File size: 50,001 Bytes
c6ce1be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d813dc
 
 
 
 
 
 
 
 
 
 
c6ce1be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d813dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6ce1be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d813dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6ce1be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d813dc
 
 
 
 
 
 
 
c6ce1be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d813dc
 
 
 
c6ce1be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d813dc
 
c6ce1be
 
 
 
 
 
3d813dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6ce1be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
# Copyright 2025 Jina AI. All rights reserved.

import math
from typing import Any, Dict, List, Optional, Tuple, TypedDict, Union

import numpy as np
import PIL
import PIL.Image
import torch
import torchvision.transforms
from PIL import ImageFile
from torchvision.transforms import InterpolationMode as TVInterpolationMode
from torchvision.transforms.functional import convert_image_dtype
from transformers.image_processing_utils import BaseImageProcessor
from transformers.image_transforms import convert_to_rgb
from transformers.image_utils import (
    OPENAI_CLIP_MEAN,
    OPENAI_CLIP_STD,
    ChannelDimension,
    ImageInput,
    get_image_size,
    infer_channel_dimension_format,
    make_flat_list_of_images,
    to_numpy_array,
    valid_images,
)
from transformers.processing_utils import Unpack

from .configuration_jvlm import StrEnum

"""
Image processing utils. Based on the following: 
https://github.com/allenai/molmo
https://github.com/OpenBMB/MiniCPM-V
https://github.com/QwenLM/Qwen3-VL/tree/main/qwen-vl-utils
"""


def setup_pil():
    PIL.Image.MAX_IMAGE_PIXELS = None
    ImageFile.LOAD_TRUNCATED_IMAGES = True


def smart_resize(
    height: int,
    width: int,
    factor: int = 28,
    min_pixels: int = 56 * 56,
    max_pixels: int = 14 * 14 * 4 * 1280,
    max_absolute_aspect_ratio: int = 200,
) -> Tuple[int, int]:
    """
    Resizes the image so that the following conditions are met:

    1. Both dimensions (height and width) are divisible by 'factor'.
    2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
    3. The aspect ratio of the image is maintained as closely as possible.
    """
    abs_aspect_ratio = max(height, width) / min(height, width)
    if abs_aspect_ratio > max_absolute_aspect_ratio:
        raise ValueError(
            f'Absolute aspect ratio must be < {max_absolute_aspect_ratio}, '
            f'got {abs_aspect_ratio}'
        )
    h_bar = round(height / factor) * factor
    w_bar = round(width / factor) * factor
    if h_bar * w_bar > max_pixels:
        beta = math.sqrt((height * width) / max_pixels)
        h_bar = max(factor, math.floor(height / beta / factor) * factor)
        w_bar = max(factor, math.floor(width / beta / factor) * factor)
    elif h_bar * w_bar < min_pixels:
        beta = math.sqrt(min_pixels / (height * width))
        h_bar = math.ceil(height * beta / factor) * factor
        w_bar = math.ceil(width * beta / factor) * factor

    return h_bar, w_bar


def patchify(array: np.ndarray, patch_size: int, batched: bool = False) -> np.ndarray:
    """Reshape an image of [bs, h, w, 3] -> [bs, n_patches, pixels_per_patch]"""
    if len(array.shape) == 2:
        w, h = array.shape
        h_patches = h // patch_size
        w_patches = w // patch_size
        array = np.reshape(array, [h_patches, patch_size, w_patches, patch_size])
        array = np.transpose(array, [0, 2, 1, 3])
        return np.reshape(array, [h_patches * w_patches, patch_size * patch_size])
    elif len(array.shape) == 3:
        if batched:
            bs, w, h = array.shape
            h_patches = h // patch_size
            w_patches = w // patch_size
            array = np.reshape(
                array, [bs, h_patches, patch_size, w_patches, patch_size]
            )
            array = np.transpose(array, [0, 1, 3, 2, 4])
            return np.reshape(
                array, [bs, h_patches * w_patches, patch_size * patch_size]
            )
        w, h, c = array.shape
        h_patches = h // patch_size
        w_patches = w // patch_size
        array = np.reshape(array, [h_patches, patch_size, w_patches, patch_size, c])
        array = np.transpose(array, [0, 2, 1, 3, 4])
        return np.reshape(array, [h_patches * w_patches, patch_size * patch_size * c])
    bs, w, h, c = array.shape
    h_patches = h // patch_size
    w_patches = w // patch_size
    array = np.reshape(array, [bs, h_patches, patch_size, w_patches, patch_size, c])
    array = np.transpose(array, [0, 1, 3, 2, 4, 5])
    return np.reshape(array, [bs, h_patches * w_patches, patch_size * patch_size * c])


class NormalizationMethod(StrEnum):
    GAUSSIAN = 'gaussian'
    MINMAX = 'minmax'


class CroppingMethod(StrEnum):
    RESIZE = 'resize'
    OVERLAP_AND_RESIZE = 'overlap-and-resize'
    ADAPTIVE_SLICING = 'adaptive-slicing'
    ADAPTIVE_SLICING_WITH_THUMBNAIL = 'adaptive-slicing-with-thumbnail'


class InterpolationMode(StrEnum):
    NEAREST = 'nearest'
    NEAREST_EXACT = 'nearest-exact'
    BILINEAR = 'bilinear'
    BICUBIC = 'bicubic'
    BOX = 'box'
    HAMMING = 'hamming'
    LANCZOS = 'lanczos'


