Create propsegment-retrieval.py
Browse files- propsegment-retrieval.py +178 -0
propsegment-retrieval.py
ADDED
|
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""PropSegmEnt: A Large-Scale Corpus for Proposition-Level Segmentation and Entailment Recognition."""
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
import csv
|
| 19 |
+
import json
|
| 20 |
+
import os
|
| 21 |
+
|
| 22 |
+
import datasets
|
| 23 |
+
|
| 24 |
+
_CITATION = """\
|
| 25 |
+
@article{chen2023subsentence,
|
| 26 |
+
title={Sub-Sentence Encoder: Contrastive Learning of Propositional Semantic Representations},
|
| 27 |
+
author={Sihao Chen and Hongming Zhang and Tong Chen and Ben Zhou and Wenhao Yu and Dian Yu and Baolin Peng and Hongwei Wang and Dan Roth and Dong Yu},
|
| 28 |
+
journal={arXiv preprint arXiv:2311.04335},
|
| 29 |
+
year={2023},
|
| 30 |
+
URL = {https://arxiv.org/pdf/2311.04335.pdf}
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
@inproceedings{chen2023propsegment,
|
| 34 |
+
title = "{PropSegmEnt}: A Large-Scale Corpus for Proposition-Level Segmentation and Entailment Recognition",
|
| 35 |
+
author = "Chen, Sihao and Buthpitiya, Senaka and Fabrikant, Alex and Roth, Dan and Schuster, Tal",
|
| 36 |
+
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
|
| 37 |
+
year = "2023",
|
| 38 |
+
}
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
# TODO: Add description of the dataset here
|
| 42 |
+
# You can copy an official description
|
| 43 |
+
_DESCRIPTION = """\
|
| 44 |
+
This contains the processed dataset for the atomic fact retrieval task of the "PropSegment" dataset.
|
| 45 |
+
|
| 46 |
+
The task features a test set of 8,865 queries propositions.
|
| 47 |
+
Each query proposition corresponds to 1-2 ground truth propositions from another document.
|
| 48 |
+
In total, there are 43,299 target candidate propositions.
|
| 49 |
+
Note that the query propositions are also included in the target set, so during evaluation, the query needs to be removed from the retrieved candidates.
|
| 50 |
+
|
| 51 |
+
Check out more details in our paper -- https://arxiv.org/pdf/2311.04335.pdf.
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
_HOMEPAGE = "https://github.com/schen149/sub-sentence-encoder"
|
| 55 |
+
|
| 56 |
+
_LICENSE = "CC-BY-4.0"
|
| 57 |
+
|
| 58 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
| 59 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 60 |
+
_URLS = {
|
| 61 |
+
"targets": {
|
| 62 |
+
"test": "propsegment_targets_all.jsonl",
|
| 63 |
+
},
|
| 64 |
+
"queries": {
|
| 65 |
+
"test": "propsegment_queries_all.jsonl",
|
| 66 |
+
}
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
_CONFIG_TO_FILENAME = {
|
| 70 |
+
"targets": "propsegment_targets_all",
|
| 71 |
+
"queries": "propsegment_queries_all"
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
class PropSegmentRetrieval(datasets.GeneratorBasedBuilder):
|
| 75 |
+
|
| 76 |
+
VERSION = datasets.Version("1.0.0")
