3.2-3B, and Llama-3.1-8B), standard LLM-based guardrail approaches (LlamaGuard and NVIDIA NeMo Guardrails), continuous bag-of-words classifiers (WideMLP, fastText), and traditional machine learning models (SVM, XGBoost). Our results show that WideMLP, enhanced with out-of-domain detection capabilities, yields the best trade-off between accuracy (88%) and speed (<4ms). The embedding-based fastText excels at speed (<1ms) with acceptable accuracy (80%), whereas LLMs yield the highest accuracy (91%) but are comparatively slow (62ms for local Llama-3.1:8B and 669ms for remote GPT-4o-mini calls). Our findings challenge the automatic reliance on LLMs for (guarded) query routing and provide concrete recommendations for practical applications. Source code is available: https://github.com/williambrach/gqr.

  • 5 authors
·
May 20

Hybrid Deep Searcher: Integrating Parallel and Sequential Search Reasoning

Large reasoning models (LRMs) have demonstrated strong performance in complex, multi-step reasoning tasks. Existing methods enhance LRMs by sequentially integrating external knowledge retrieval; models iteratively generate queries, retrieve external information, and progressively reason over this information. However, purely sequential querying increases inference latency and context length, diminishing coherence and potentially reducing accuracy. To address these limitations, we introduce HDS-QA (Hybrid Deep Search QA), a synthetic dataset automatically generated from Natural Questions, explicitly designed to train LRMs to distinguish parallelizable from sequential queries. HDS-QA comprises hybrid-hop questions that combine parallelizable independent subqueries (executable simultaneously) and sequentially dependent subqueries (requiring step-by-step resolution), along with synthetic reasoning-querying-retrieval paths involving parallel queries. We fine-tune an LRM using HDS-QA, naming the model HybridDeepSearcher, which outperforms state-of-the-art baselines across multiple benchmarks, notably achieving +15.9 and +11.5 F1 on FanOutQA and a subset of BrowseComp, respectively, both requiring comprehensive and exhaustive search. Experimental results highlight two key advantages: HybridDeepSearcher reaches comparable accuracy with fewer search turns, significantly reducing inference latency, and it effectively scales as more turns are permitted. These results demonstrate the efficiency, scalability, and effectiveness of explicitly training LRMs to leverage hybrid parallel and sequential querying.

  • 9 authors
·
Aug 26

LitSearch: A Retrieval Benchmark for Scientific Literature Search

Literature search questions, such as "where can I find research on the evaluation of consistency in generated summaries?" pose significant challenges for modern search engines and retrieval systems. These questions often require a deep understanding of research concepts and the ability to reason over entire articles. In this work, we introduce LitSearch, a retrieval benchmark comprising 597 realistic literature search queries about recent ML and NLP papers. LitSearch is constructed using a combination of (1) questions generated by GPT-4 based on paragraphs containing inline citations from research papers and (2) questions about recently published papers, manually written by their authors. All LitSearch questions were manually examined or edited by experts to ensure high quality. We extensively benchmark state-of-the-art retrieval models and also evaluate two LLM-based reranking pipelines. We find a significant performance gap between BM25 and state-of-the-art dense retrievers, with a 24.8% difference in absolute recall@5. The LLM-based reranking strategies further improve the best-performing dense retriever by 4.4%. Additionally, commercial search engines and research tools like Google Search perform poorly on LitSearch, lagging behind the best dense retriever by 32 points. Taken together, these results show that LitSearch is an informative new testbed for retrieval systems while catering to a real-world use case.

  • 6 authors
·
Jul 10, 2024

Doing More with Less -- Implementing Routing Strategies in Large Language Model-Based Systems: An Extended Survey

Large Language Models (LLM)-based systems, i.e. interconnected elements that include an LLM as a central component (e.g., conversational agents), are typically monolithic static architectures that rely on a single LLM for all user queries. However, they often require different preprocessing strategies, levels of reasoning, or knowledge. Generalist LLMs (i.e. GPT-4), trained on very large multi-topic corpora, can perform well in a variety of tasks. However, they require significant financial, energy, and hardware resources that may not be justified for basic tasks. This implies potentially investing in unnecessary costs for a given query. To overcome this problem, a routing mechanism routes user queries to the most suitable components, such as smaller LLMs or experts in specific topics. This approach may improve response quality while minimising costs. Routing can be expanded to other components of the conversational agent architecture, such as the selection of optimal embedding strategies. This paper explores key considerations for integrating routing into LLM-based systems, focusing on resource management, cost definition, and strategy selection. Our main contributions include a formalisation of the problem, a novel taxonomy of existing approaches emphasising relevance and resource efficiency, and a comparative analysis of these strategies in relation to industry practices. Finally, we identify critical challenges and directions for future research.