class JinaVLMImagesKwargs(TypedDict, total=False):
    r"""
    Attributes:
        do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
            Whether to convert the image to RGB.
        do_resize (`bool`, *optional*, defaults to `self.do_resize`):
            Whether to resize the image before any additional processing.
        size (`dict[str, int]`, *optional*, defaults to `self.size`):
            Size of the image after resizing. Shortest edge of the image is resized
            to size["shortest_edge"], with the longest edge resized to keep the
            input aspect ratio.
        min_pixels (`int`, *optional*, defaults to `self.min_pixels`):
            The min pixels of the image to resize the image.
        max_pixels (`int`, *optional*, defaults to `self.max_pixels`):
            The max pixels of the image to resize the image.
        max_crops (`int`, *optional*, defaults to 6):
            The maximum number of image crops to generate.
    """

    do_convert_rgb: Optional[bool]
    do_resize: Optional[bool]
    min_pixels: Optional[int]
    max_pixels: Optional[int]
    size: Optional[dict[str, int]]
    max_crops: Optional[int]
    input_data_format: Optional[Union[str, ChannelDimension]]


class JinaVLMImageProcessor(BaseImageProcessor):
    r"""Constructs a JinaVLM Image Processor that prepares images for the JinaVLM model.

    Args:
        do_resize (`bool`, *optional*, defaults to `self.do_resize`):
            Whether to resize the image before any additional processing.
        size (`dict[str, int]`, *optional*, defaults to `self.size`):
            Size of the image after resizing. Shortest edge of the image is resized
            to size["shortest_edge"], with the longest edge resized to keep the
            input aspect ratio.
        min_pixels (`int`, *optional*, defaults to `self.min_pixels`):
            The min pixels of the image to resize the image.
        max_pixels (`int`, *optional*, defaults to `self.max_pixels`):
            The max pixels of the image to resize the image.
        do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
            Whether to convert the image to RGB.
        cropping_method (`str`, *optional*, defaults to `'resize'`):
            The image cropping method to use.
        normalization_method (`str`, *optional*, defaults to `'gaussian'`):
            The image normalization method to use.
        image_mean (`float` or `list[float]`, *optional*, defaults to
        `OPENAI_CLIP_MEAN`):
            The image mean to use for normalization. If a single float is provided,
            the same value is used for all channels.
        image_std (`float` or `list[float]`, *optional*, defaults to
        `OPENAI_CLIP_STD`):
            The image standard deviation to use for normalization. If a single float
            is provided, the same value is used for all channels.
        image_min (`float`, *optional*, defaults to -1.0):
            The minimum image value to use for min-max normalization.
        image_max (`float`, *optional*, defaults to 1.0):
            The maximum image value to use for min-max normalization.
        interpolation (`str`, *optional*, defaults to `'bicubic'`):
            The interpolation method to use when resizing the image.
        random_interpolation (`bool`, *optional*, defaults to `False`):
            Whether to use random interpolation when resizing the image.
        antialias (`bool`, *optional*, defaults to `True`):
            Whether to use antialiasing when resizing the image.
        preserve_aspect_ratio (`bool`, *optional*, defaults to `False`):
            Whether to preserve the aspect ratio when resizing the image.
        resize_in_float32 (`bool`, *optional*, defaults to `True`):
            Whether to perform resizing in float32 precision. If `False`, the
            resizing is performed in the original image precision.
        max_crops (`int`, *optional*, defaults to 6):
            The maximum number of image crops to generate.
        base_input_size (`int` or `Tuple[int, int]`, *optional*, defaults to
        (336, 336)):
            The base input size of the vision encoder.
        patch_size (`int`, *optional*, defaults to 14):
            The patch size of the vision encoder.
        overlap_margins (`Tuple[int, int]`, *optional*, defaults to (4, 4)):
            The overlap margins (width, height) between image crops.
        ...
    """

    model_input_names = [
        'image_crops',
        'image_tokens',
        'image_input_idx',
        'image_padding_mask',
    ]

    def __init__(
        self,
        do_resize: bool = True,
        size: Optional[dict[str, int]] = None,
        min_pixels: Optional[int] = None,
        max_pixels: Optional[int] = None,
        do_convert_rgb: bool = True,
        cropping_method: str = 'resize',
        normalization_method: str = 'gaussian',
        image_mean: Optional[Union[float, list[float]]] = None,
        image_std: Optional[Union[float, list[float]]] = None,
        image_min: Optional[float] = None,
        image_max: Optional[float] = None,
        interpolation: str = 'bicubic',
        random_interpolation: bool = False,
        antialias: bool = True,
        preserve_aspect_ratio: bool = False,
        resize_in_float32: bool = True,
        max_crops: int = 6,
        base_input_size: Tuple[int, int] = (336, 336),
        patch_size: int = 14,
        overlap_margins: Tuple[int, int] = (4, 4),
        use_column_tokens: bool = True,
        pooling_w: int = 2,
        pooling_h: int = 2,
        token_length_w: int = 12,
        token_length_h: int = 12,
        padding_mask: Union[bool, int] = False,
        padding_value: float = 0.0,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        if size is not None and (
            'shortest_edge' not in size or 'longest_edge' not in size
        ):
            raise ValueError(
                "Agument size must contain 'shortest_edge' and 'longest_edge' keys."
            )
        else:
            size = {'shortest_edge': 56 * 56, 'longest_edge': 28 * 28 * 1280}
        if min_pixels is not None:
            size['shortest_edge'] = min_pixels
        if max_pixels is not None:
            size['longest_edge'] = max_pixels
        self.min_pixels = size['shortest_edge']
        self.max_pixels = size['longest_edge']
        self.size = size

        self.do_resize = do_resize
        self.do_convert_rgb = do_convert_rgb

        _cropping_method = cropping_method.upper().replace('-', '_')
        if not hasattr(CroppingMethod, _cropping_method):
            raise ValueError(
                f'Cropping method {cropping_method} not recognized. Choose from '
                f'{list(CroppingMethod)}.'
            )
        self.cropping_method = getattr(CroppingMethod, _cropping_method)

