Datasets:
File size: 5,509 Bytes
5fe92ac a871ab7 5fe92ac a871ab7 5fe92ac a871ab7 5fe92ac a871ab7 5fe92ac a871ab7 5fe92ac a871ab7 5fe92ac a871ab7 5fe92ac 75d5c1d 5fe92ac 75d5c1d 33a87ac 75d5c1d 33a87ac 213b04f 9b222c4 75d5c1d 33a87ac 75d5c1d 33a87ac 75d5c1d 33a87ac 75d5c1d 33a87ac 75d5c1d 33a87ac 75d5c1d 33a87ac 75d5c1d 33a87ac 75d5c1d 33a87ac 75d5c1d 33a87ac 75d5c1d 33a87ac 75d5c1d 33a87ac 75d5c1d 33a87ac 75d5c1d 33a87ac 75d5c1d 33a87ac 75d5c1d 33a87ac 75d5c1d 33a87ac 75d5c1d 33a87ac 75d5c1d 33a87ac 75b5cb2 33a87ac 75d5c1d 33a87ac 75d5c1d 5fe92ac 75d5c1d 5fe92ac 75d5c1d a871ab7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
---
license: mit
task_categories:
- graph-ml
tags:
- material
- metamaterial
- graph
- Geospatial
- arxiv:2505.20299
size_categories:
- 10K<n<100K
configs:
- config_name: default
data_files:
- split: full
path: data/processed/data.parquet
dataset_info:
features:
- name: frac_coords
sequence:
sequence:
dtype: float32
- name: cart_coords
sequence:
sequence:
dtype: float32
- name: node_feat
sequence:
sequence:
dtype: float32
- name: node_type
sequence:
dtype: int64
- name: edge_feat
sequence:
sequence:
dtype: float32
- name: edge_index
sequence:
sequence:
dtype: int64
- name: lengths
sequence:
dtype: float32
- name: num_nodes
dtype: int64
- name: num_atoms
dtype: int64
- name: angles
sequence:
dtype: float32
- name: vector
sequence:
dtype: float32
- name: 'y'
sequence:
dtype: float32
- name: young
sequence:
dtype: float32
- name: shear
sequence:
dtype: float32
- name: poisson
sequence:
dtype: float32
---
# 📊 Metamaterial MetaModulus Dataset
## 🧾 Dataset Summary
This dataset contains 3D metamaterial lattice structures for predicting mechanical modulus properties, including **Young's modulus**, **Shear modulus**, and **Poisson's ratio**. Each sample is preprocessed into a format compatible with **[PyTorch Geometric (PyG)](https://pytorch-geometric.readthedocs.io/en/latest/)** for downstream machine learning tasks such as structure-property prediction, graph representation learning, and lattice optimization.
Check our paper on [arxiv.org/abs/2505.20299](https://arxiv.org/abs/2505.20299) for more details.
---
## 📦 Dataset Usage
You can easily download and convert the dataset into `torch_geometric.data.Data` objects using the following steps.
### **Step 1: Load and Convert to PyG Format**
```python
from datasets import load_dataset
from torch_geometric.data import Data
import torch
dataset = load_dataset("cjpcool/metamaterial-MetaModulus", split="full")
pyg_data_list = [
Data(
frac_coords=torch.tensor(d["frac_coords"]),
cart_coords=torch.tensor(d["cart_coords"]),
node_feat=torch.tensor(d["node_feat"]),
node_type=torch.tensor(d["node_type"]),
edge_feat=torch.tensor(d["edge_feat"]),
edge_index=torch.tensor(d["edge_index"]),
lengths=torch.tensor(d["lengths"]).unsqueeze(0),
angles=torch.tensor(d["angles"]).unsqueeze(0),
vector=torch.tensor(d["vector"]).unsqueeze(0),
y=torch.tensor(d["y"]).unsqueeze(0),
young=torch.tensor(d["young"]).unsqueeze(0),
shear=torch.tensor(d["shear"]).unsqueeze(0),
poisson=torch.tensor(d["poisson"]).unsqueeze(0),
num_nodes=d["num_nodes"],
num_atoms=d["num_atoms"]
)
for d in dataset
]
```
### **Step 2: Create Train/Valid/Test Splits**
```python
from sklearn.utils import shuffle
def get_idx_split(data_size, train_size=8000, valid_size=2000, seed=42):
ids = shuffle(range(data_size), random_state=seed)
train_idx = torch.LongTensor(ids[:train_size])
val_idx = torch.LongTensor(ids[train_size:train_size + valid_size])
test_idx = torch.LongTensor(ids[train_size + valid_size:])
return {'train': train_idx, 'valid': val_idx, 'test': test_idx}
split = get_idx_split(len(dataset), seed=42)
train_data = [pyg_data_list[i] for i in split["train"]]
valid_data = [pyg_data_list[i] for i in split["valid"]]
test_data = [pyg_data_list[i] for i in split["test"]]
```
### **Step 3: Create PyG Dataloaders**
```python
from torch_geometric.loader import DataLoader
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)
valid_loader = DataLoader(valid_data, batch_size=32, shuffle=False)
test_loader = DataLoader(test_data, batch_size=32, shuffle=False)
```
---
## 📚 Dataset Source
- **Repository:** [github.com/cjpcool/Metamaterial-Benchmark](https://github.com/cjpcool/Metamaterial-Benchmark)
- **Paper:** *MetamatBench: Integrating Heterogeneous Data, Computational Tools, and Visual Interface for Metamaterial Discovery*, KDD 2025 (Datasets and Benchmarks Track)
---
## 📌 Citation
If you use this dataset in your research, please cite the following paper:
```bibtex
@inproceedings{metamatBench,
author={Chen, Jianpeng and Zhan, Wangzhi and Wang, Haohui and Jia, Zian and Gan, Jingru and Zhang, Junkai and Qi, Jingyuan and Chen, Tingwei and Huang, Lifu and Chen, Muhao and Li, Ling and Wang, Wei and Zhou, Dawei},
title = {MetamatBench: Integrating Heterogeneous Data, Computational Tools, and Visual Interface for Metamaterial Discovery},
booktitle = {Proceedings of the 31th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)},
year = {2025},
publisher = {ACM},
doi = {10.1145/3711896.3737416},
}
```
### 🧪 Raw Data Source
We acknowledge the original data creators:
```bibtex
@article{2021lumpeExploring,
title = {Exploring the property space of periodic cellular structures based on crystal networks},
author = {Lumpe, Thomas S and Stankovic, Tino},
journal = {Proceedings of the National Academy of Sciences},
volume = {118},
number = {7},
pages = {e2003504118},
year = {2021},
publisher = {National Acad Sciences}
}
```
---
## 📬 Contact
For questions, feedback, or contributions, please reach out to:
📧 `cjpcool [at] outlook [dot] com` |