File size: 25,688 Bytes
e88e8f1 e721528 e71505a e721528 ec43207 e71505a e721528 e71505a e721528 9a39696 e71505a e721528 e71505a e721528 e71505a 9a39696 e71505a 9a39696 e71505a 9a39696 e71505a 9a39696 e88e8f1 ec43207 53ec084 e88e8f1 28c4702 7610e89 e33a3f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
---
language: en
license: mit
base_model: google/efficientnet-b0 # <-- top-level so it shows in the sidebar
datasets:
- synthetic-anime-scenes # optional; helps sidebar/search
tags:
- image-classification
- anime
- art-style
- efficientnet-b0
- pytorch
- safetensors
- multi-class
- deprecated
- "base_model:google/efficientnet-b0" # optional searchable tag
framework: pytorch
library_name: torchvision
pipeline_tag: image-classification
model-index:
- name: anime-style-classifier-efficientnet-b0
results:
- task:
type: image-classification
dataset:
name: synthetic-anime-scenes
type: synthetic # <-- REQUIRED
split: validation
metrics:
- name: Accuracy
type: accuracy
value: 0.9818
- name: Macro F1
type: f1
value: 0.9879
- task:
type: image-classification
dataset:
name: synthetic-anime-scenes
type: synthetic # <-- REQUIRED
split: holdout
metrics:
- name: Accuracy
type: accuracy
value: 1.0
- name: Macro F1
type: f1
value: 1.0
---
<p align="center">
<a href="https://huggingface.co/Mitchins/anime-style-classifier-efficientnet-b0-v2">
<img src="https://img.shields.io/badge/STATUS-DEPRECATED-critical?style=for-the-badge">
</a>
</p>
⚠️ **Deprecated — use [v2](https://huggingface.co/Mitchins/anime-style-classifier-efficientnet-b0-v2)**
v2 improves training, splits, and real-world performance. **Migration:** same preprocessing & class order.
---
# Anime Style Classifier - EfficientNet-B0
A fine-tuned EfficientNet-B0 model for classifying anime/visual novel images into 6 distinct art styles.
## Model Description
- **Model Architecture**: EfficientNet-B0 (~5.3M parameters)
- **Base Model**: ImageNet pretrained weights
- **Task**: Multi-class image classification (6 styles)
- **Input Resolution**: 224x224 RGB
- **Framework**: PyTorch
- **License**: MIT
## Performance
### Test Set Results (Holdout)
- **Accuracy**: 100.0%
- **Macro F1-Score**: 1.000
- **Validation Accuracy**: 98.18%
Perfect classification across all 120 holdout images (20 per class). Note: with n=120 the 95% Wilson confidence interval for this result is approximately 96.90%—100.00%, so the perfect score should be interpreted cautiously alongside validation metrics. Taking both validation and holdout into account, a realistic estimate of the model's true accuracy is likely in the mid-to-high 90s (≈96–98%) — still very strong and, for most applications, likely fit for purpose.
### Per-Class Performance
| Style | Precision | Recall | F1-Score | Support |
|-------|-----------|--------|----------|---------|
| **dark** | 1.000 | 1.000 | 1.000 | 20 |
| **flat** | 1.000 | 1.000 | 1.000 | 20 |
| **modern** | 1.000 | 1.000 | 1.000 | 20 |
| **moe** | 1.000 | 1.000 | 1.000 | 20 |
| **painterly** | 1.000 | 1.000 | 1.000 | 20 |
| **retro** | 1.000 | 1.000 | 1.000 | 20 |
## Style Definitions
1. **dark**: Low-key lighting, chiaroscuro, desaturated palette, high contrast shadows, moody atmosphere
2. **flat**: Minimalist flat colors, vector illustration, solid color blocks, no gradients or shading
3. **modern**: Clean digital rendering, smooth gradients, glossy finish, contemporary anime aesthetic
4. **moe**: Soft pastel colors, rounded features, cute/adorable character focus, gentle shading
5. **painterly**: Watercolor or gouache appearance, visible brush strokes, paper texture, artistic feel
6. **retro**: 80s/90s anime aesthetic, vintage color palette, classic cel animation style
## Training Details
### Dataset
- **Training Images**: 933 (scene-level split)
- **Validation Images**: 165
- **Holdout Images**: 120
- **Total Scenes**: 203 perfectly balanced scenes
- **Images per Style**: 183 training + 20 holdout = 203 each
- **Source Resolution**: 1920x1088
- **Training Resolution**: 224x224
**Data Split Strategy**: Scene-level 90/10 split to prevent data leakage. All 6 style variants of each scene are kept together in either training or holdout set.