        _normalization_method = normalization_method.upper().replace('-', '_')
        if not hasattr(NormalizationMethod, _normalization_method):
            raise ValueError(
                f'Normalization method {normalization_method} not recognized. Choose '
                f'from {list(NormalizationMethod)}.'
            )
        self.normalization_method = getattr(NormalizationMethod, _normalization_method)

        self.image_mean = image_mean or OPENAI_CLIP_MEAN
        self.image_std = image_std or OPENAI_CLIP_STD
        self.image_min = image_min or -1.0
        self.image_max = image_max or 1.0
        self.image_mean = (
            [self.image_mean] * 3
            if isinstance(self.image_mean, float)
            else self.image_mean
        )
        self.image_std = (
            [self.image_std] * 3
            if isinstance(self.image_std, float)
            else self.image_std
        )
        _interpolation = interpolation.upper().replace('-', '_')
        if not hasattr(InterpolationMode, _interpolation):
            raise ValueError(
                f'Interpolation method {interpolation} not recognized. Choose from '
                f'{list(InterpolationMode)}.'
            )
        self.interpolation = getattr(InterpolationMode, _interpolation)
        self.random_interpolation = random_interpolation
        self.antialias = antialias
        self.preserve_aspect_ratio = preserve_aspect_ratio
        self.resize_in_float32 = resize_in_float32
        self.max_crops = max_crops
        self.overlap_margins = overlap_margins
        if isinstance(base_input_size, int):
            base_input_size = (base_input_size, base_input_size)
        self.base_input_size = base_input_size
        self.patch_size = patch_size
        self.use_column_tokens = use_column_tokens
        self.pooling_w = pooling_w
        self.pooling_h = pooling_h
        self.token_length_w = token_length_w
        self.token_length_h = token_length_h
        self.patch_token_id = 0
        self.column_token_id = 1
        self.start_token_id = 2
        self.end_token_id = 3
        self.padding_mask = padding_mask
        self.padding_value = padding_value
        self.tokens_per_image = self.token_length_w * self.token_length_h
        self.image_base_patch_w = self.base_input_size[1] // patch_size
        self.image_base_patch_h = self.base_input_size[0] // patch_size
        self.crop_size = self.base_input_size[0]

    """ Normalization and resizing """

    def _gaussian_normalize(self, x: np.ndarray, dtype: np.dtype) -> np.ndarray:
        x -= np.array(self.image_mean, dtype=dtype)[None, None, :]
        x /= np.array(self.image_std, dtype=dtype)[None, None, :]
        return x

    def _minmax_normalize(self, x: np.ndarray, dtype: np.dtype) -> np.ndarray:
        return np.asarray(self.image_min, dtype=dtype) + x * np.asarray(
            self.image_max - self.image_min, dtype=dtype
        )

    def normalize_image(
        self,
        x: np.ndarray,
        dtype: Optional[np.dtype] = None,
    ) -> np.ndarray:
        dtype = dtype or x.dtype
        if self.normalization_method == NormalizationMethod.GAUSSIAN:
            return self._gaussian_normalize(x, dtype)
        return self._minmax_normalize(x, dtype)

    def resize_image(
        self,
        x: np.ndarray,
        size: List[int],
        rng: Any = np.random,
        mode: Optional[InterpolationMode] = None,
    ) -> Tuple[np.ndarray, np.ndarray]:
        x = torch.permute(torch.from_numpy(x), [2, 0, 1])

        pad = False
        padding = [[0, 0], [0, 0], [0, 0]]
        if self.preserve_aspect_ratio:
            desired_height, desired_width = size
            height, width = x.shape[:2]
            np_desired_height = np.array(desired_height, np.float32)
            np_desired_width = np.array(desired_width, np.float32)
            np_height = np.array(height, np.float32)
            np_width = np.array(width, np.float32)
            image_scale_y = np_desired_height / np_height
            image_scale_x = np_desired_width / np_width
            image_scale = np.array(
                min(float(image_scale_x), float(image_scale_y)), np.float32
            )
            scaled_height = int(height * image_scale)
            scaled_width = int(width * image_scale)
            size = [scaled_height, scaled_width]
            pad = True
            top_pad = (desired_height - scaled_height) // 2
            left_pad = (desired_width - scaled_width) // 2
            padding = [
                [top_pad, desired_height - scaled_height - top_pad],
                [left_pad, desired_width - scaled_width - left_pad],
                [0, 0],
            ]

        if self.resize_in_float32:
            x = convert_image_dtype(x)

        mode = mode or self.interpolation
        if self.random_interpolation:
            options = [
                InterpolationMode.BILINEAR,
                InterpolationMode.NEAREST_EXACT,
                InterpolationMode.BICUBIC,
                InterpolationMode.LANCZOS,
                InterpolationMode.HAMMING,
            ]
            mode = options[rng.randint(len(options))]

        mode = getattr(TVInterpolationMode, mode.upper())
        dtype = x.dtype
        in_min = 0.0
        if torch.is_floating_point(x):
            in_max = 1.0
            x = torchvision.transforms.Resize(size, mode, antialias=self.antialias)(x)
            x = torch.clip(x, 0.0, 1.0).to(dtype)
        else:
            assert dtype == torch.uint8, (
                'Expected float images or uint8 images, but got {}'.format(x.dtype)
            )
            in_max = 255.0
            x = torchvision.transforms.Resize(size, mode, antialias=self.antialias)(x)
            x = torch.clip(x, 0, 255).to(dtype)

        x = x.to(torch.float32)
        x = (x - in_min) / (in_max - in_min)
        x = torch.permute(x, [1, 2, 0]).numpy()
        mask = np.ones_like(x[:, :, 0], dtype=np.bool_)

        if pad:
            # noinspection PyTypeChecker
            x = np.pad(x, padding, constant_values=self.padding_value)
            # noinspection PyTypeChecker
            mask = np.pad(mask, padding[:2])
        return x, mask

