File size: 5,509 Bytes
5fe92ac
 
 
 
 
 
 
 
 
a871ab7
5fe92ac
 
 
 
 
a871ab7
 
5fe92ac
 
a871ab7
 
 
5fe92ac
a871ab7
 
 
5fe92ac
a871ab7
 
 
5fe92ac
a871ab7
 
 
 
 
 
5fe92ac
a871ab7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fe92ac
75d5c1d
5fe92ac
75d5c1d
33a87ac
75d5c1d
33a87ac
213b04f
9b222c4
75d5c1d
 
 
33a87ac
75d5c1d
33a87ac
75d5c1d
 
33a87ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75d5c1d
33a87ac
75d5c1d
 
33a87ac
 
 
 
75d5c1d
 
 
 
33a87ac
75d5c1d
33a87ac
 
 
75d5c1d
33a87ac
75d5c1d
 
 
33a87ac
75d5c1d
 
 
 
33a87ac
75d5c1d
33a87ac
75d5c1d
33a87ac
75d5c1d
 
33a87ac
75d5c1d
33a87ac
75d5c1d
33a87ac
75d5c1d
33a87ac
75d5c1d
33a87ac
75d5c1d
33a87ac
75b5cb2
33a87ac
 
 
 
75d5c1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33a87ac
75d5c1d
 
 
5fe92ac
75d5c1d
5fe92ac
75d5c1d
a871ab7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
license: mit
task_categories:
- graph-ml
tags:
- material
- metamaterial
- graph
- Geospatial
- arxiv:2505.20299
size_categories:
- 10K<n<100K
configs:
- config_name: default
  data_files:
  - split: full
    path: data/processed/data.parquet
dataset_info:
  features:
  - name: frac_coords
    sequence:
      sequence:
        dtype: float32
  - name: cart_coords
    sequence:
      sequence:
        dtype: float32
  - name: node_feat
    sequence:
      sequence:
        dtype: float32
  - name: node_type
    sequence:
      dtype: int64
  - name: edge_feat
    sequence:
      sequence:
        dtype: float32
  - name: edge_index
    sequence:
      sequence:
        dtype: int64
  - name: lengths
    sequence:
      dtype: float32
  - name: num_nodes
    dtype: int64
  - name: num_atoms
    dtype: int64
  - name: angles
    sequence:
      dtype: float32
  - name: vector
    sequence:
      dtype: float32
  - name: 'y'
    sequence:
      dtype: float32
  - name: young
    sequence:
      dtype: float32
  - name: shear
    sequence:
      dtype: float32
  - name: poisson
    sequence:
      dtype: float32
---
# 📊 Metamaterial MetaModulus Dataset

## 🧾 Dataset Summary

This dataset contains 3D metamaterial lattice structures for predicting mechanical modulus properties, including **Young's modulus**, **Shear modulus**, and **Poisson's ratio**. Each sample is preprocessed into a format compatible with **[PyTorch Geometric (PyG)](https://pytorch-geometric.readthedocs.io/en/latest/)** for downstream machine learning tasks such as structure-property prediction, graph representation learning, and lattice optimization.

Check our paper on [arxiv.org/abs/2505.20299](https://arxiv.org/abs/2505.20299) for more details.

---

## 📦 Dataset Usage

You can easily download and convert the dataset into `torch_geometric.data.Data` objects using the following steps.

### **Step 1: Load and Convert to PyG Format**
```python
from datasets import load_dataset
from torch_geometric.data import Data
import torch

dataset = load_dataset("cjpcool/metamaterial-MetaModulus", split="full")

pyg_data_list = [
    Data(
        frac_coords=torch.tensor(d["frac_coords"]),
        cart_coords=torch.tensor(d["cart_coords"]),
        node_feat=torch.tensor(d["node_feat"]),
        node_type=torch.tensor(d["node_type"]),
        edge_feat=torch.tensor(d["edge_feat"]),
        edge_index=torch.tensor(d["edge_index"]),
        lengths=torch.tensor(d["lengths"]).unsqueeze(0),
        angles=torch.tensor(d["angles"]).unsqueeze(0),
        vector=torch.tensor(d["vector"]).unsqueeze(0),
        y=torch.tensor(d["y"]).unsqueeze(0),
        young=torch.tensor(d["young"]).unsqueeze(0),
        shear=torch.tensor(d["shear"]).unsqueeze(0),
        poisson=torch.tensor(d["poisson"]).unsqueeze(0),
        num_nodes=d["num_nodes"],
        num_atoms=d["num_atoms"]
    )
    for d in dataset
]
```

### **Step 2: Create Train/Valid/Test Splits**
```python
from sklearn.utils import shuffle

def get_idx_split(data_size, train_size=8000, valid_size=2000, seed=42):
    ids = shuffle(range(data_size), random_state=seed)
    train_idx = torch.LongTensor(ids[:train_size])
    val_idx = torch.LongTensor(ids[train_size:train_size + valid_size])
    test_idx = torch.LongTensor(ids[train_size + valid_size:])
    return {'train': train_idx, 'valid': val_idx, 'test': test_idx}

split = get_idx_split(len(dataset), seed=42)
train_data = [pyg_data_list[i] for i in split["train"]]
valid_data = [pyg_data_list[i] for i in split["valid"]]
test_data = [pyg_data_list[i] for i in split["test"]]
```

### **Step 3: Create PyG Dataloaders**
```python
from torch_geometric.loader import DataLoader

train_loader = DataLoader(train_data, batch_size=32, shuffle=True)
valid_loader = DataLoader(valid_data, batch_size=32, shuffle=False)
test_loader  = DataLoader(test_data, batch_size=32, shuffle=False)
```

---

## 📚 Dataset Source

- **Repository:** [github.com/cjpcool/Metamaterial-Benchmark](https://github.com/cjpcool/Metamaterial-Benchmark)  
- **Paper:** *MetamatBench: Integrating Heterogeneous Data, Computational Tools, and Visual Interface for Metamaterial Discovery*, KDD 2025 (Datasets and Benchmarks Track)

---

## 📌 Citation

If you use this dataset in your research, please cite the following paper:

```bibtex
@inproceedings{metamatBench,
  author={Chen, Jianpeng and Zhan, Wangzhi and Wang, Haohui and Jia, Zian and Gan, Jingru and Zhang, Junkai and Qi, Jingyuan and Chen, Tingwei and Huang, Lifu and Chen, Muhao and Li, Ling and Wang, Wei and Zhou, Dawei},
  title     = {MetamatBench: Integrating Heterogeneous Data, Computational Tools, and Visual Interface for Metamaterial Discovery},
  booktitle = {Proceedings of the 31th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)},
  year      = {2025},
  publisher = {ACM},
  doi       = {10.1145/3711896.3737416},
}
```

### 🧪 Raw Data Source

We acknowledge the original data creators:

```bibtex
@article{2021lumpeExploring,
  title     = {Exploring the property space of periodic cellular structures based on crystal networks},
  author    = {Lumpe, Thomas S and Stankovic, Tino},
  journal   = {Proceedings of the National Academy of Sciences},
  volume    = {118},
  number    = {7},
  pages     = {e2003504118},
  year      = {2021},
  publisher = {National Acad Sciences}
}
```

---

## 📬 Contact

For questions, feedback, or contributions, please reach out to:  
📧 `cjpcool [at] outlook [dot] com`