TimeSearch-R-raw / time_r1 /utils /query_utils.py
CSDDSFSFSAFSAF's picture
Add files using upload-large-folder tool
6f44b37 verified
from transformers import AutoProcessor
import torch
def clear_query(query):
"""
clear query from extra information
"""
heads = [
"Select the best answer to the following multiple-choice question based on the video and the subtitles. Respond with only the letter (A, B, C, or D) of the correct option.",
"Select the best answer to the following multiple-choice question based on the video. Respond with only the letter (A, B, C, or D) of the correct option."
]
tails = [
"Answer with the option's letter from the given choices directly.",
"The best answer is:",
"Answer the question using a single word or phrase.",
"Only give the best option.\n",
"Best option: ("
]
for head in heads:
query = query.split(head)[-1]
for tail in tails:
query = query.split(tail)[0]
query = query.strip()
return query
def split_query(input_text_list, processor):
"""
[Batch operation]
split text into 64 tokens
"""
inputs = processor(text=input_text_list, padding="max_length", return_tensors="pt", truncation=False)
stride_num = (int(inputs["input_ids"].shape[-1]) + 63) // 64
stride = (inputs["input_ids"].shape[-1] + stride_num - 1) // stride_num
input_id_heads, input_id_tails = [], []
l, r = 0, inputs["input_ids"].shape[-1]
while l < r:
input_id_heads.append(inputs["input_ids"][:, l:l + stride])
l += stride
if l < r:
input_id_tails.append(inputs["input_ids"][:, r - stride:r])
r -= stride
input_ids = input_id_heads + input_id_tails[::-1]
input_ids = torch.cat(input_ids)
resume_texts = processor.batch_decode(input_ids, skip_special_tokens=True)
return resume_texts