    """ Base cropping via resizing """

    def base_get_n_image_patches(
        self,
        height: int,
        width: int,
        max_crops: int,
    ) -> int:
        raise NotImplementedError(
            'Function `get_n_image_patches` is not implemented for cropping method '
            f'{CroppingMethod.RESIZE}'
        )

    def base_resize_cropping(self, image: np.ndarray):
        resized, mask = self.resize_image(image, list(self.base_input_size))
        resized = self.normalize_image(resized)
        patches = patchify(resized, self.patch_size, batched=False)
        mask = patchify(mask, self.patch_size, batched=False)
        perrow = np.full((self.token_length_w,), self.patch_token_id, dtype=np.int32)
        if self.use_column_tokens:
            perrow = np.concatenate([perrow, [self.column_token_id]], 0, dtype=np.int32)
        extra_tokens = np.tile(perrow, [self.token_length_h])
        joint = [
            [self.start_token_id],
            extra_tokens,
            [self.end_token_id],
        ]
        # noinspection PyTypeChecker
        joint = np.concatenate(joint, 0, dtype=np.int32)

        return np.expand_dims(patches, 0), joint, None, mask

    """ Molmo cropping via overlapping and resizing """

    @staticmethod
    def _molmo_select_tiling(h: int, w: int, patch_size: int, max_num_crops: int):
        """Divide an image of size [w, h] in up to max_num_patches of size
        patch_size."""
        tilings = []
        for i in range(1, max_num_crops + 1):
            for j in range(1, max_num_crops + 1):
                if i * j <= max_num_crops:
                    tilings.append((i, j))

        # sort so argmin and argmax favour smaller tilings in the event of a tie
        tilings.sort(key=lambda x: (x[0] * x[1], x[0]))
        candidate_tilings = np.array(tilings, dtype=np.int32)  # [n_resolutions, 2]
        candidate_resolutions = candidate_tilings * patch_size  # [n_resolutions, 2]

        # How much we would need to scale the image to fit exactly in each tiling
        original_size = np.stack([h, w], dtype=np.float32)  # [1, 2]

        # The original size can be zero in rare cases if the image is smaller than the
        # margin. In those cases letting the scale become infinite means the tiling is
        # based on the other side, or falls back to the smallest tiling
        with np.errstate(divide='ignore'):
            required_scale_d = (
                candidate_resolutions.astype(np.float32) / original_size,
            )

        # [n_resolutions, 1]
        required_scale = np.min(required_scale_d, axis=-1, keepdims=True)
        if np.all(required_scale < 1):
            # We are forced to downscale, so try to minimize the amount of downscaling
            ix = np.argmax(required_scale)
        else:
            # Pick the resolution that required the least upscaling so that it most
            # closely fits the image
            required_scale = np.where(required_scale < 1.0, 10e9, required_scale)
            ix = np.argmin(required_scale)

        return candidate_tilings[ix]

    @staticmethod
    def _molmo_get_patches_from_tiling(
        num_tiles,
        pooling_size,
        crop_patches,
        crop_window_patches,
        left_margin,
        right_margin,
    ) -> np.int32:
        if num_tiles > 1:
            left_crop_window_patches = (
                (crop_window_patches + left_margin + pooling_size - 1)
                // pooling_size
                * pooling_size
            )
            middle_crop_window_patches = (
                (crop_window_patches + pooling_size - 1) // pooling_size * pooling_size
            )
            right_crop_window_patches = (
                (crop_window_patches + right_margin + pooling_size - 1)
                // pooling_size
                * pooling_size
            )
            return (
                left_crop_window_patches
                + (num_tiles - 2) * middle_crop_window_patches
                + right_crop_window_patches
            )
        else:
            single_crop_window_patches = (
                (crop_patches + pooling_size - 1) // pooling_size * pooling_size
            )
            return single_crop_window_patches

    def molmo_get_n_image_patches(
        self,
        height: int,
        width: int,
        max_crops: int,
    ) -> int:
        # Discard this many patches from the (left/top, right/bottom) of crops
        left_margin, right_margin = self.overlap_margins
        # Required for compatibility with image pooling
        assert left_margin % self.pooling_w == 0 and right_margin % self.pooling_w == 0
        assert left_margin % self.pooling_h == 0 and right_margin % self.pooling_h == 0
        # pixels removed per dim
        total_margin_pixels = self.patch_size * (right_margin + left_margin)
        # patches per crop dim
        crop_patches = self.base_input_size[0] // self.patch_size

        # usable patches
        crop_window_patches = crop_patches - (right_margin + left_margin)
        crop_window_size = crop_window_patches * self.patch_size

        # We assume hxw pooling, but can allow padding the right/bottom with extra
        # patches if the number of patches per side is not divisible by h/w
        assert (
            crop_patches + self.pooling_h - 1
        ) // self.pooling_h == self.token_length_h
        assert (
            crop_patches + self.pooling_w - 1
        ) // self.pooling_w == self.token_length_w

        # Decide how to tile the image, to account for the overlap margins we
        # compute the tiling as if we had an image without the margins and were
        # using a crop size without the margins
        tiling = self._molmo_select_tiling(
            height - total_margin_pixels,
            width - total_margin_pixels,
            crop_window_size,
            max_crops,
        )

        # Now build the output tokens
        h = self._molmo_get_patches_from_tiling(
            tiling[0],
            self.pooling_h,
            crop_patches,
            crop_window_patches,
            left_margin,
            right_margin,
        )
        w = self._molmo_get_patches_from_tiling(
            tiling[1],
            self.pooling_w,
            crop_patches,
            crop_window_patches,
            left_margin,
            right_margin,
        )
        # for each row of patches, add a patch token per patch
        n_tokens = w.item() // self.pooling_w
        if self.use_column_tokens:
            # after each row, one column token is added
            n_tokens += 1
        # replicate each row of patch tokens by number of rows, i.e.
        # proportional to image height
        n_tokens *= h.item() // self.pooling_h
        # add start and end image tokens
        n_tokens += 2

