Datasets:
Tasks:
Object Detection
Formats:
text
Languages:
English
Size:
100K - 1M
ArXiv:
Tags:
Multi-object-tracking
License:
| import os | |
| import cv2 | |
| import numpy as np | |
| # Paths | |
| videos_dir = "test_vid" | |
| frames_dir = "test_frame" | |
| # Define how many frames to extract for each video (should be same in GT file last row) | |
| frames_to_extract = { | |
| "task_day_left_turn-2024_07_31_02_12_05-mot 1.1.mp4": 1965, | |
| # add more here... | |
| } | |
| os.makedirs(frames_dir, exist_ok=True) | |
| for video_file in os.listdir(videos_dir): | |
| if video_file.lower().endswith(".mp4"): | |
| video_path = os.path.join(videos_dir, video_file) | |
| # Subdirectory name (remove .mp4) | |
| subdir_name = os.path.splitext(video_file)[0] | |
| subdir_path = os.path.join(frames_dir, subdir_name) | |
| os.makedirs(subdir_path, exist_ok=True) | |
| cap = cv2.VideoCapture(video_path) | |
| total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| desired_frames = frames_to_extract.get(video_file, total_frames) | |
| saved = 0 | |
| frames = [] | |
| while True: | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| frames.append(frame) | |
| cap.release() | |
| if desired_frames > len(frames): | |
| last_frame = frames[-1] | |
| while len(frames) < desired_frames: | |
| frames.append(last_frame) | |
| if desired_frames < len(frames): | |
| indices = np.linspace(0, len(frames) - 1, desired_frames, dtype=int) | |
| frames = [frames[i] for i in indices] | |
| for idx, frame in enumerate(frames): | |
| frame_filename = os.path.join(subdir_path, f"frame_{idx:05d}.jpg") | |
| cv2.imwrite(frame_filename, frame) | |
| saved += 1 | |
| print(f"Extracted {saved} frames from {video_file} into {subdir_name}/") | |
| print(" Done extracting frames for all videos.") |