- MMAD: The First-Ever Comprehensive Benchmark for Multimodal Large Language Models in Industrial Anomaly Detection In the field of industrial inspection, Multimodal Large Language Models (MLLMs) have a high potential to renew the paradigms in practical applications due to their robust language capabilities and generalization abilities. However, despite their impressive problem-solving skills in many domains, MLLMs' ability in industrial anomaly detection has not been systematically studied. To bridge this gap, we present MMAD, the first-ever full-spectrum MLLMs benchmark in industrial Anomaly Detection. We defined seven key subtasks of MLLMs in industrial inspection and designed a novel pipeline to generate the MMAD dataset with 39,672 questions for 8,366 industrial images. With MMAD, we have conducted a comprehensive, quantitative evaluation of various state-of-the-art MLLMs. The commercial models performed the best, with the average accuracy of GPT-4o models reaching 74.9%. However, this result falls far short of industrial requirements. Our analysis reveals that current MLLMs still have significant room for improvement in answering questions related to industrial anomalies and defects. We further explore two training-free performance enhancement strategies to help models improve in industrial scenarios, highlighting their promising potential for future research. 9 authors · Oct 12, 2024
1 AgentIAD: Tool-Augmented Single-Agent for Industrial Anomaly Detection Industrial anomaly detection (IAD) is difficult due to the scarcity of normal reference samples and the subtle, localized nature of many defects. Single-pass vision-language models (VLMs) often overlook small abnormalities and lack explicit mechanisms to compare against canonical normal patterns. We propose AgentIAD, a tool-driven agentic framework that enables multi-stage visual inspection. The agent is equipped with a Perceptive Zoomer (PZ) for localized fine-grained analysis and a Comparative Retriever (CR) for querying normal exemplars when evidence is ambiguous. To teach these inspection behaviors, we construct structured perceptive and comparative trajectories from the MMAD dataset and train the model in two stages: supervised fine-tuning followed by reinforcement learning. A two-part reward design drives this process: a perception reward that supervises classification accuracy, spatial alignment, and type correctness, and a behavior reward that encourages efficient tool use. Together, these components enable the model to refine its judgment through step-wise observation, zooming, and verification. AgentIAD achieves a new state-of-the-art 97.62% classification accuracy on MMAD, surpassing prior MLLM-based approaches while producing transparent and interpretable inspection traces. 5 authors · Dec 15, 2025
1 MMAD: Multi-label Micro-Action Detection in Videos Human body actions are an important form of non-verbal communication in social interactions. This paper focuses on a specific subset of body actions known as micro-actions, which are subtle, low-intensity body movements that provide a deeper understanding of inner human feelings. In real-world scenarios, human micro-actions often co-occur, with multiple micro-actions overlapping in time, such as simultaneous head and hand movements. However, current research primarily focuses on recognizing individual micro-actions while overlooking their co-occurring nature. To narrow this gap, we propose a new task named Multi-label Micro-Action Detection (MMAD), which involves identifying all micro-actions in a given short video, determining their start and end times, and categorizing them. Achieving this requires a model capable of accurately capturing both long-term and short-term action relationships to locate and classify multiple micro-actions. To support the MMAD task, we introduce a new dataset named Multi-label Micro-Action-52 (MMA-52), specifically designed to facilitate the detailed analysis and exploration of complex human micro-actions. The proposed MMA-52 dataset is available at: https://github.com/VUT-HFUT/Micro-Action. 5 authors · Jul 7, 2024