FastTracker-Benchmark / convert_to_coco.py
climecc111's picture
Duplicate from Hamidreza-Hashemp/FastTracker-Benchmark
0d68b6f verified
import os
import json
import cv2
import numpy as np
# Paths
FRAMES_DIR = "test_frame"
GT_DIR = "GT"
OUT_PATH = "annotations"
os.makedirs(OUT_PATH, exist_ok=True)
# Output COCO-style JSON
out_file = os.path.join(OUT_PATH, "train.json")
out = {
"images": [],
"annotations": [],
"videos": [],
"categories": [
{"id": 1, "name": "pedestrian"} # You can expand with more classes if needed
]
}
image_cnt = 0
ann_cnt = 0
video_cnt = 0
tid_curr = 0
tid_last = -1
# Loop over sequences (one per video)
for seq in sorted(os.listdir(FRAMES_DIR)):
seq_path = os.path.join(FRAMES_DIR, seq)
if not os.path.isdir(seq_path):
continue
video_cnt += 1
out["videos"].append({"id": video_cnt, "file_name": seq})
# Frames
images = sorted([f for f in os.listdir(seq_path) if f.endswith(".jpg")])
num_images = len(images)
for i, img_name in enumerate(images):
img_path = os.path.join(seq_path, img_name)
img = cv2.imread(img_path)
if img is None:
continue
height, width = img.shape[:2]
image_info = {
"file_name": f"{seq}/{img_name}",
"id": image_cnt + i + 1,
"frame_id": i + 1,
"prev_image_id": image_cnt + i if i > 0 else -1,
"next_image_id": image_cnt + i + 2 if i < num_images - 1 else -1,
"video_id": video_cnt,
"height": height,
"width": width
}
out["images"].append(image_info)
# Load GT file
gt_path = os.path.join(GT_DIR, seq, "gt", "gt.txt")
if not os.path.exists(gt_path):
print(f" No GT found for {seq}, skipping annotations.")
image_cnt += num_images
continue
anns = np.loadtxt(gt_path, dtype=np.float32, delimiter=",")
for i in range(anns.shape[0]):
frame_id = int(anns[i][0])
track_id = int(anns[i][1])
x, y, w, h = anns[i][2:6]
conf = anns[i][6]
class_id = int(anns[i][7])
visibility = anns[i][8]
ann_cnt += 1
if track_id != tid_last:
tid_curr += 1
tid_last = track_id
ann = {
"id": ann_cnt,
"category_id": class_id,
"image_id": image_cnt + frame_id,
"track_id": tid_curr,
"bbox": [float(x), float(y), float(w), float(h)],
"conf": float(conf),
"iscrowd": 0,
"area": float(w * h),
}
out["annotations"].append(ann)
image_cnt += num_images
print(f" Loaded {len(out['images'])} images and {len(out['annotations'])} annotations.")
# Save JSON
with open(out_file, "w") as f:
json.dump(out, f)
print(f" Saved COCO-style annotations to {out_file}")