        # Global image goes first, so the order of patches in previous crops gets
        # increased
        n_thumbnail_tokens = self.token_length_w
        if self.use_column_tokens:
            n_thumbnail_tokens += 1
        n_thumbnail_tokens *= self.token_length_h
        n_thumbnail_tokens += 2

        return n_tokens + n_thumbnail_tokens

    def molmo_overlap_and_resize_cropping(self, image: np.ndarray):
        # Discard this many patches from the (left/top, right/bottom) of crops
        left_margin, right_margin = self.overlap_margins

        # Required for compatibility with image pooling
        assert left_margin % self.pooling_w == 0 and right_margin % self.pooling_w == 0
        assert left_margin % self.pooling_h == 0 and right_margin % self.pooling_h == 0

        # pixels removed per dim
        total_margin_pixels = self.patch_size * (right_margin + left_margin)

        # patches per crop dim
        crop_patches = self.base_input_size[0] // self.patch_size

        # usable patches
        crop_window_patches = crop_patches - (right_margin + left_margin)
        crop_window_size = crop_window_patches * self.patch_size

        # Decide how to tile the image, to account for the overlap margins we
        # compute the tiling as if we had an image without the margins and were
        # using a crop size without the margins
        original_image_h, original_image_w = image.shape[:2]
        tiling = self._molmo_select_tiling(
            original_image_h - total_margin_pixels,
            original_image_w - total_margin_pixels,
            crop_window_size,
            self.max_crops,
        )
        # noinspection PyTypeChecker
        src, img_mask = self.resize_image(
            image,
            [
                tiling[0] * crop_window_size + total_margin_pixels,
                tiling[1] * crop_window_size + total_margin_pixels,
            ],
        )
        src = self.normalize_image(src)

        # Now we have to split the image into crops, while keeping track of how each
        # patch in each crop should be ordered in the global image, this require a
        # lot of tricky booking
        _ = tiling[0] * tiling[1]
        patches_arr = []
        mask_arr = []
        patch_ordering_arr = []

        # We assume hxw pooling, but can allow padding the right/bottom with extra
        # patches if the number of patches per side is not divisible by h/w
        assert (
            crop_patches + self.pooling_h - 1
        ) // self.pooling_h == self.token_length_h
        assert (
            crop_patches + self.pooling_w - 1
        ) // self.pooling_w == self.token_length_w
        image_base_patch_w = self.base_input_size[1] // self.patch_size
        image_base_patch_h = self.base_input_size[0] // self.patch_size
        crop_size = self.base_input_size[0]
        on = 0
        on_patch = 0
        for i in range(tiling[0]):
            y0 = i * crop_window_size
            if i == 0:
                crop_y0 = 0
            else:
                crop_y0 = left_margin // self.pooling_h
            crop_h = image_base_patch_h - (right_margin + left_margin)
            if i == 0:
                crop_h += left_margin
            if i == (tiling[0] - 1):
                crop_h += right_margin
            for j in range(tiling[1]):
                x0 = j * crop_window_size
                if j == 0:
                    crop_x0 = 0
                else:
                    crop_x0 = left_margin // self.pooling_w
                crop_w = image_base_patch_w - (right_margin + left_margin)
                if j == 0:
                    crop_w += left_margin
                if j == (tiling[1] - 1):
                    crop_w += right_margin
                pooled_w = (crop_w + self.pooling_w - 1) // self.pooling_w
                pooled_h = (crop_h + self.pooling_h - 1) // self.pooling_h
                after_padding_width = self.token_length_w - pooled_w - crop_x0
                after_padding_height = self.token_length_h - pooled_h - crop_y0
                # noinspection PyTypeChecker
                patch_ordering_arr.append(
                    np.pad(
                        np.reshape(
                            np.arange(on, on + pooled_h * pooled_w, dtype=np.int32),
                            (pooled_h, pooled_w),
                        ),
                        [
                            [crop_y0, after_padding_height],
                            [crop_x0, after_padding_width],
                        ],
                        constant_values=-1,
                        mode='constant',
                    )
                )
                patches_arr.append(src[y0 : y0 + crop_size, x0 : x0 + crop_size])
                mask_arr.append(img_mask[y0 : y0 + crop_size, x0 : x0 + crop_size])
                on += pooled_h * pooled_w
                on_patch += 1

        # [n_crops, base_image_h, base_image_w, n_channels]
        patches = np.stack(patches_arr)
        patch_ordering = np.stack(patch_ordering_arr)
        img_mask = np.stack(mask_arr)
        patches = patchify(patches, self.patch_size, batched=True)
        img_mask = patchify(img_mask, self.patch_size, batched=True)
        img_mask = img_mask.astype(np.float32).mean(axis=-1)
        patch_ordering = np.reshape(patch_ordering, [-1])
        valid = patch_ordering >= 0

        # Path order numbers the patches crop-by-crop, here we transpose
        # it to get left-to-right order
        patch_ordering_rh = np.reshape(
            patch_ordering,
            [tiling[0], tiling[1], self.token_length_h, self.token_length_w],
        )
        patch_ordering_rh = np.transpose(patch_ordering_rh, [0, 2, 1, 3])
        patch_ordering_rh = np.reshape(patch_ordering_rh, [-1])

        # The transpose will screw up which patches are masked, project the
        # new order into sparse structure of `patch_ordering` to fix it
        patch_ordering[valid] = patch_ordering_rh[patch_ordering_rh >= 0]

