Papers
arxiv:2602.03485

Self-Verification Dilemma: Experience-Driven Suppression of Overused Checking in LLM Reasoning

Published on Feb 3
Authors:
,
,
,
,
,

Abstract

Large Reasoning Models use frequent self-verification that is often unnecessary, prompting a test-time framework that reduces redundant checks using historical experience to improve efficiency without sacrificing accuracy.

AI-generated summary

Large Reasoning Models (LRMs) achieve strong performance by generating long reasoning traces with reflection. Through a large-scale empirical analysis, we find that a substantial fraction of reflective steps consist of self-verification (recheck) that repeatedly confirm intermediate results. These rechecks occur frequently across models and benchmarks, yet the vast majority are confirmatory rather than corrective, rarely identifying errors and altering reasoning outcomes. This reveals a mismatch between how often self-verification is activated and how often it is actually useful. Motivated by this, we propose a novel, experience-driven test-time framework that reduces the overused verification. Our method detects the activation of recheck behavior, consults an offline experience pool of past verification outcomes, and estimates whether a recheck is likely unnecessary via efficient retrieval. When historical experience suggests unnecessary, a suppression signal redirects the model to proceed. Across multiple model and benchmarks, our approach reduces token usage up to 20.3% while maintaining the accuracy, and in some datasets even yields accuracy improvements.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2602.03485 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2602.03485 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2602.03485 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.