new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

OmniSafeBench-MM: A Unified Benchmark and Toolbox for Multimodal Jailbreak Attack-Defense Evaluation

Recent advances in multi-modal large language models (MLLMs) have enabled unified perception-reasoning capabilities, yet these systems remain highly vulnerable to jailbreak attacks that bypass safety alignment and induce harmful behaviors. Existing benchmarks such as JailBreakV-28K, MM-SafetyBench, and HADES provide valuable insights into multi-modal vulnerabilities, but they typically focus on limited attack scenarios, lack standardized defense evaluation, and offer no unified, reproducible toolbox. To address these gaps, we introduce OmniSafeBench-MM, which is a comprehensive toolbox for multi-modal jailbreak attack-defense evaluation. OmniSafeBench-MM integrates 13 representative attack methods, 15 defense strategies, and a diverse dataset spanning 9 major risk domains and 50 fine-grained categories, structured across consultative, imperative, and declarative inquiry types to reflect realistic user intentions. Beyond data coverage, it establishes a three-dimensional evaluation protocol measuring (1) harmfulness, distinguished by a granular, multi-level scale ranging from low-impact individual harm to catastrophic societal threats, (2) intent alignment between responses and queries, and (3) response detail level, enabling nuanced safety-utility analysis. We conduct extensive experiments on 10 open-source and 8 closed-source MLLMs to reveal their vulnerability to multi-modal jailbreak. By unifying data, methodology, and evaluation into an open-source, reproducible platform, OmniSafeBench-MM provides a standardized foundation for future research. The code is released at https://github.com/jiaxiaojunQAQ/OmniSafeBench-MM.

PRISM: Robust VLM Alignment with Principled Reasoning for Integrated Safety in Multimodality

Safeguarding vision-language models (VLMs) is a critical challenge, as existing methods often suffer from over-defense, which harms utility, or rely on shallow alignment, failing to detect complex threats that require deep reasoning. To this end, we introduce PRISM (Principled Reasoning for Integrated Safety in Multimodality), a system2-like framework that aligns VLMs by embedding a structured, safety-aware reasoning process. Our framework consists of two key components: PRISM-CoT, a dataset that teaches safety-aware chain-of-thought reasoning, and PRISM-DPO, generated via Monte Carlo Tree Search (MCTS) to further refine this reasoning through Direct Preference Optimization to help obtain a delicate safety boundary. Comprehensive evaluations demonstrate PRISM's effectiveness, achieving remarkably low attack success rates including 0.15% on JailbreakV-28K for Qwen2-VL and 90% improvement over the previous best method on VLBreak for LLaVA-1.5. PRISM also exhibits strong robustness against adaptive attacks, significantly increasing computational costs for adversaries, and generalizes effectively to out-of-distribution challenges, reducing attack success rates to just 8.70% on the challenging multi-image MIS benchmark. Remarkably, this robust defense is achieved while preserving, and in some cases enhancing, model utility. To promote reproducibility, we have made our code, data, and model weights available at https://github.com/SaFoLab-WISC/PRISM.

  • 3 authors
·
Aug 25