        # Now build the output tokens
        h = self._molmo_get_patches_from_tiling(
            tiling[0],
            self.pooling_h,
            crop_patches,
            crop_window_patches,
            left_margin,
            right_margin,
        )
        w = self._molmo_get_patches_from_tiling(
            tiling[1],
            self.pooling_w,
            crop_patches,
            crop_window_patches,
            left_margin,
            right_margin,
        )
        # for each row of patches, add a patch token per patch
        per_row = np.full((w // self.pooling_w,), self.patch_token_id, dtype=np.int32)
        if self.use_column_tokens:
            # after each row, one column token is added
            per_row = np.concatenate([per_row, [self.column_token_id]], 0)

        # replicate each row of patch tokens by number of rows, i.e.
        # proportional to image height
        joint = np.tile(per_row, [h // self.pooling_h])
        # add start and end image tokens
        joint = [[self.start_token_id], joint, [self.end_token_id]]

        # Finally do the same for the global image
        resized, _ = self.resize_image(image, list(self.base_input_size))
        resized = self.normalize_image(resized)
        resized = patchify(resized, self.patch_size, batched=False)
        # prepend the global image
        patches = np.concatenate([np.expand_dims(resized, 0), patches], 0)

        # Global image goes first, so the order of patches in previous crops gets
        # increased
        patch_ordering = np.where(
            patch_ordering >= 0, patch_ordering + self.tokens_per_image, -1
        )
        patch_ordering = np.concatenate(
            [np.arange(0, self.tokens_per_image), patch_ordering], 0
        )
        per_row = np.full((self.token_length_w,), self.patch_token_id, dtype=np.int32)
        if self.use_column_tokens:
            per_row = np.concatenate([per_row, [self.column_token_id]], 0)
        extra_tokens = np.tile(per_row, [self.token_length_h])
        joint = [
            [self.start_token_id],
            extra_tokens,
            [self.end_token_id],
        ] + joint

        # noinspection PyTypeChecker
        joint = np.concatenate(joint, 0)
        # noinspection PyTypeChecker
        img_mask = np.pad(img_mask, [[0, 1], [0, 0]], constant_values=-1)

        return patches, joint, patch_ordering, img_mask

    """ MiniCPM adaptive slicing functions """

    @staticmethod
    def _minicpm_get_refine_size(grid: List[int], scale_resolution: int):
        grid_x, grid_y = grid
        return grid_x * scale_resolution, grid_y * scale_resolution

    @staticmethod
    def _minicpm_split_to_slices(image: np.ndarray, grid: List[int]):
        slices = []
        width, height = image.shape[:2]
        grid_x = int(width / grid[0])
        grid_y = int(height / grid[1])
        has_channels = True if len(image) == 3 else False
        for i in range(0, height, grid_y):
            images = []
            for j in range(0, width, grid_x):
                if has_channels:
                    _slice = image[j : j + grid_x, i : i + grid_y, :]
                else:
                    _slice = image[j : j + grid_x, i : i + grid_y]
                images.append(_slice)
            slices.append(images)

        return slices

    def _minicpm_refine_image_for_slicing(
        self,
        image: np.ndarray,
        max_slice_nums: int = 9,
        scale_resolution: int = 448,
    ):
        original_size = image.shape[:2]
        original_width, original_height = original_size
        log_ratio = math.log(original_width / original_height)
        ratio = original_width * original_height / (scale_resolution * scale_resolution)
        multiple = min(math.ceil(ratio), max_slice_nums)
        best_grid = [1, 1]
        if multiple > 1:
            candidate_split_grids_nums = []
            for i in [multiple - 1, multiple, multiple + 1]:
                if i == 1 or i > max_slice_nums:
                    continue
                candidate_split_grids_nums.append(i)

            candidate_grids = []
            # find best grid
            for split_grids_nums in candidate_split_grids_nums:
                m = 1
                while m <= split_grids_nums:
                    if split_grids_nums % m == 0:
                        candidate_grids.append([m, split_grids_nums // m])
                    m += 1

            min_error = float('inf')
            for grid in candidate_grids:
                error = abs(log_ratio - math.log(grid[0] / grid[1]))
                if error < min_error:
                    best_grid = grid
                    min_error = error

        refine_size = self._minicpm_get_refine_size(best_grid, scale_resolution)
        refine_image, image_mask = self.resize_image(
            x=image, size=list(refine_size), mode=InterpolationMode.BICUBIC
        )
        return refine_image, image_mask, best_grid

    def _minicpm_slice_image(
        self,
        image: np.ndarray,
        mask: np.ndarray,
        best_grid: List[int],
        scale_resolution: int = 448,
    ):
        num_patches_h = num_patches_w = scale_resolution // self.patch_size
        num_patches_h = num_patches_h // self.pooling_h
        num_patches_w = num_patches_w // self.pooling_w
        patch_ordering_arr = []

        # Returns hierarchical list of list slices.
        # Scanning is over width first. Then over height.
        # List of best_grid_y*(list of best_grid_x slices)
        slices = self._minicpm_split_to_slices(image, best_grid)
        image_masks = self._minicpm_split_to_slices(mask, best_grid)

