Datasets:
Tasks:
Object Detection
Formats:
text
Languages:
English
Size:
100K - 1M
ArXiv:
Tags:
Multi-object-tracking
License:
| import os | |
| import json | |
| import cv2 | |
| import numpy as np | |
| # Paths | |
| FRAMES_DIR = "test_frame" | |
| GT_DIR = "GT" | |
| OUT_PATH = "annotations" | |
| os.makedirs(OUT_PATH, exist_ok=True) | |
| # Output COCO-style JSON | |
| out_file = os.path.join(OUT_PATH, "train.json") | |
| out = { | |
| "images": [], | |
| "annotations": [], | |
| "videos": [], | |
| "categories": [ | |
| {"id": 1, "name": "pedestrian"} # You can expand with more classes if needed | |
| ] | |
| } | |
| image_cnt = 0 | |
| ann_cnt = 0 | |
| video_cnt = 0 | |
| tid_curr = 0 | |
| tid_last = -1 | |
| # Loop over sequences (one per video) | |
| for seq in sorted(os.listdir(FRAMES_DIR)): | |
| seq_path = os.path.join(FRAMES_DIR, seq) | |
| if not os.path.isdir(seq_path): | |
| continue | |
| video_cnt += 1 | |
| out["videos"].append({"id": video_cnt, "file_name": seq}) | |
| # Frames | |
| images = sorted([f for f in os.listdir(seq_path) if f.endswith(".jpg")]) | |
| num_images = len(images) | |
| for i, img_name in enumerate(images): | |
| img_path = os.path.join(seq_path, img_name) | |
| img = cv2.imread(img_path) | |
| if img is None: | |
| continue | |
| height, width = img.shape[:2] | |
| image_info = { | |
| "file_name": f"{seq}/{img_name}", | |
| "id": image_cnt + i + 1, | |
| "frame_id": i + 1, | |
| "prev_image_id": image_cnt + i if i > 0 else -1, | |
| "next_image_id": image_cnt + i + 2 if i < num_images - 1 else -1, | |
| "video_id": video_cnt, | |
| "height": height, | |
| "width": width | |
| } | |
| out["images"].append(image_info) | |
| # Load GT file | |
| gt_path = os.path.join(GT_DIR, seq, "gt", "gt.txt") | |
| if not os.path.exists(gt_path): | |
| print(f" No GT found for {seq}, skipping annotations.") | |
| image_cnt += num_images | |
| continue | |
| anns = np.loadtxt(gt_path, dtype=np.float32, delimiter=",") | |
| for i in range(anns.shape[0]): | |
| frame_id = int(anns[i][0]) | |
| track_id = int(anns[i][1]) | |
| x, y, w, h = anns[i][2:6] | |
| conf = anns[i][6] | |
| class_id = int(anns[i][7]) | |
| visibility = anns[i][8] | |
| ann_cnt += 1 | |
| if track_id != tid_last: | |
| tid_curr += 1 | |
| tid_last = track_id | |
| ann = { | |
| "id": ann_cnt, | |
| "category_id": class_id, | |
| "image_id": image_cnt + frame_id, | |
| "track_id": tid_curr, | |
| "bbox": [float(x), float(y), float(w), float(h)], | |
| "conf": float(conf), | |
| "iscrowd": 0, | |
| "area": float(w * h), | |
| } | |
| out["annotations"].append(ann) | |
| image_cnt += num_images | |
| print(f" Loaded {len(out['images'])} images and {len(out['annotations'])} annotations.") | |
| # Save JSON | |
| with open(out_file, "w") as f: | |
| json.dump(out, f) | |
| print(f" Saved COCO-style annotations to {out_file}") |