  • 6 authors
·
Feb 1

LargePiG: Your Large Language Model is Secretly a Pointer Generator

Recent research on query generation has focused on using Large Language Models (LLMs), which despite bringing state-of-the-art performance, also introduce issues with hallucinations in the generated queries. In this work, we introduce relevance hallucination and factuality hallucination as a new typology for hallucination problems brought by query generation based on LLMs. We propose an effective way to separate content from form in LLM-generated queries, which preserves the factual knowledge extracted and integrated from the inputs and compiles the syntactic structure, including function words, using the powerful linguistic capabilities of the LLM. Specifically, we introduce a model-agnostic and training-free method that turns the Large Language Model into a Pointer-Generator (LargePiG), where the pointer attention distribution leverages the LLM's inherent attention weights, and the copy probability is derived from the difference between the vocabulary distribution of the model's high layers and the last layer. To validate the effectiveness of LargePiG, we constructed two datasets for assessing the hallucination problems in query generation, covering both document and video scenarios. Empirical studies on various LLMs demonstrated the superiority of LargePiG on both datasets. Additional experiments also verified that LargePiG could reduce hallucination in large vision language models and improve the accuracy of document-based question-answering and factuality evaluation tasks.

  • 7 authors
·
Oct 15, 2024

Context Aware Query Rewriting for Text Rankers using LLM

Query rewriting refers to an established family of approaches that are applied to underspecified and ambiguous queries to overcome the vocabulary mismatch problem in document ranking. Queries are typically rewritten during query processing time for better query modelling for the downstream ranker. With the advent of large-language models (LLMs), there have been initial investigations into using generative approaches to generate pseudo documents to tackle this inherent vocabulary gap. In this work, we analyze the utility of LLMs for improved query rewriting for text ranking tasks. We find that there are two inherent limitations of using LLMs as query re-writers -- concept drift when using only queries as prompts and large inference costs during query processing. We adopt a simple, yet surprisingly effective, approach called context aware query rewriting (CAR) to leverage the benefits of LLMs for query understanding. Firstly, we rewrite ambiguous training queries by context-aware prompting of LLMs, where we use only relevant documents as context.Unlike existing approaches, we use LLM-based query rewriting only during the training phase. Eventually, a ranker is fine-tuned on the rewritten queries instead of the original queries during training. In our extensive experiments, we find that fine-tuning a ranker using re-written queries offers a significant improvement of up to 33% on the passage ranking task and up to 28% on the document ranking task when compared to the baseline performance of using original queries.

  • 4 authors
·
Aug 31, 2023

On the Theoretical Limitations of Embedding-Based Retrieval

Vector embeddings have been tasked with an ever-increasing set of retrieval tasks over the years, with a nascent rise in using them for reasoning, instruction-following, coding, and more. These new benchmarks push embeddings to work for any query and any notion of relevance that could be given. While prior works have pointed out theoretical limitations of vector embeddings, there is a common assumption that these difficulties are exclusively due to unrealistic queries, and those that are not can be overcome with better training data and larger models. In this work, we demonstrate that we may encounter these theoretical limitations in realistic settings with extremely simple queries. We connect known results in learning theory, showing that the number of top-k subsets of documents capable of being returned as the result of some query is limited by the dimension of the embedding. We empirically show that this holds true even if we restrict to k=2, and directly optimize on the test set with free parameterized embeddings. We then create a realistic dataset called LIMIT that stress tests models based on these theoretical results, and observe that even state-of-the-art models fail on this dataset despite the simple nature of the task. Our work shows the limits of embedding models under the existing single vector paradigm and calls for future research to develop methods that can resolve this fundamental limitation.