        # Flatten the inner slices
        slices = [item for sublist in slices for item in sublist]
        image_masks = [item for sublist in image_masks for item in sublist]
        first_slice = slices[0]
        on = 0
        on_patch = 0
        for j in range(best_grid[1]):
            for i in range(best_grid[0]):
                # Assure all slices are the same size
                if i != 0 and j != 0:
                    index = i + j
                    assert slices[index].shape == first_slice.shape
                patch_ordering_arr.append(
                    np.reshape(
                        np.arange(
                            on, on + num_patches_h * num_patches_w, dtype=np.int32
                        ),
                        (num_patches_h, num_patches_w),
                    ),
                )
                on += num_patches_h * num_patches_w
                on_patch += 1

        return slices, image_masks, patch_ordering_arr, best_grid

    def minicpm_get_n_image_patches(
        self, height: int, width: int, max_crops: int, with_thumbnail: bool = False
    ) -> int:
        raise NotImplementedError(
            'Function `get_n_image_patches` is not implemented for cropping method '
            f'{CroppingMethod.ADAPTIVE_SLICING}'
        )

    def minicpm_adaptive_slicing(self, image: np.ndarray, with_thumbnail: bool = True):
        scale_resolution = self.base_input_size[0]
        refine_image, image_mask, best_grid = self._minicpm_refine_image_for_slicing(
            image, self.max_crops, scale_resolution
        )
        refine_image = self.normalize_image(refine_image)
        slices, image_masks, patch_ordering_arr, best_grid = self._minicpm_slice_image(
            refine_image,
            image_mask,
            best_grid,
            scale_resolution,
        )
        # [n_crops, base_image_h, base_image_w, n_channels]
        patches = np.stack(slices)
        patch_ordering = np.stack(patch_ordering_arr)
        # [n_crops, n_patches, n_pixels_per_patch]
        patches = patchify(patches, self.patch_size, batched=True)
        patch_ordering = np.reshape(patch_ordering, [-1])
        img_mask = np.stack(image_masks)
        img_mask = patchify(img_mask, self.patch_size, batched=True)
        img_mask = img_mask.astype(np.float32).mean(axis=-1)

        # Add special tokens
        # Molmo uses special patch token ids for mapping patches to token ids
        per_row = np.full(
            (best_grid[0] * self.token_length_w,),
            self.patch_token_id,
            dtype=np.int32,
        )
        # replicate each row of patch tokens by number of rows, i.e.
        # proportional to image height
        joint = np.tile(per_row, [best_grid[1] * self.token_length_h])
        # add start and end image tokens
        joint = [[self.start_token_id], joint, [self.end_token_id]]
        if with_thumbnail:
            resized, _ = self.resize_image(image, list(self.base_input_size))
            resized = self.normalize_image(resized)
            resized = patchify(resized, self.patch_size, batched=False)
            patches = np.concatenate(
                [np.expand_dims(resized, 0), patches], 0
            )  # prepend the global image

            # Global image goes first, so the order of patches in previous crops
            # gets increased
            patch_ordering = np.concatenate(
                [np.arange(0, self.tokens_per_image), patch_ordering], 0
            )
            per_row = np.full(
                (self.token_length_w,), self.patch_token_id, dtype=np.int32
            )
            extra_tokens = np.tile(per_row, [self.token_length_h])
            joint = [
                [self.start_token_id],
                extra_tokens,
                [self.end_token_id],
            ] + joint

        # noinspection PyTypeChecker
        joint = np.concatenate(joint, 0)
        # noinspection PyTypeChecker
        mask = np.pad(img_mask, [[0, 1], [0, 0]], constant_values=-1)

        return patches, joint, patch_ordering, mask

    """ Image input idx builder """

    def build_image_input_idx(self, image_tokens: np.ndarray, patch_order: np.ndarray):
        """Converts `patch_order` into an array mapping patch_id -> token_position."""
        tokens_per_image = self.token_length_w * self.token_length_h
        image_input_idx = image_tokens == self.patch_token_id
        # noinspection PyTypeChecker
        image_input_idx = np.nonzero(image_input_idx)[0].astype(np.int32)

        if patch_order is not None:
            patch_order = np.reshape(patch_order, [-1])
            _ = patch_order.shape[0]
            valid = patch_order >= 0
            n_valid_patches = valid.sum()
            assert len(image_input_idx) == n_valid_patches

            sorted_patch_ixs = np.zeros([image_input_idx.shape[0]], np.int32)
            sorted_patch_ixs[patch_order[valid]] = np.arange(
                n_valid_patches, dtype=np.int32
            )
            sorted_patch_ixs_ex = np.full(np.shape(patch_order), -1)
            sorted_patch_ixs_ex[valid] = sorted_patch_ixs

            valid = (sorted_patch_ixs_ex >= 0).astype(np.int32)
            image_input_idx = image_input_idx[sorted_patch_ixs_ex * valid]
            image_input_idx = image_input_idx * valid - 10000 * (1 - valid)

        return np.reshape(image_input_idx, [-1, tokens_per_image])

    def crop(self, image: np.ndarray):
        """Crops a single image.

        Returns:
            crops: (n_crops, n_patches, patch_dim) individual crops, `n_crops` might
                change between images but the other dimension are fixed
            tokens: (n_tokens,) int32 tokens, pad tokens indicate where to insert the
                patch features, might include other special tokens as well
            image_idx: (n_crops, n_patches) index in `tokens` to put the patch features
                from the crops after pooling, negative values indicates patches features
                to exclude
            padding_mask: (n_crops, n_patches) what percent of each crop is padding,
                can be None if the image mask is not being used.
        """
        if self.cropping_method == CroppingMethod.RESIZE:
            crops, tokens, patch_ordering, mask = self.base_resize_cropping(image)
        elif self.cropping_method == CroppingMethod.OVERLAP_AND_RESIZE:
            crops, tokens, patch_ordering, mask = (
                self.molmo_overlap_and_resize_cropping(image)
            )
        elif self.cropping_method == CroppingMethod.ADAPTIVE_SLICING:
            crops, tokens, patch_ordering, mask = self.minicpm_adaptive_slicing(
                image, with_thumbnail=False
            )
        else:
            crops, tokens, patch_ordering, mask = self.minicpm_adaptive_slicing(
                image, with_thumbnail=True
            )
        image_input_idx = self.build_image_input_idx(tokens, patch_ordering)
        return crops, tokens, image_input_idx, mask

    def set_special_token_ids(
        self,
        patch_token_id: int,
        column_token_id: int,
        start_token_id: int,
        end_token_id: int,
    ):
        self.patch_token_id = patch_token_id
        self.column_token_id = column_token_id
        self.start_token_id = start_token_id
        self.end_token_id = end_token_id

