name: math-comp_eval num_files: 70 language: COQ few_shot_data_path_for_retrieval: null few_shot_metadata_filename_for_retrieval: null dfs_data_path_for_retrieval: null dfs_metadata_filename_for_retrieval: local.meta.json theorem_cnt: 729 datasets: - project: /math-comp/ files: - path: mathcomp/solvable/frobenius.v theorems: - Frobenius_semiregularP - Frobenius_cent1_ker - prime_FrobeniusP - Frobenius_coprime_quotient - stab_semiprime - card_support_normedTI - injm_Frobenius - path: mathcomp/solvable/abelian.v theorems: - pnElemS - abelemS - pdiv_p_elt - exponent_morphim - rank_witness - Ohm_cont - quotient_rank_abelian - morphim_Mho - pnElem_prime - Mho_p_cycle - abelem_abelian - Mho0 - injm_Ohm - extend_cyclic_Mho - path: mathcomp/ssreflect/order.v theorems: - max_idPl - max_minr - eq_meetl - lexx - idfun_is_bottom_morphism - diff_eq0 - complI - le_sorted_leq_nth - anti - leUr - joins_sup_seq - comparable_ltP - subset_display - joinIBC - le_wval - sort_le_id - bigminIl - diffErcompl - lex1 - le_path_pairwise - contra_leN - enum_rankK - bigmaxUr - lt_path_mask - diffIK - leUx - eq_ltLR - lt_sorted_ltn_nth - le0x - le_refl - compl1 - lteif_andb - le_Rank - comparable_maxC - opred0 - incomparable_ltF - ge_min_id - ltNge - enum_set1 - lt_def - leBKU - lteifxx - lcmnn - bigmax_sup - contraTle - tnth_rcompl - minAC - maxxK - path: mathcomp/algebra/ssralg.v theorems: - subrI - mulIr - valM - mulVf - mulf_div - and_dnfP - natr_div - invr_neq0 - pair_mul0r - rpredBr - ffun_mul_addr - commrV - mulrb - exprAC - opB - rpredN - divIf - eval_If - prodr_const_nat - holds_fsubst - divfI - can2_rmorphism - fieldP - rmorphMsign - Frobenius_aut_is_multiplicative - prodf_div - Frobenius_aut1 - mulrBr - mulr_sumr - subrKA - path: mathcomp/algebra/finalg.v theorems: - unit_inv_proof - path: mathcomp/field/algC.v theorems: - floorC_itv - floorCpK - aut_Cint - CintEge0 - algC_invaut_is_rmorphism - Cint1 - conjL_K - rpred_Cint - mulVf - aut_Crat - mul1 - eqCmodMr - path: mathcomp/ssreflect/prime.v theorems: - partn_part - logn_div - max_pdiv_leq - totient_count_coprime - divn_count_dvd - pnatM - partnX - eq_in_partn - dvdn_prime2 - path: mathcomp/algebra/ssrnum.v theorems: - sgr_ge0 - ger_real - nneg_addr_closed - leif_mean_square - normrX - pmulrn_rle0 - ge0_cp - ltrDr - a1 - real_ltr_distlBl - ReM - subr_ge0 - ltrNl - leN_total - psumr_eq0 - ltrn1 - ler0P - comparabler0 - negrE - sub_ge0 - divC_Crect - ltr_nwDr - realBC - deg_le2_poly_le0 - normC_Re_Im - unitf_gt0 - ler_norm_sum - ltr_distlCBl - ltr_distlC - monic_Cauchy_bound - leif_AGM - invf_nle - ler_sum_nat - gerB_real - lerB_normD - ltr_pdivrMl - real_normK - Im_rootC_ge0 - ReMil - realn_mono - addr_minr - subr_ge0 - lt0N - ltr_sqrt - ltr_pwDl - real_oppr_closed - oppr_max - poly_ivt - normfV - root0C - mulr_sg_norm - real_arg_maxP - oppr_ge0 - lt_trans - exprn_odd_lt0 - Im_i - real_eqr_norm2 - deg2_poly_min - psumr_neq0 - conjCK - comparablerE - realE - nmulr_rle0 - path: mathcomp/ssreflect/fintype.v theorems: - negb_exists - eq_liftF - ordS_inj - injF_onto - extremum_inP - card_bool - pickP - eq_proper_r - subset_catr - split_subproof - ltn_unsplit - proper_sub - cast_ord_comp - eq_proper - canF_eq - fintype_le1P - lshift_subproof - unsplitK - exists_eqP - arg_maxnP - forall_inPn - exists_inPP - proper_irrefl - cardUI - path: mathcomp/algebra/matrix.v theorems: - tr_submxrow - mxtrace_block - mul_mxrow_mxdiag - mxOver_mul_subproof - map_col' - block_mxEur - diag_mx_is_diag - comm_mx1 - perm_mxEsub - drsubmxEsub - mulmx_rsub - diag_mx_is_semi_additive - col_mxEd - mxcolP - const_mx_is_semi_additive - det_scalar - is_scalar_mxP - map2_xrow - submxcolK - mul_mxblock_mxdiag - mul_delta_mx_0 - tr_diag_mx - scalemx_eq0 - mulmx1_min - col_mxrow - invmx1 - tr_tperm_mx - mxrow_recl - path: mathcomp/ssreflect/ssrnat.v theorems: - leq_pmul2r - ltnS - ltn_half_double - ltnW_nhomo - addBnAC - subSn - uphalf_half - minnE - double_pred - leq_mono - leq_add2r - eqn_exp2l - multE - leqW_nmono - ex_maxn_subproof - ltn_ind - leqW_mono - leq_psubRL - addnBC - addnCB - halfK - geq_uphalf_double - odd_halfK - maxn_idPl - contra_not_ltn - nat_irrelevance - leqn0 - ubnPgeq - leq_subCr - ltn_sub2lE - leq_sub2l - leq_add - addSn - path: mathcomp/character/mxrepresentation.v theorems: - card_linear_irr - rfix_mxP - mx_rsim_refl - mxtrace_sub_fact_mod - sum_mxsimple_direct_compl - irr_mx_sum - rstabs_group_set - val_genJmx - rstab_map - Clifford_simple - mx_iso_simple - gen_satP - in_submod_eq0 - rcent_sub - in_gen0 - subSocle_semisimple - rfix_morphim - morphpre_mx_irr - mxmodule_quo - principal_comp_key - irr_reprK - dom_hom_invmx - submod_mx_faithful - eqg_mx_irr - gen_mulDr - val_factmod_module - mxval_sub - section_module - rker_linear - gen_mx_faithful - rconj_mxE - gen_mulA - mx_rsim_in_submod - simple_Socle - path: mathcomp/algebra/poly.v theorems: - lreg_size - map_poly_eq0 - deg2_poly_factor - leq_sizeP - derivnN - scale_polyE - size_poly_leq0P - comm_poly0 - coef_prod_XsubC - coefN - root1 - size_poly_eq0 - coefMX - drop_poly_eq0 - add_polyC - map_poly_eq0_id0 - hornerM - map_comp_poly - size_poly_leq0 - comp_polyA - deriv_is_linear - drop_polyD - coef_sumMXn - horner_coef - lead_coefXaddC - closed_nonrootP - coef_add_poly - size_Msign - closed_field_poly_normal - polyC_exp - take_polyMXn - derivZ - lead_coef_map_id0 - polyOverP - rreg_lead0 - deg2_poly_root2 - size_mulX - path: mathcomp/solvable/gseries.v theorems: - quotient_maximal - subnormalEr - maximal_eqJ - minnormal_maxnormal - simpleP - sub_setIgr - minnormal_exists - morphpre_maximal_eq - path: mathcomp/character/mxabelem.v theorems: - sub_rowg_mx - rowg_group_set - rowg1 - rVabelemJmx - path: mathcomp/solvable/sylow.v theorems: - card_Syl_mod - nilpotent_pcore_Hall - Sylow_Jsub - path: mathcomp/character/character.v theorems: - cfMod_lin_char - cfRepr_map - cfDprodl_irr - xcfun_rE - Cnat_cfdot_char - eq_sum_nth_irr - cfker_Ind_irr - dprod_IirrC - cfun_irr_sum - dprodl_Iirr_eq0 - inv_dprod_IirrK - cfdotC_char - max_cfRepr_norm_scalar - tprod1 - sdprod_Iirr_inj - constt_Ind_Res - cfdot_aut_irr - irr_repr_lin_char - xcfun_annihilate - sum_norm_irr_quo - pgroup_cyclic_faithful - path: mathcomp/algebra/polydiv.v theorems: - reducible_cubic_root - dvd0pP - mup_geq - eqpW - lc_expn_scalp_neq0 - gdcop_recP - gcd0p - divp_addl_mul_small - divp_eq0 - gdcop_rec_map - eqp_rtrans - modp_eq0P - ltn_rmodp - eq_rdvdp - eqp_sym - gcdp_mulr - eqp_root - dvdpNr - size_gcd1p - cubic_irreducible - path: mathcomp/character/inertia.v theorems: - constt_Inertia_bijection - cfConjg_irr - inertia_mod_pre - inertia_quo - cfConjgMod_norm - prime_invariant_irr_extendible - inertia_bigdprod - path: mathcomp/algebra/intdiv.v theorems: - eqz_div - coprimez_pexpr - gcdzz - modz0 - gcdz0 - zprimitive_eq0 - eqz_modDl - dvdz_exp2l - dvdz_zmod_closed - dvdz_lcml - modzMr - lcmz0 - ltz_mod - coprimezXl - dvdz_contents - gcd1z - mulz_divCA_gcd - path: mathcomp/fingroup/morphism.v theorems: - morphpreK - isog_sym - morphpreT - trivial_isog - morphim0 - morphicP - factmE - morphpre_subcent - ker_trivg_morphim - misom_isog - ker_trivm - morphimK - morphpre_gen - injm_ifactm - sub_morphpre_im - eq_homgl - morphimGI - path: mathcomp/solvable/burnside_app.v theorems: - F_s23 - Sd1_inj - r05_inv - S3_inv - sh_inv - S1_inv - rot_r1 - path: mathcomp/algebra/ssrint.v theorems: - pmulrz_rlt0 - nexpIrz - PoszD - exp0rz - mulrz_eq0 - coefMrz - intP - leqifD_dist - mulzS - mulz2 - addSnz - scaler_int - distnDr - expN1r - mulrzBl_nat - rpredXsign - path: mathcomp/field/fieldext.v theorems: - module_baseVspace - divp_polyOver - subfx_scaler1r - mem_vspaceOver - path: mathcomp/solvable/commutator.v theorems: - derg0 - der_char - commMG - quotient_cents2r - path: mathcomp/algebra/rat.v theorems: - mul1q - mul_subdefA - rat_field_theory - ltrq0 - QintP - path: mathcomp/solvable/maximal.v theorems: - nilpotent_Fitting - card_p3group_extraspecial - Fitting_max - FittingJ - Aut_extraspecial_full - path: mathcomp/field/galois.v theorems: - dim_fixed_galois - kHomP - normalFieldP - kHom_inv - kHom1 - normalFieldf - kAHomP - path: mathcomp/ssreflect/div.v theorems: - coprime_sym - edivnP - modnXm - modn_dvdm - dvdn_sub - leq_trunc_div - eqn_mod_dvd - divnBr - dvdn_subr - coprime_pexpl - modnB - leq_divRL - dvdn_lcml - lcmnC - path: mathcomp/solvable/primitive_action.v theorems: - n_act_is_action - path: mathcomp/fingroup/automorphism.v theorems: - char1 - autE - charY - injm_Aut - injm_conj - Aut_group_set - morphic_aut - path: mathcomp/algebra/mxpoly.v theorems: - integral_horner - horner_mx_diag - char_poly_trace - map_horner_mx - diagonalizable_forPex - map_char_poly_mx - algebraic_inv - algebraic_add - comm_horner_mx2 - conjmxM - eval_mxvec - conjumx - horner_mx_uconjC - mx_inv_horner0 - simmxW - conj0mx - coef_rVpoly - split_diagA - path: mathcomp/field/falgebra.v theorems: - sub1_agenv - cent_centerv - subX_agenv - prodvDr - amull_is_linear - lfun_mulRVr - algidr - centerv_sub - path: mathcomp/ssreflect/path.v theorems: - subseq_path - iota_sorted - sorted_ltn_index_in - rot_to_arc - eq_fpath - trajectS - path_min_sorted - shortenP - sort_stable - perm_merge - mem2lr_splice - sorted_map - homo_sort_map - cycle_prev - map_path - take_path - sorted_sort - prev_rotr - mem2rf - allrel_merge - arc_rot - sorted_subseq_sort_in - path: mathcomp/ssreflect/bigop.v theorems: - big_rec2 - big_nseq_cond - big_distrr - big_nat_recl - big_orE - big_nat1_eq - big_ord1_eq - sig_big_dep_idem - big_ord_narrow_cond_leq - big_enum_rank_cond - le_big_ord_cond - reindex_omap - big_nat - big_cat - addm0 - path: mathcomp/ssreflect/choice.v theorems: - tagged_hasChoice - seq_hasChoice - path: mathcomp/algebra/mxalgebra.v theorems: - mulmx_max_rank - row_base0 - rowV0Pn - row_freePn - qidmx_eq1 - addmx_sub - summx_sub_sums - proj_mx_proj - eqmx_rowsub_comp - genmxE - genmxP - binary_mxsum_proof - kermx_eq0 - rV_eqP - stableNmx - mulmx_sub - path: mathcomp/ssreflect/fingraph.v theorems: - finv_inj_in - fcycle_undup - sym_connect_sym - roots_root - findex0 - orbit_rot_cycle - cycle_orbit_in - adjunction_n_comp - connect0 - eq_froot - path: mathcomp/solvable/hall.v theorems: - coprime_comm_pcore - Hall_Jsub - path: mathcomp/solvable/extraspecial.v theorems: - card_isog8_extraspecial - pX1p2_pgroup - path: mathcomp/solvable/extremal.v theorems: - def_q - generators_2dihedral - normal_rank1_structure - odd_not_extremal2 - path: mathcomp/algebra/vector.v theorems: - memv_add - span_bigcat - zero_lfunE - mul_mxof - comp_lfunDl - seq1_free - lker0_compfV - cat_free - lfunP - seq1_basis - lfun_addN - vspace_modr - capvA - path: mathcomp/algebra/ring_quotient.v theorems: - prime_idealrM - path: mathcomp/solvable/cyclic.v theorems: - quotient_generator - ker_eltm - prime_cyclic - path: mathcomp/fingroup/gproduct.v theorems: - extprod_mul1g - cprod_card_dprod - injm_cprodm - bigcprod_card_dprod - pprodmEl - morphim_coprime_sdprod - dprodW - sdprodmEr - subcent_dprod - divgr_id - morphim_bigcprod - injm_dprodm - pprod1g - im_sdprodm1 - path: mathcomp/field/separable.v theorems: - base_separable - separable_prod_XsubC - base_inseparable - separable_inseparable_element - separable_generator_maximal - separable_add - dvdp_separable - path: mathcomp/ssreflect/generic_quotient.v theorems: - enc_mod_rel_is_equiv - pi_morph2 - pi_mono1 - path: mathcomp/fingroup/action.v theorems: - dvdn_orbit - actbyE - actby_is_groupAction - morph_astabs - perm_faithful - astabsD - actpermK - ract_is_groupAction - actK - modact_coset_astab - actsP - orbit_inv_in - gacentE - act1 - atransR - reindex_acts - gactM - subgacent1E - card_orbit_in_stab - gactJ - atrans_acts_card - path: mathcomp/character/integral_char.v theorems: - irr_gring_center - path: mathcomp/solvable/alt.v theorems: - rfd_morph - simple_Alt5 - card_Alt - path: mathcomp/algebra/fraction.v theorems: - equivf_sym - path: mathcomp/solvable/center.v theorems: - center_ncprod - center_prod - path: mathcomp/algebra/interval.v theorems: - leBSide - itv_joinKI - itv_leEmeet - itv_split1U - path: mathcomp/ssreflect/binomial.v theorems: - fact_split - ffact_gt0 - ffactnSr - bin_factd - path: mathcomp/algebra/qpoly.v theorems: - poly_of_size_mod - qpoly_scale1l - qpoly_scaleDl - irreducibleP - path: mathcomp/field/algnum.v theorems: - Aint_subring_exists - Qn_aut_exists - path: mathcomp/solvable/nilpotent.v theorems: - lcn_subS - ucn_id - TI_center_nil - meet_center_nil - injm_nil - quotient_nil - path: mathcomp/algebra/zmodp.v theorems: - Zp_mulVz - Zp_group_set - Fp_Zcast - path: mathcomp/field/closed_field.v theorems: - rmulpT - path: mathcomp/algebra/polyXY.v theorems: - swapXY_X - path: mathcomp/field/qfpoly.v theorems: - qlogp_lt - path: mathcomp/solvable/finmodule.v theorems: - fmodM - fmod_addrC - fmvalK - mulg_exp_card_rcosets - path: mathcomp/character/vcharacter.v theorems: - vcharP - zcharD1E - orthogonal_span - dirr_inj - path: mathcomp/solvable/jordanholder.v theorems: - acompsP - maxainv_proper - maxainv_asimple_quo - path: mathcomp/algebra/archimedean.v theorems: - lt_succ_floor - natr_norm_int - trunc1 - ceil_floor - norm_natr - floorN - prod_truncK - int_num0 - path: mathcomp/field/finfield.v theorems: - primeChar_abelem - primeChar_scale1 - primeChar_scaleAl - path: mathcomp/fingroup/perm.v theorems: - porbitP - porbit_setP - preim_permV - path: mathcomp/fingroup/quotient.v theorems: - rcoset_kercosetP - path: mathcomp/ssreflect/ssrbool.v theorems: - if_implyb - path: mathcomp/ssreflect/finfun.v theorems: - supportE