  • 4 authors
·
Aug 28 1

Dense Text Retrieval based on Pretrained Language Models: A Survey

Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user's queries in natural language. From classic retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn the text representation and model the relevance matching. The recent success of pretrained language models (PLMs) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is referred to as dense retrieval, since it employs dense vectors (a.k.a., embeddings) to represent the texts. Considering the rapid progress on dense retrieval, in this survey, we systematically review the recent advances on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related work by four major aspects, including architecture, training, indexing and integration, and summarize the mainstream techniques for each aspect. We thoroughly survey the literature, and include 300+ related reference papers on dense retrieval. To support our survey, we create a website for providing useful resources, and release a code repertory and toolkit for implementing dense retrieval models. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval.

  • 4 authors
·
Nov 27, 2022

Chatting with Logs: An exploratory study on Finetuning LLMs for LogQL

Logging is a critical function in modern distributed applications, but the lack of standardization in log query languages and formats creates significant challenges. Developers currently must write ad hoc queries in platform-specific languages, requiring expertise in both the query language and application-specific log details -- an impractical expectation given the variety of platforms and volume of logs and applications. While generating these queries with large language models (LLMs) seems intuitive, we show that current LLMs struggle with log-specific query generation due to the lack of exposure to domain-specific knowledge. We propose a novel natural language (NL) interface to address these inconsistencies and aide log query generation, enabling developers to create queries in a target log query language by providing NL inputs. We further introduce ~NL2QL, a manually annotated, real-world dataset of natural language questions paired with corresponding LogQL queries spread across three log formats, to promote the training and evaluation of NL-to-loq query systems. Using NL2QL, we subsequently fine-tune and evaluate several state of the art LLMs, and demonstrate their improved capability to generate accurate LogQL queries. We perform further ablation studies to demonstrate the effect of additional training data, and the transferability across different log formats. In our experiments, we find up to 75\% improvement of finetuned models to generate LogQL queries compared to non finetuned models.

  • 8 authors
·
Dec 4, 2024

Query Rewriting via LLMs

Query rewriting is a classical technique for transforming complex declarative SQL queries into ``lean'' equivalents that are conducive to (a) faster execution from a performance perspective, and (b) better understanding from a developer perspective. The rewriting is typically achieved via transformation rules, but these rules are limited in scope and difficult to update in a production system. In recent times, LLM-based techniques have also been mooted, but they are prone to both semantic and syntactic errors. We investigate here, how the remarkable cognitive capabilities of LLMs can be leveraged for performant query rewriting while incorporating safeguards and optimizations to ensure correctness and efficiency. Our study shows that these goals can be progressively achieved through incorporation of (a) an ensemble suite of basic prompts, (b) database-sensitive prompts via redundancy removal and selectivity-based rewriting rules, and (c) LLM token probability-guided rewrite paths. Further, a suite of statistical and logic-based tools can be used to guard against errors produced by the model. We have implemented the above LLM-infused techniques in the LITHE system, and evaluated complex analytic queries from multiple benchmarks on contemporary database platforms. The results show significant improvements over SOTA rewriting techniques -- for instance, on TPC-DS, LITHE constructed productive (>1.5x speedup) rewrites for two-thirds of the query suite, delivering four times more coverage than SOTA. Further, the geometric mean of its estimated execution speedups was an order-of-magnitude jump over SOTA performance. In essence, LITHE offers a potent and robust LLM-based intermediary between enterprise applications and database engines.

  • 4 authors
·
Feb 18

Resources for Brewing BEIR: Reproducible Reference Models and an Official Leaderboard

BEIR is a benchmark dataset for zero-shot evaluation of information retrieval models across 18 different domain/task combinations. In recent years, we have witnessed the growing popularity of a representation learning approach to building retrieval models, typically using pretrained transformers in a supervised setting. This naturally begs the question: How effective are these models when presented with queries and documents that differ from the training data? Examples include searching in different domains (e.g., medical or legal text) and with different types of queries (e.g., keywords vs. well-formed questions). While BEIR was designed to answer these questions, our work addresses two shortcomings that prevent the benchmark from achieving its full potential: First, the sophistication of modern neural methods and the complexity of current software infrastructure create barriers to entry for newcomers. To this end, we provide reproducible reference implementations that cover the two main classes of approaches: learned dense and sparse models. Second, there does not exist a single authoritative nexus for reporting the effectiveness of different models on BEIR, which has led to difficulty in comparing different methods. To remedy this, we present an official self-service BEIR leaderboard that provides fair and consistent comparisons of retrieval models. By addressing both shortcomings, our work facilitates future explorations in a range of interesting research questions that BEIR enables.

