File size: 2,142 Bytes
f24563f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# TPU-Optimized LLM Training

This repository contains a highly optimized implementation for training Large Language Models (LLMs) on TPU v4-32 hardware. The code is specifically designed to efficiently train a 600 billion parameter model within a 30-day timeframe.

## Features

- **TPU v4-32 Optimizations**: Specialized code for TPU v4-32 hardware with efficient parallelism strategies
- **Memory Efficiency**: Optimized memory usage with gradient checkpointing and efficient attention mechanisms
- **Performance Monitoring**: Comprehensive logging and performance tracking
- **Long Context Support**: Support for very long sequences (up to 32K tokens)
- **Enhanced Reasoning**: Additional reasoning layers for improved model capabilities

## Requirements

See `requirements.txt` for the full list of dependencies. Key requirements:

```
jax[tpu]==0.4.20
jaxlib==0.4.20
libtpu-nightly
flax==0.7.5
```

## Usage

To train a model, use the `tpu_train.py` script:

```bash
python tpu_train.py \
  --model_size 600b \
  --train_file /path/to/training/data.jsonl \
  --tokenizer_file /path/to/tokenizer.model \
  --batch_size 32 \
  --gradient_accumulation_steps 8 \
  --learning_rate 1.5e-4 \
  --max_steps 500000 \
  --warmup_steps 5000 \
  --max_seq_length 32768 \
  --output_dir /path/to/output \
  --parallelism_type tensor \
  --tensor_parallel_size 8 \
  --use_flash_attention \
  --use_gradient_checkpointing \
  --use_rope_scaling \
  --use_reasoning_layer
```

## Architecture

The implementation includes:

- **Optimized Flash Attention**: Blocked implementation for efficient memory usage
- **Tensor Parallelism**: Efficient parameter sharding across TPU devices
- **Data Parallelism**: Optimized data loading and processing
- **Mixed Precision Training**: BFloat16 support for TPU
- **Gradient Checkpointing**: Memory-efficient backpropagation

## Performance

On TPU v4-32 hardware, this implementation achieves:

- Efficient training of 600B parameter models
- Support for sequence lengths up to 32K tokens
- Memory-efficient operation with gradient checkpointing
- Optimized communication patterns for TPU pods

## License

MIT