--- library_name: peft base_model: microsoft/codebert-base tags: - base_model:adapter:microsoft/codebert-base - lora - transformers metrics: - accuracy - f1 - precision - recall model-index: - name: CodeGenDetect-CodeBert_Lora results: [] --- # CodeGenDetect-CodeBert_Lora This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0384 - Accuracy: 0.9907 - F1: 0.9907 - Precision: 0.9907 - Recall: 0.9907 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | Precision | Recall | |:-------------:|:------:|:-----:|:--------:|:------:|:---------------:|:---------:|:------:| | 0.1381 | 0.128 | 4000 | 0.9586 | 0.9586 | 0.1627 | 0.9599 | 0.9586 | | 0.0821 | 0.256 | 8000 | 0.9761 | 0.9761 | 0.1081 | 0.9761 | 0.9761 | | 0.0667 | 0.384 | 12000 | 0.9786 | 0.9786 | 0.1008 | 0.9787 | 0.9786 | | 0.0754 | 0.512 | 16000 | 0.9820 | 0.9820 | 0.0779 | 0.9821 | 0.9820 | | 0.0776 | 0.64 | 20000 | 0.9846 | 0.9846 | 0.0617 | 0.9847 | 0.9846 | | 0.0643 | 0.768 | 24000 | 0.9831 | 0.9831 | 0.0761 | 0.9832 | 0.9831 | | 0.064 | 0.896 | 28000 | 0.9878 | 0.9878 | 0.0495 | 0.9878 | 0.9878 | | 0.0477 | 1.024 | 32000 | 0.9879 | 0.9879 | 0.0480 | 0.9880 | 0.9879 | | 0.0427 | 1.152 | 36000 | 0.9894 | 0.9894 | 0.0424 | 0.9894 | 0.9894 | | 0.0381 | 1.28 | 40000 | 0.9880 | 0.9880 | 0.0484 | 0.9880 | 0.9880 | | 0.0423 | 1.408 | 44000 | 0.9901 | 0.9901 | 0.0399 | 0.9901 | 0.9901 | | 0.0389 | 1.536 | 48000 | 0.9888 | 0.9888 | 0.0513 | 0.9889 | 0.9888 | | 0.0416 | 1.6640 | 52000 | 0.9908 | 0.9908 | 0.0358 | 0.9908 | 0.9908 | | 0.0374 | 1.792 | 56000 | 0.0370 | 0.9905 | 0.9905 | 0.9905 | 0.9905 | | 0.0441 | 1.92 | 60000 | 0.0355 | 0.9905 | 0.9905 | 0.9905 | 0.9905 | | 0.0358 | 2.048 | 64000 | 0.0384 | 0.9907 | 0.9907 | 0.9907 | 0.9907 | ### Framework versions - PEFT 0.18.0 - Transformers 4.57.3 - Pytorch 2.9.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.1