--- license: mit datasets: - mteb/banking77 language: - en pipeline_tag: text-classification library_name: sentence-transformers tags: - mteb - text - transformers - text-embeddings-inference - sparse-encoder - sparse - csr model-index: - name: CSR results: - dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 split: test metrics: - type: accuracy value: 0.899545 - type: f1 value: 0.899018 - type: f1_weighted value: 0.899018 - type: main_score value: 0.899545 task: type: Classification base_model: - nvidia/NV-Embed-v2 --- For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [Github](https://github.com/neilwen987/CSR_Adaptive_Rep). ## Usage 📌 **Tip**: For NV-Embed-V2, using Transformers versions **later** than 4.47.0 may lead to performance degradation, as ``model_type=bidir_mistral`` in ``config.json`` is no longer supported. We recommend using ``Transformers 4.47.0.`` ### Sentence Transformers Usage You can evaluate this model loaded by Sentence Transformers with the following code snippet: ```python import mteb from sentence_transformers import SparseEncoder model = SparseEncoder( "Y-Research-Group/CSR-NV_Embed_v2-Classification-Banking77", trust_remote_code=True ) model.prompts = { "Banking77Classification": "Instruct: Given a online banking query, find the corresponding intents\nQuery:" } task = mteb.get_tasks(tasks=["Banking77Classification"]) evaluation = mteb.MTEB(tasks=task) evaluation.run( model, eval_splits=["test"], output_folder="./results/Banking77Classification", show_progress_bar=True encode_kwargs={"convert_to_sparse_tensor": False, "batch_size": 8} ) # MTEB don't support sparse tensors yet, so we need to convert to dense tensors ``` ## Citation ```bibtex @inproceedings{wenbeyond, title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation}, author={Wen, Tiansheng and Wang, Yifei and Zeng, Zequn and Peng, Zhong and Su, Yudi and Liu, Xinyang and Chen, Bo and Liu, Hongwei and Jegelka, Stefanie and You, Chenyu}, booktitle={Forty-second International Conference on Machine Learning} } ```