Abstract
Recent Pulsar Timing Array datasets provide compelling evidence for a nano-Hertz gravitational-wave background, but robust detection requires characterizing statistical fluctuations of the Hellings-Downs (HD) correlation expected from a finite population of discrete sources. Building on the variance calculation of Allen (2023), we derive the third central moment (skewness) of the HD correlation for a single unpolarized point source and an ensemble of many interfering point sources in the confusion-noise regime. To isolate the intrinsic non-Gaussianity of the background, we extend the pulsar-averaging formalism to third order by introducing a three-point averaged correlation function, which allows us to define the cosmic skewness. We find that the skewness remains non-zero in the large-source-number limit and is controlled by a new geometric three-point function. These results suggest that incorporating higher-order moments could provide additional information on source discreteness beyond standard Gaussian analyses.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper