--- language: en tags: - image-segmentation - background-removal - isnet license: mit model_type: isnet --- # ISNet Background Remover This model removes backgrounds from images using the ISNet architecture. ## Usage ```python from transformers import AutoModelForImageSegmentation # Download and load the model model = AutoModelForImageSegmentation.from_pretrained("YOUR_USERNAME/isnet-background-remover", trust_remote_code=True) ``` ## Complete Example ```python from PIL import Image from skimage import io import torch import torch.nn.functional as F from transformers import AutoModelForImageSegmentation from torchvision.transforms.functional import normalize import numpy as np # Load model model = AutoModelForImageSegmentation.from_pretrained("YOUR_USERNAME/isnet-background-remover", trust_remote_code=True) def preprocess_image(im: np.ndarray, model_input_size: list) -> torch.Tensor: if len(im.shape) < 3: im = im[:, :, np.newaxis] im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1) im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=model_input_size, mode='bilinear') image = torch.divide(im_tensor,255.0) image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0]) return image def postprocess_image(result: torch.Tensor, im_size: list)-> np.ndarray: result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear') ,0) ma = torch.max(result) mi = torch.min(result) result = (result-mi)/(ma-mi) im_array = (result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8) im_array = np.squeeze(im_array) return im_array device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.to(device) # prepare input image_path = "your_image.jpg" orig_im = io.imread(image_path) orig_im_size = orig_im.shape[0:2] model_input_size = [1024, 1024] image = preprocess_image(orig_im, model_input_size).to(device) # inference result = model(image) # post process result_image = postprocess_image(result, orig_im_size) # save result pil_mask_im = Image.fromarray(result_image) orig_image = Image.open(image_path) no_bg_image = orig_image.copy() no_bg_image.putalpha(pil_mask_im) no_bg_image.save("output_no_bg.png") ``` ## Features - Removes backgrounds from images - High-quality segmentation - Fast inference - Compatible with transformers library - One-line model loading with `trust_remote_code=True` ## Model Architecture - Based on ISNet (Interactive Image Segmentation Network) - Uses U-Net style encoder-decoder architecture - Outputs binary masks for background removal