# Troubleshooting TRL Training Jobs Common issues and solutions when training with TRL on Hugging Face Jobs. ## Training Hangs at "Starting training..." Step **Problem:** Job starts but hangs at the training step - never progresses, never times out, just sits there. **Root Cause:** Using `eval_strategy="steps"` or `eval_strategy="epoch"` without providing an `eval_dataset` to the trainer. **Solution:** **Option A: Provide eval_dataset (recommended)** ```python # Create train/eval split dataset_split = dataset.train_test_split(test_size=0.1, seed=42) trainer = SFTTrainer( model="Qwen/Qwen2.5-0.5B", train_dataset=dataset_split["train"], eval_dataset=dataset_split["test"], # ← MUST provide when eval_strategy is enabled args=SFTConfig( eval_strategy="steps", eval_steps=50, ... ), ) ``` **Option B: Disable evaluation** ```python trainer = SFTTrainer( model="Qwen/Qwen2.5-0.5B", train_dataset=dataset, # No eval_dataset args=SFTConfig( eval_strategy="no", # ← Explicitly disable ... ), ) ``` **Prevention:** - Always create train/eval split for better monitoring - Use `dataset.train_test_split(test_size=0.1, seed=42)` - Check example scripts: `scripts/train_sft_example.py` includes proper eval setup ## Job Times Out **Problem:** Job terminates before training completes, all progress lost. **Solutions:** - Increase timeout parameter (e.g., `"timeout": "4h"`) - Reduce `num_train_epochs` or use smaller dataset slice - Use smaller model or enable LoRA/PEFT to speed up training - Add 20-30% buffer to estimated time for loading/saving overhead **Prevention:** - Always start with a quick demo run to estimate timing - Use `scripts/estimate_cost.py` to get time estimates - Monitor first runs closely via Trackio or logs ## Model Not Saved to Hub **Problem:** Training completes but model doesn't appear on Hub - all work lost. **Check:** - [ ] `push_to_hub=True` in training config - [ ] `hub_model_id` specified with username (e.g., `"username/model-name"`) - [ ] `secrets={"HF_TOKEN": "$HF_TOKEN"}` in job submission - [ ] User has write access to target repo - [ ] Token has write permissions (check at https://huggingface.co/settings/tokens) - [ ] Training script calls `trainer.push_to_hub()` at the end **See:** `references/hub_saving.md` for detailed Hub authentication troubleshooting ## Out of Memory (OOM) **Problem:** Job fails with CUDA out of memory error. **Solutions (in order of preference):** 1. **Reduce batch size:** Lower `per_device_train_batch_size` (try 4 → 2 → 1) 2. **Increase gradient accumulation:** Raise `gradient_accumulation_steps` to maintain effective batch size 3. **Enable LoRA/PEFT:** Use `peft_config=LoraConfig(r=16, lora_alpha=32)` to train adapters only 4. **Use larger GPU:** Switch from `t4-medium` → `a10g-large` → `a100-large` 5. **Enable gradient checkpointing:** Set `gradient_checkpointing=True` in config (slower but saves memory) 6. **Use smaller model:** Try a smaller variant (e.g., 0.5B instead of 3B) **Memory guidelines:** - T4 (16GB): <1B models with LoRA - A10G (24GB): 1-3B models with LoRA, <1B full fine-tune - A100 (40GB/80GB): 7B+ models with LoRA, 3B full fine-tune ## Dataset Format Error **Problem:** Training fails with dataset format errors or missing fields. **Solutions:** 1. **Check format documentation:** ```python hf_doc_fetch("https://huggingface.co/docs/trl/dataset_formats") ``` 2. **Validate dataset before training:** ```bash uv run https://huggingface.co/datasets/mcp-tools/skills/raw/main/dataset_inspector.py \ --dataset --split train ``` Or via hf_jobs: ```python hf_jobs("uv", { "script": "https://huggingface.co/datasets/mcp-tools/skills/raw/main/dataset_inspector.py", "script_args": ["--dataset", "dataset-name", "--split", "train"] }) ``` 3. **Verify field names:** - **SFT:** Needs "messages" field (conversational), OR "text" field, OR "prompt"/"completion" - **DPO:** Needs "chosen" and "rejected" fields - **GRPO:** Needs prompt-only format 4. **Check dataset split:** - Ensure split exists (e.g., `split="train"`) - Preview dataset: `load_dataset("name", split="train[:5]")` ## Import/Module Errors **Problem:** Job fails with "ModuleNotFoundError" or import errors. **Solutions:** 1. **Add PEP 723 header with dependencies:** ```python # /// script # dependencies = [ # "trl>=0.12.0", # "peft>=0.7.0", # "transformers>=4.36.0", # ] # /// ``` 2. **Verify exact format:** - Must have `# ///` delimiters (with space after `#`) - Dependencies must be valid PyPI package names - Check spelling and version constraints 3. **Test locally first:** ```bash uv run train.py # Tests if dependencies are correct ``` ## Authentication Errors **Problem:** Job fails with authentication or permission errors when pushing to Hub. **Solutions:** 1. **Verify authentication:** ```python mcp__huggingface__hf_whoami() # Check who's authenticated ``` 2. **Check token permissions:** - Go to https://huggingface.co/settings/tokens - Ensure token has "write" permission - Token must not be "read-only" 3. **Verify token in job:** ```python "secrets": {"HF_TOKEN": "$HF_TOKEN"} # Must be in job config ``` 4. **Check repo permissions:** - User must have write access to target repo - If org repo, user must be member with write access - Repo must exist or user must have permission to create ## Job Stuck or Not Starting **Problem:** Job shows "pending" or "starting" for extended period. **Solutions:** - Check Jobs dashboard for status: https://huggingface.co/jobs - Verify hardware availability (some GPU types may have queues) - Try different hardware flavor if one is heavily utilized - Check for account billing issues (Jobs requires paid plan) **Typical startup times:** - CPU jobs: 10-30 seconds - GPU jobs: 30-90 seconds - If >3 minutes: likely queued or stuck ## Training Loss Not Decreasing **Problem:** Training runs but loss stays flat or doesn't improve. **Solutions:** 1. **Check learning rate:** May be too low (try 2e-5 to 5e-5) or too high (try 1e-6) 2. **Verify dataset quality:** Inspect examples to ensure they're reasonable 3. **Check model size:** Very small models may not have capacity for task 4. **Increase training steps:** May need more epochs or larger dataset 5. **Verify dataset format:** Wrong format may cause degraded training ## Logs Not Appearing **Problem:** Cannot see training logs or progress. **Solutions:** 1. **Wait 30-60 seconds:** Initial logs can be delayed 2. **Check logs via MCP tool:** ```python hf_jobs("logs", {"job_id": "your-job-id"}) ``` 3. **Use Trackio for real-time monitoring:** See `references/trackio_guide.md` 4. **Verify job is actually running:** ```python hf_jobs("inspect", {"job_id": "your-job-id"}) ``` ## Checkpoint/Resume Issues **Problem:** Cannot resume from checkpoint or checkpoint not saved. **Solutions:** 1. **Enable checkpoint saving:** ```python SFTConfig( save_strategy="steps", save_steps=100, hub_strategy="every_save", # Push each checkpoint ) ``` 2. **Verify checkpoints pushed to Hub:** Check model repo for checkpoint folders 3. **Resume from checkpoint:** ```python trainer = SFTTrainer( model="username/model-name", # Can be checkpoint path resume_from_checkpoint="username/model-name/checkpoint-1000", ) ``` ## Getting Help If issues persist: 1. **Check TRL documentation:** ```python hf_doc_search("your issue", product="trl") ``` 2. **Check Jobs documentation:** ```python hf_doc_fetch("https://huggingface.co/docs/huggingface_hub/guides/jobs") ``` 3. **Review related guides:** - `references/hub_saving.md` - Hub authentication issues - `references/hardware_guide.md` - Hardware selection and specs - `references/training_patterns.md` - Eval dataset requirements - SKILL.md "Working with Scripts" section - Script format and URL issues 4. **Ask in HF forums:** https://discuss.huggingface.co/