|
| 77 |
+
|
| 78 |
+
# This is an example of a dataset with multiple configurations.
|
| 79 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
| 80 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
| 81 |
+
|
| 82 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
| 83 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
| 84 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
| 85 |
+
|
| 86 |
+
# You will be able to load one or the other configurations in the following list with
|
| 87 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 88 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 89 |
+
BUILDER_CONFIGS = [
|
| 90 |
+
datasets.BuilderConfig(name="targets", version=VERSION, description="Query propositions of the atomic fact retrieval task"),
|
| 91 |
+
datasets.BuilderConfig(name="queries", version=VERSION, description="Target candidate propositions of the atomic fact retrieval task"),
|
| 92 |
+
]
|
| 93 |
+
|
| 94 |
+
DEFAULT_CONFIG_NAME = "queries" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 95 |
+
|
| 96 |
+
def _info(self):
|
| 97 |
+
if self.config.name == "queries": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
| 98 |
+
features = datasets.Features(
|
| 99 |
+
{
|
| 100 |
+
"id": datasets.Value("string"),
|
| 101 |
+
"sentence_text": datasets.Value("string"),
|
| 102 |
+
"spans": datasets.Value("string"),
|
| 103 |
+
"labels": datasets.features.Sequence(datasets.Value("string")),
|
| 104 |
+
"tokens": datasets.features.Sequence(
|
| 105 |
+
{"text": datasets.Value("string"), "character_offset_of_token_in_sentence": datasets.Value("int32"),}
|
| 106 |
+
),
|
| 107 |
+
"token_indices": datasets.features.Sequence(datasets.Value("int32"))
|
| 108 |
+
}
|
| 109 |
+
)
|
| 110 |
+
else:
|
| 111 |
+
features = datasets.Features(
|
| 112 |
+
{
|
| 113 |
+
"id": datasets.Value("string"),
|
| 114 |
+
"sentence_text": datasets.Value("string"),
|
| 115 |
+
"spans": datasets.Value("string"),
|
| 116 |
+
"tokens": datasets.features.Sequence(
|
| 117 |
+
{"text": datasets.Value("string"), "character_offset_of_token_in_sentence": datasets.Value("int32"),}
|
| 118 |
+
),
|
| 119 |
+
"token_indices": datasets.features.Sequence(datasets.Value("int32"))
|
| 120 |
+
}
|
| 121 |
+
)
|
| 122 |
+
return datasets.DatasetInfo(
|
| 123 |
+
# This is the description that will appear on the datasets page.
|
| 124 |
+
description=_DESCRIPTION,
|
| 125 |
+
# This defines the different columns of the dataset and their types
|
| 126 |
+
features=features, # Here we define them above because they are different between the two configurations
|
| 127 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
| 128 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
| 129 |
+
# supervised_keys=("sentence", "label"),
|
| 130 |
+
# Homepage of the dataset for documentation
|
| 131 |
+
homepage=_HOMEPAGE,
|
| 132 |
+
# License for the dataset if available
|
| 133 |
+
license=_LICENSE,
|
| 134 |
+
# Citation for the dataset
|
| 135 |
+
citation=_CITATION,
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
def _split_generators(self, dl_manager):
|
| 139 |
+
config_name = self.config.name
|
| 140 |
+
urls = _URLS[config_name]
|
| 141 |
+
|
| 142 |
+
data_dir = dl_manager.download(urls)
|
| 143 |
+
file_prefix = _CONFIG_TO_FILENAME[config_name]
|
| 144 |
+
|
| 145 |
+
return [
|
| 146 |
+
datasets.SplitGenerator(
|
| 147 |
+
name=datasets.Split.TEST,
|
| 148 |
+
# These kwargs will be passed to _generate_examples
|
| 149 |
+
gen_kwargs={
|
| 150 |
+
"filepath": data_dir["test"],
|
| 151 |
+
"split": "test"
|
| 152 |
+
},
|
| 153 |
+
),
|
| 154 |
+
]
|
| 155 |
+
|
| 156 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 157 |
+
def _generate_examples(self, filepath, split):
|
| 158 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
| 159 |
+
with open(filepath, encoding="utf-8") as f:
|
| 160 |
+
for key, row in enumerate(f):
|
| 161 |
+
data = json.loads(row)
|
| 162 |
+
if self.config.name == "queries":
|
| 163 |
+
yield key, {
|
| 164 |
+
"id": data["id"],
|
| 165 |
+
"sentence_text": data["sentence_text"],
|
| 166 |
+
"spans": data["spans"],
|
| 167 |
+
"label": data["label"],
|
| 168 |
+
"tokens": data["tokens"],
|
| 169 |
+
"token_indices": data["token_indices"],
|
| 170 |
+
}
|
| 171 |
+
else:
|
| 172 |
+
yield key, {
|
| 173 |
+
"id": data["id"],
|
| 174 |
+
"sentence_text": data["sentence_text"],
|
| 175 |
+
"spans": data["spans"],
|
| 176 |
+
"tokens": data["tokens"],
|
| 177 |
+
"token_indices": data["token_indices"],
|
| 178 |
+
}
|