    def _resolve_images_kwargs(
        self, **kwargs: Unpack[JinaVLMImagesKwargs]
    ) -> JinaVLMImagesKwargs:
        max_crops = self.max_crops
        if 'max_crops' in kwargs and kwargs['max_crops'] is not None:
            max_crops = kwargs['max_crops']

        min_pixels = self.min_pixels
        if 'min_pixels' in kwargs and kwargs['min_pixels'] is not None:
            min_pixels = kwargs['min_pixels']
        max_pixels = self.max_pixels
        if 'max_pixels' in kwargs and kwargs['max_pixels'] is not None:
            max_pixels = kwargs['max_pixels']
        size = None
        if 'size' in kwargs:
            size = kwargs['size']

        if size is not None and (
            'shortest_edge' not in size or 'longest_edge' not in size
        ):
            raise ValueError(
                "Agument size must contain 'shortest_edge' and 'longest_edge' keys."
            )
        elif min_pixels is not None and max_pixels is not None:
            size = {'shortest_edge': min_pixels, 'longest_edge': max_pixels}
        else:
            size = {**self.size}
        min_pixels = size['shortest_edge']
        max_pixels = size['longest_edge']
        do_resize = self.do_resize
        if 'do_resize' in kwargs and kwargs['do_resize'] is not None:
            do_resize = kwargs['do_resize']
        do_convert_rgb = self.do_convert_rgb
        if 'do_convert_rgb' in kwargs and kwargs['do_convert_rgb'] is not None:
            do_convert_rgb = kwargs['do_convert_rgb']
        input_data_format = None
        if 'input_data_format' in kwargs:
            input_data_format = kwargs['input_data_format']

        return JinaVLMImagesKwargs(
            do_convert_rgb=do_convert_rgb,
            do_resize=do_resize,
            min_pixels=min_pixels,
            max_pixels=max_pixels,
            size=size,
            max_crops=max_crops,
            input_data_format=input_data_format,
        )

    def get_n_image_patches(
        self,
        height: int,
        width: int,
        **kwargs: Unpack[JinaVLMImagesKwargs],
    ) -> int:
        """A utility that returns number of image patches for a given image size.

        Args:
            height (`int`):
                Height of the input image.
            width (`int`):
                Width of the input image.
            **kwargs (`dict`, *optional*)
                Any kwargs to override defaults of the image processor.
        Returns:
            `int`: Number of image patches
        """
        if self.cropping_method != CroppingMethod.OVERLAP_AND_RESIZE:
            raise NotImplementedError(
                'Function is only implemented for cropping method '
                f'{CroppingMethod.OVERLAP_AND_RESIZE}'
            )
        kwargs = self._resolve_images_kwargs(**kwargs)
        do_resize = kwargs['do_resize']
        size = kwargs['size']
        max_crops = kwargs['max_crops']
        if do_resize:
            height, width = smart_resize(
                height,
                width,
                factor=self.patch_size,
                min_pixels=size['shortest_edge'],
                max_pixels=size['longest_edge'],
            )

        if self.cropping_method == CroppingMethod.RESIZE:
            return self.base_get_n_image_patches(height, width, max_crops)
        elif self.cropping_method == CroppingMethod.OVERLAP_AND_RESIZE:
            return self.molmo_get_n_image_patches(height, width, max_crops)
        elif self.cropping_method == CroppingMethod.ADAPTIVE_SLICING:
            return self.minicpm_get_n_image_patches(height, width, max_crops)
        return self.minicpm_get_n_image_patches(
            height, width, max_crops, with_thumbnail=True
        )

    def preprocess(
        self,
        images: ImageInput,
        **kwargs: Unpack[JinaVLMImagesKwargs],
    ) -> Dict[str, List[np.ndarray]]:
        """Preprocess an image or batch of images."""
        if images is None or len(images) == 0:
            return {
                'image_crops': [],
                'image_tokens': [],
                'image_input_idx': [],
                'image_padding_mask': [],
            }
        kwargs = self._resolve_images_kwargs(**kwargs)
        do_convert_rgb = kwargs['do_convert_rgb']
        do_resize = kwargs['do_resize']
        input_data_format = kwargs['input_data_format']
        size = kwargs['size']
        self.max_crops = kwargs['max_crops']

        # noinspection PyTypeChecker
        images = self.fetch_images(images)
        images = make_flat_list_of_images(images)
        if not valid_images(images):
            raise ValueError(
                'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray '
                'or torch.Tensor'
            )
        if do_convert_rgb:
            images = [convert_to_rgb(image) for image in images]

        # All transformations expect numpy arrays
        images = [to_numpy_array(image) for image in images]
        if input_data_format is None:
            # We assume that all images have the same channel dimension format.
            input_data_format = infer_channel_dimension_format(images[0])

        data = []
        for image in images:
            if do_resize:
                height, width = get_image_size(image, channel_dim=input_data_format)
                resized_height, resized_width = smart_resize(
                    height,
                    width,
                    factor=self.patch_size,
                    min_pixels=size['shortest_edge'],
                    max_pixels=size['longest_edge'],
                )
                image, _ = self.resize_image(image, [resized_height, resized_width])

            crops, tokens, image_input_idx, mask = self.crop(image)
            data.append(
                {
                    'image_crops': crops,
                    'image_tokens': tokens,
                    'image_input_idx': image_input_idx,
                    'image_padding_mask': mask,
                }
            )

        return {
            'image_crops': [d['image_crops'] for d in data],
            'image_tokens': [d['image_tokens'] for d in data],
            'image_input_idx': [d['image_input_idx'] for d in data],
            'image_padding_mask': [d['image_padding_mask'] for d in data],
        }


JinaVLMImageProcessor.register_for_auto_class()