new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 20

Optimizing CLIP Models for Image Retrieval with Maintained Joint-Embedding Alignment

Contrastive Language and Image Pairing (CLIP), a transformative method in multimedia retrieval, typically trains two neural networks concurrently to generate joint embeddings for text and image pairs. However, when applied directly, these models often struggle to differentiate between visually distinct images that have similar captions, resulting in suboptimal performance for image-based similarity searches. This paper addresses the challenge of optimizing CLIP models for various image-based similarity search scenarios, while maintaining their effectiveness in text-based search tasks such as text-to-image retrieval and zero-shot classification. We propose and evaluate two novel methods aimed at refining the retrieval capabilities of CLIP without compromising the alignment between text and image embeddings. The first method involves a sequential fine-tuning process: initially optimizing the image encoder for more precise image retrieval and subsequently realigning the text encoder to these optimized image embeddings. The second approach integrates pseudo-captions during the retrieval-optimization phase to foster direct alignment within the embedding space. Through comprehensive experiments, we demonstrate that these methods enhance CLIP's performance on various benchmarks, including image retrieval, k-NN classification, and zero-shot text-based classification, while maintaining robustness in text-to-image retrieval. Our optimized models permit maintaining a single embedding per image, significantly simplifying the infrastructure needed for large-scale multi-modal similarity search systems.

  • 4 authors
·
Sep 3, 2024

Precise Parameter Localization for Textual Generation in Diffusion Models

Novel diffusion models can synthesize photo-realistic images with integrated high-quality text. Surprisingly, we demonstrate through attention activation patching that only less than 1% of diffusion models' parameters, all contained in attention layers, influence the generation of textual content within the images. Building on this observation, we improve textual generation efficiency and performance by targeting cross and joint attention layers of diffusion models. We introduce several applications that benefit from localizing the layers responsible for textual content generation. We first show that a LoRA-based fine-tuning solely of the localized layers enhances, even more, the general text-generation capabilities of large diffusion models while preserving the quality and diversity of the diffusion models' generations. Then, we demonstrate how we can use the localized layers to edit textual content in generated images. Finally, we extend this idea to the practical use case of preventing the generation of toxic text in a cost-free manner. In contrast to prior work, our localization approach is broadly applicable across various diffusion model architectures, including U-Net (e.g., LDM and SDXL) and transformer-based (e.g., DeepFloyd IF and Stable Diffusion 3), utilizing diverse text encoders (e.g., from CLIP to the large language models like T5). Project page available at https://t2i-text-loc.github.io/.

  • 5 authors
·
Feb 14, 2025 2

SpaRRTa: A Synthetic Benchmark for Evaluating Spatial Intelligence in Visual Foundation Models

Visual Foundation Models (VFMs), such as DINO and CLIP, excel in semantic understanding of images but exhibit limited spatial reasoning capabilities, which limits their applicability to embodied systems. As a result, recent work incorporates some 3D tasks (such as depth estimation) into VFM training. However, VFM performance remains inconsistent across other spatial tasks, raising the question of whether these models truly have spatial awareness or overfit to specific 3D objectives. To address this question, we introduce the Spatial Relation Recognition Task (SpaRRTa) benchmark, which evaluates the ability of VFMs to identify relative positions of objects in the image. Unlike traditional 3D objectives that focus on precise metric prediction (e.g., surface normal estimation), SpaRRTa probes a fundamental capability underpinning more advanced forms of human-like spatial understanding. SpaRRTa generates an arbitrary number of photorealistic images with diverse scenes and fully controllable object arrangements, along with freely accessible spatial annotations. Evaluating a range of state-of-the-art VFMs, we reveal significant disparities between their spatial reasoning abilities. Through our analysis, we provide insights into the mechanisms that support or hinder spatial awareness in modern VFMs. We hope that SpaRRTa will serve as a useful tool for guiding the development of future spatially aware visual models.

  • 5 authors
·
Jan 16