- OPTIC-ER: A Reinforcement Learning Framework for Real-Time Emergency Response and Equitable Resource Allocation in Underserved African Communities Public service systems in many African regions suffer from delayed emergency response and spatial inequity, causing avoidable suffering. This paper introduces OPTIC-ER, a reinforcement learning (RL) framework for real-time, adaptive, and equitable emergency response. OPTIC-ER uses an attention-guided actor-critic architecture to manage the complexity of dispatch environments. Its key innovations are a Context-Rich State Vector, encoding action sub-optimality, and a Precision Reward Function, which penalizes inefficiency. Training occurs in a high-fidelity simulation using real data from Rivers State, Nigeria, accelerated by a precomputed Travel Time Atlas. The system is built on the TALS framework (Thin computing, Adaptability, Low-cost, Scalability) for deployment in low-resource settings. In evaluations on 500 unseen incidents, OPTIC-ER achieved a 100.00% optimality rate with negligible inefficiency, confirming its robustness and generalization. Beyond dispatch, the system generates Infrastructure Deficiency Maps and Equity Monitoring Dashboards to guide proactive governance and data-informed development. This work presents a validated blueprint for AI-augmented public services, showing how context-aware RL can bridge the gap between algorithmic decision-making and measurable human impact. 1 authors · Aug 18, 2025
- TACK Tunnel Data (TTD): A Benchmark Dataset for Deep Learning-Based Defect Detection in Tunnels Tunnels are essential elements of transportation infrastructure, but are increasingly affected by ageing and deterioration mechanisms such as cracking. Regular inspections are required to ensure their safety, yet traditional manual procedures are time-consuming, subjective, and costly. Recent advances in mobile mapping systems and Deep Learning (DL) enable automated visual inspections. However, their effectiveness is limited by the scarcity of tunnel datasets. This paper introduces a new publicly available dataset containing annotated images of three different tunnel linings, capturing typical defects: cracks, leaching, and water infiltration. The dataset is designed to support supervised, semi-supervised, and unsupervised DL methods for defect detection and segmentation. Its diversity in texture and construction techniques also enables investigation of model generalization and transferability across tunnel types. By addressing the critical lack of domain-specific data, this dataset contributes to advancing automated tunnel inspection and promoting safer, more efficient infrastructure maintenance strategies. 4 authors · Dec 16, 2025