  • 6 authors
·
Jun 12, 2023

Reinforcement Learning for Optimizing RAG for Domain Chatbots

With the advent of Large Language Models (LLM), conversational assistants have become prevalent for domain use cases. LLMs acquire the ability to contextual question answering through training, and Retrieval Augmented Generation (RAG) further enables the bot to answer domain-specific questions. This paper describes a RAG-based approach for building a chatbot that answers user's queries using Frequently Asked Questions (FAQ) data. We train an in-house retrieval embedding model using infoNCE loss, and experimental results demonstrate that the in-house model works significantly better than the well-known general-purpose public embedding model, both in terms of retrieval accuracy and Out-of-Domain (OOD) query detection. As an LLM, we use an open API-based paid ChatGPT model. We noticed that a previously retrieved-context could be used to generate an answer for specific patterns/sequences of queries (e.g., follow-up queries). Hence, there is a scope to optimize the number of LLM tokens and cost. Assuming a fixed retrieval model and an LLM, we optimize the number of LLM tokens using Reinforcement Learning (RL). Specifically, we propose a policy-based model external to the RAG, which interacts with the RAG pipeline through policy actions and updates the policy to optimize the cost. The policy model can perform two actions: to fetch FAQ context or skip retrieval. We use the open API-based GPT-4 as the reward model. We then train a policy model using policy gradient on multiple training chat sessions. As a policy model, we experimented with a public gpt-2 model and an in-house BERT model. With the proposed RL-based optimization combined with similarity threshold, we are able to achieve significant cost savings while getting a slightly improved accuracy. Though we demonstrate results for the FAQ chatbot, the proposed RL approach is generic and can be experimented with any existing RAG pipeline.

  • 4 authors
·
Jan 9, 2024

Neural Databases

In recent years, neural networks have shown impressive performance gains on long-standing AI problems, and in particular, answering queries from natural language text. These advances raise the question of whether they can be extended to a point where we can relax the fundamental assumption of database management, namely, that our data is represented as fields of a pre-defined schema. This paper presents a first step in answering that question. We describe NeuralDB, a database system with no pre-defined schema, in which updates and queries are given in natural language. We develop query processing techniques that build on the primitives offered by the state of the art Natural Language Processing methods. We begin by demonstrating that at the core, recent NLP transformers, powered by pre-trained language models, can answer select-project-join queries if they are given the exact set of relevant facts. However, they cannot scale to non-trivial databases and cannot perform aggregation queries. Based on these findings, we describe a NeuralDB architecture that runs multiple Neural SPJ operators in parallel, each with a set of database sentences that can produce one of the answers to the query. The result of these operators is fed to an aggregation operator if needed. We describe an algorithm that learns how to create the appropriate sets of facts to be fed into each of the Neural SPJ operators. Importantly, this algorithm can be trained by the Neural SPJ operator itself. We experimentally validate the accuracy of NeuralDB and its components, showing that we can answer queries over thousands of sentences with very high accuracy.

  • 6 authors
·
Oct 14, 2020

Large Language Models for Information Retrieval: A Survey

As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field.

  • 8 authors
·
Aug 14, 2023

REAPER: Reasoning based Retrieval Planning for Complex RAG Systems

Complex dialog systems often use retrieved evidence to facilitate factual responses. Such RAG (Retrieval Augmented Generation) systems retrieve from massive heterogeneous data stores that are usually architected as multiple indexes or APIs instead of a single monolithic source. For a given query, relevant evidence needs to be retrieved from one or a small subset of possible retrieval sources. Complex queries can even require multi-step retrieval. For example, a conversational agent on a retail site answering customer questions about past orders will need to retrieve the appropriate customer order first and then the evidence relevant to the customer's question in the context of the ordered product. Most RAG Agents handle such Chain-of-Thought (CoT) tasks by interleaving reasoning and retrieval steps. However, each reasoning step directly adds to the latency of the system. For large models (>100B parameters) this latency cost is significant -- in the order of multiple seconds. Multi-agent systems may classify the query to a single Agent associated with a retrieval source, though this means that a (small) classification model dictates the performance of a large language model. In this work we present REAPER (REAsoning-based PlannER) - an LLM based planner to generate retrieval plans in conversational systems. We show significant gains in latency over Agent-based systems and are able to scale easily to new and unseen use cases as compared to classification-based planning. Though our method can be applied to any RAG system, we show our results in the context of Rufus -- Amazon's conversational shopping assistant.

