update the model weights with the deterministic training
Browse files- README.md +3 -3
- configs/evaluate.json +0 -3
- configs/inference.json +1 -1
- configs/metadata.json +3 -2
- docs/README.md +3 -3
- models/model.pt +2 -2
- models/model.ts +2 -2
README.md
CHANGED
|
@@ -66,13 +66,13 @@ Two Channels
|
|
| 66 |
- Label 1: out body
|
| 67 |
|
| 68 |
## Performance
|
| 69 |
-
Accuracy was used for evaluating the performance of the model. This model achieves an accuracy score of 0.
|
| 70 |
|
| 71 |
#### Training Loss
|
| 72 |
-

|
| 73 |
|
| 74 |
#### Validation Accuracy
|
| 75 |
+

|
| 76 |
|
| 77 |
#### TensorRT speedup
|
| 78 |
The `endoscopic_inbody_classification` bundle supports the TensorRT acceleration through the ONNX-TensorRT way. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
|
configs/evaluate.json
CHANGED
|
@@ -41,9 +41,6 @@
|
|
| 41 |
"summary_ops": "*"
|
| 42 |
}
|
| 43 |
],
|
| 44 |
-
"initialize": [
|
| 45 |
-
"$setattr(torch.backends.cudnn, 'benchmark', True)"
|
| 46 |
-
],
|
| 47 |
"run": [
|
| 48 |
"$@validate#evaluator.run()"
|
| 49 |
]
|
|
|
|
| 41 |
"summary_ops": "*"
|
| 42 |
}
|
| 43 |
],
|
|
|
|
|
|
|
|
|
|
| 44 |
"run": [
|
| 45 |
"$@validate#evaluator.run()"
|
| 46 |
]
|
configs/inference.json
CHANGED
|
@@ -106,7 +106,7 @@
|
|
| 106 |
"val_handlers": "@handlers"
|
| 107 |
},
|
| 108 |
"initialize": [
|
| 109 |
-
"$
|
| 110 |
],
|
| 111 |
"run": [
|
| 112 |
"$@evaluator.run()"
|
|
|
|
| 106 |
"val_handlers": "@handlers"
|
| 107 |
},
|
| 108 |
"initialize": [
|
| 109 |
+
"$monai.utils.set_determinism(seed=123)"
|
| 110 |
],
|
| 111 |
"run": [
|
| 112 |
"$@evaluator.run()"
|
configs/metadata.json
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
{
|
| 2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
| 3 |
-
"version": "0.4.
|
| 4 |
"changelog": {
|
|
|
|
| 5 |
"0.4.0": "add the ONNX-TensorRT way of model conversion",
|
| 6 |
"0.3.9": "fix mgpu finalize issue",
|
| 7 |
"0.3.8": "enable deterministic training",
|
|
@@ -37,7 +38,7 @@
|
|
| 37 |
"label_classes": "0: inbody, 1: outbody",
|
| 38 |
"pred_classes": "vector whose length equals to 2, [1,0] means in body, [0,1] means out body",
|
| 39 |
"eval_metrics": {
|
| 40 |
-
"accuracy": 0.
|
| 41 |
},
|
| 42 |
"references": [
|
| 43 |
"J. Hu, L. Shen and G. Sun, Squeeze-and-Excitation Networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141. https://arxiv.org/pdf/1709.01507.pdf"
|
|
|
|
| 1 |
{
|
| 2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
| 3 |
+
"version": "0.4.1",
|
| 4 |
"changelog": {
|
| 5 |
+
"0.4.1": "update the model weights with the deterministic training",
|
| 6 |
"0.4.0": "add the ONNX-TensorRT way of model conversion",
|
| 7 |
"0.3.9": "fix mgpu finalize issue",
|
| 8 |
"0.3.8": "enable deterministic training",
|
|
|
|
| 38 |
"label_classes": "0: inbody, 1: outbody",
|
| 39 |
"pred_classes": "vector whose length equals to 2, [1,0] means in body, [0,1] means out body",
|
| 40 |
"eval_metrics": {
|
| 41 |
+
"accuracy": 0.99
|
| 42 |
},
|
| 43 |
"references": [
|
| 44 |
"J. Hu, L. Shen and G. Sun, Squeeze-and-Excitation Networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141. https://arxiv.org/pdf/1709.01507.pdf"
|
docs/README.md
CHANGED
|
@@ -59,13 +59,13 @@ Two Channels
|
|
| 59 |
- Label 1: out body
|
| 60 |
|
| 61 |
## Performance
|
| 62 |
-
Accuracy was used for evaluating the performance of the model. This model achieves an accuracy score of 0.
|
| 63 |
|
| 64 |
#### Training Loss
|
| 65 |
-

|
| 66 |
|
| 67 |
#### Validation Accuracy
|
| 68 |
+

|
| 69 |
|
| 70 |
#### TensorRT speedup
|
| 71 |
The `endoscopic_inbody_classification` bundle supports the TensorRT acceleration through the ONNX-TensorRT way. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
|
models/model.pt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dc8d874efa195e4416124aad4e1469e0b3ef873753e20948d762e7bfdb37b929
|
| 3 |
+
size 104502013
|
models/model.ts
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ba8c62eca55d37044d6d7631b1b0444709ac9009c202839dc054ca38bf732edf
|
| 3 |
+
size 104609651
|