# ⏱️ TimeSearch-R: Adaptive Temporal Search for Long-Form Video Understanding via Self-Verification Reinforcement Learning *A model that learns to actively search for relevant temporal clips through end-to-end reinforcement learning.* [πŸ“„ [Paper](https://arxiv.org/abs/2511.05489)] [πŸ€— [Model](https://huggingface.co/Time-Search/TimeSearch-R)] ## πŸ“° News πŸ”₯ **[2025/11/13]** Our [Model Checkpoint](https://huggingface.co/Time-Search/TimeSearch-R) is uploaded! ## πŸ‘οΈ Overview TimeSearch-R reformulates temporal search as interleaved text–video thinking, seamlessly integrating searching video clips into the reasoning process through reinforcement learning (RL). ![Teaser](assets/teaser.png) We introduce GRPO with Completeness Self-Verification (GRPO-CSV), which gathers searched video frames from the interleaved reasoning process and utilizes the same policy model to verify the adequacy of searched frames, thereby improving the completeness of video reasoning. ![GRPO-CSV](assets/grpo_csv.png) ## πŸš€ Quick Start ### 🏝️ Environmental Setup **Step 1:** Prepare the running environment. Prepare the environment with CUDA and PyTorch (CUDA 12.4 and PyTorch 2.6.0 in our experiments), and install the dependencies with `pip`. ```bash pip install -r requirements.txt ``` **Step 2:** Run the clip server for video frame retrieval. Download the pre-trained SigLIP model. ```bash huggingface-cli download google/siglip-so400m-patch14-384 --local-dir /path/to/your/local/filedir ``` Modify the `clip_as_service/server/clip_server/torch-flow.yml` to use the downloaded local model path and run the SigLIP server. ```bash cd clip_as_service/server && pip3 install . export CUDA_VISIBLE_DEVICES=RR export GRPC_VERBOSITY=debug export HF_HUB_OFFLINE=1 export PYTHONPATH=$PYTHONPATH:. python3 -m clip_server ``` ### πŸ“¦οΈ Dataset & Model We provide the preprocessed JSON files for [Haystack-LVBench](https://huggingface.co/datasets/MLL-Lab/LongVideoHaystack). The corresponding `.mp4` video files can be downloaded from the original [LongVideoBench](https://huggingface.co/datasets/longvideobench/LongVideoBench) dataset. Download the pre-trained TimeSearch-R model. ```bash huggingface-cli download --resume-download Time-Search/TimeSearch-R --local-dir /path/to/your/local/filedir ``` **(Recommended) Prepare the frame cache and feature cache.** To accelerate the inference and training speed, we recommend extracting the frames and features for the videos in advance. ```bash python3 scripts/converts/prepare_frame_cache.py /path/to/your/local/data_root /path/to/your/local/haystack_lvbench_input.jsonl --num_workers 16 --target_fps 2 python3 scripts/converts/prepare_feature_cache.py /path/to/your/local/data_root /path/to/your/local/haystack_lvbench_input.jsonl --num_workers 16 ``` ### πŸ“‹οΈ Inference & Evaluation **Step 1:** Run the TimeSearch-R inference. ```bash # The IP address from the above step export SIGLIP_URL=grpc://127.0.0.1:51000 torchrun \ --nproc_per_node=8 \ --master_port=24137 \ time_r1/inference.py \ --input_path /path/to/your/local/haystack_lvbench_input.jsonl \ --save_path /path/to/your/local/haystack_lvbench_output \ --data_root /path/to/your/local/data_root \ --model_base /path/to/your/local/checkpoint \ --prompt_template v4 \ --use_env True \ --use_vllm True \ --batch_size 1 \ --num_data_workers 2 \ --total_video_tokens 24000 \ --max_frames 768 \ --max_tokens 256 ``` **Step 2:** Evaluate the temporal search and QA performance. The temporal search evaluation script is modified from [T*](https://github.com/mll-lab-nu/TStar). ```bash # Temporal search evaluation python time_r1/eval/eval_temporal_search.py --search_result_path /path/to/your/local/haystack_lvbench_output.jsonl # QA evaluation python time_r1/eval/longvideobench_eval.py /path/to/your/local/haystack_lvbench_output.jsonl ``` ### πŸ—οΈ GRPO-CSV Training **Step 1:** Prepare the reward model. We use [Qwen-2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) as our reward model for LLM-as-a-judge verification. ```bash # download Qwen-2.5-72B-Instruct model huggingface-cli download --resume-download https://huggingface.co/Qwen/Qwen2.5-72B-Instruct --local-dir /path/to/your/local/filedir ``` Start a VLLM server of [Qwen-2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) for LLM-as-a-judge verification. ```bash vllm serve /path/to/your/local/filedir \ --port 18901 \ --gpu-memory-utilization 0.8 \ --max-model-len 32768 \ --tensor-parallel-size 8 \ --served-model-name "judge" \ --trust-remote-code \ --disable-log-requests ``` **Step 2:** Train TimeSearch-R with GRPO-CSV. We recommend using no less than 16 GPUs (2 nodes x 8 GPUs) for 7B training. For each node, we recommend using no less than 1024GB CPU RAM, as the long-form videos in training datasets can consume a large amount of memory. We provide the training script for TimeSearch-R with GRPO-CSV in `scripts/train.sh`. ```bash bash scripts/train.sh ``` ## πŸ”– Citation If you find TimeSearch-R useful for your research and applications, please cite using this BibTeX: ```bibtex @article{timesearch-r, title={TimeSearch-R: Adaptive Temporal Search for Long-Form Video Understanding via Self-Verification Reinforcement Learning}, author={Pan, Junwen and Zhang, Qizhe and Zhang, Rui and Lu, Ming and Wan, Xin and Zhang, Yuan and Liu, Chang and She, Qi}, journal={arXiv preprint arXiv:2511.05489}, year={2025} } ``` ## 🎟️ License This project is released under the [Apache 2.0 license](LICENSE). ## πŸ… Acknowledgements We thank the authors of the following projects for their contributions: * [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL) * [R1-V](https://github.com/Deep-Agent/R1-V) * [trl](https://github.com/huggingface/trl) * [T*](https://github.com/mll-lab-nu/TStar)