  • 6 authors
·
Jul 26, 2024

Fine Tuning LLM for Enterprise: Practical Guidelines and Recommendations

There is a compelling necessity from enterprises for fine tuning LLMs (Large Language Models) o get them trained on proprietary domain knowledge. The challenge is to imbibe the LLMs with domain specific knowledge using the most optimial resource and cost and in the best possible time. Many enterprises rely on RAG (Retrieval Augmented Generation) which does not need LLMs to be ine-tuned but they are limited by the quality of vector databases and their retrieval capabilities rather than the intrinsic capabilities of the LLMs themselves. In our current work we focus on fine tuning LLaMA, an open source LLM using proprietary documents and code from an enterprise repository and use the fine tuned models to evaluate the quality of responses. As part of this work, we aim to guide beginners on how to start with fine tuning an LLM for documentation and code by making educated guesses on size of GPU required and options that are available for formatting the data. We also propose pre processing recipes for both documentation and code to prepare dataset in different formats. The proposed methods of data preparation for document datasets are forming paragraph chunks, forming question and answer pairs and forming keyword and paragraph chunk pairs. For code dataset we propose forming summary and function pairs. Further, we qualitatively evaluate the results of the models for domain specific queries. Finally, we also propose practical guidelines and recommendations for fine tuning LLMs.

  • 4 authors
·
Mar 23, 2024

Sleep-time Compute: Beyond Inference Scaling at Test-time

Scaling test-time compute has emerged as a key ingredient for enabling large language models (LLMs) to solve difficult problems, but comes with high latency and inference cost. We introduce sleep-time compute, which allows models to "think" offline about contexts before queries are presented: by anticipating what queries users might ask and pre-computing useful quantities, we can significantly reduce the compute requirements at test-time. To demonstrate the efficacy of our method, we create modified versions of two reasoning tasks - Stateful GSM-Symbolic and Stateful AIME. We find that sleep-time compute can reduce the amount of test-time compute needed to achieve the same accuracy by ~ 5x on Stateful GSM-Symbolic and Stateful AIME and that by scaling sleep-time compute we can further increase accuracy by up to 13% on Stateful GSM-Symbolic and 18% on Stateful AIME. Furthermore, we introduce Multi-Query GSM-Symbolic, which extends GSM-Symbolic by including multiple related queries per context. By amortizing sleep-time compute across related queries about the same context using Multi-Query GSM-Symbolic, we can decrease the average cost per query by 2.5x. We then conduct additional analysis to understand when sleep-time compute is most effective, finding the predictability of the user query to be well correlated with the efficacy of sleep-time compute. Finally, we conduct a case-study of applying sleep-time compute to a realistic agentic SWE task.

  • 7 authors
·
Apr 17 3

Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors

Reasoning on knowledge graphs is a challenging task because it utilizes observed information to predict the missing one. Particularly, answering complex queries based on first-order logic is one of the crucial tasks to verify learning to reason abilities for generalization and composition. Recently, the prevailing method is query embedding which learns the embedding of a set of entities and treats logic operations as set operations and has shown great empirical success. Though there has been much research following the same formulation, many of its claims lack a formal and systematic inspection. In this paper, we rethink this formulation and justify many of the previous claims by characterizing the scope of queries investigated previously and precisely identifying the gap between its formulation and its goal, as well as providing complexity analysis for the currently investigated queries. Moreover, we develop a new dataset containing ten new types of queries with features that have never been considered and therefore can provide a thorough investigation of complex queries. Finally, we propose a new neural-symbolic method, Fuzzy Inference with Truth value (FIT), where we equip the neural link predictors with fuzzy logic theory to support end-to-end learning using complex queries with provable reasoning capability. Empirical results show that our method outperforms previous methods significantly in the new dataset and also surpasses previous methods in the existing dataset at the same time.

  • 3 authors
·
Apr 14, 2023