**Data Generation**: Synthetic images generated via ComfyUI with Flux diffusion model, validated by Gemma-12B vision-language model. Only scenes with 6/6 style agreement (all variants correctly classified) were included.
### Training Regime
```yaml
Architecture: EfficientNet-B0
Pretrained: ImageNet weights
Optimizer: AdamW
Learning Rate: 0.001
Weight Decay: 1e-05
Batch Size: 16
Epochs: 30 (early stopping at ~12-15 epochs typical)
Scheduler: CosineAnnealingLR
Loss: CrossEntropyLoss
Early Stopping: 10 epochs patience (val accuracy)
```
### Data Augmentation (Training Only)
- Resize to 256x256
- Random crop to 224x224
- Random horizontal flip (p=0.5)
- Color jitter (brightness=0.1, saturation=0.1, hue=0.05)
- ImageNet normalization (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
### Hardware
- GPU: NVIDIA GPU (CUDA)
- Training Time: ~15 minutes (with early stopping)
## Usage
### Installation
```bash
pip install torch torchvision pillow
```
### Inference
This repository includes a small CLI inference script, `inference.py`, which auto-detects `.safetensors` (preferred) or a PyTorch `.pth` checkpoint and provides a convenient command-line interface for classification. Because `inference.py` already contains the full, tested loading and preprocessing logic, the README keeps only the minimal usage notes below and a short programmatic example that delegates to the script's functions.
Install (optional: include safetensors for safer loading):
```bash
pip install torch torchvision pillow safetensors
```
CLI usage (example):
```bash
python inference.py --model model.safetensors --config config.json examples/retro_1.png
```
This will print a ranked list of predictions and a top prediction summary (see the script output example above).
Programmatic usage (calls the same functions used by the CLI):
```python
# Minimal programmatic example using functions from inference.py
from inference import load_model, classify_image
model, config = load_model('model.safetensors', 'config.json')
results = classify_image(model, config, 'examples/retro_1.png')
print(results[:3]) # top-3 predictions as (style, confidence)
```
For the full implementation and additional options (e.g., --top-k), see `inference.py` in the repository.
## Limitations
- **Input Resolution**: Model processes images at 224x224, which may lose fine texture details from high-resolution sources (1920x1088+)
- **Domain**: Trained on synthetically generated anime/visual novel images. May not generalize perfectly to all anime art styles, manga, or hand-drawn artwork
- **Style Ambiguity**: Some real-world images may blend multiple styles (e.g., painterly with modern digital techniques)
-- **Validation Bias**: Ground truth labels come from Gemma-12B vision model, so classifier may inherit some of its biases
Small-sample caution: The internal validation set achieved 98.18% (162/165). The 95% Wilson confidence interval for this is approximately 94.79%—99.38%. Because the holdout set is relatively small (20 images per class, 120 total), perfect classification on that set is possible by chance and should be reported with its confidence interval (see above).
Decision rule note: The model uses the standard softmax + argmax decision rule by default (choose the class with highest predicted probability). No abstain threshold is applied in the shipped `inference.py`; if you later want an abstain/human-review mode, adding a `--min-conf` option is straightforward.
## Model Selection
This model was selected from a hyperparameter sweep of 144+ configurations across 6 architectures:
- ResNet-18
- MobileNetV3-Large
- MobileNetV3-Small
- EfficientNet-B0 ⭐ (winner)
- EfficientNetV2-S
- ViT-B/16
EfficientNet-B0 achieved perfect 100% holdout accuracy with:
- Excellent efficiency (~5.3M parameters)
- Fast inference
- Strong generalization (98.18% val → 100% holdout)
## Citation
```bibtex
@software{anime_style_classifier_2025,
author = {Your Name},
title = {Anime Style Classifier},
year = {2025},
url = {https://huggingface.co/Mitchins/anime-style-classifier-efficientnet-b0}
}
```
## Acknowledgments
- **Base Model**: EfficientNet-B0 from torchvision (ImageNet pretrained)
- **Synthetic Data Generation**: ComfyUI + Flux diffusion model
- **Data Validation**: Gemma-12B vision-language model
- **Framework**: PyTorch, torchvision
## Contact
For questions or feedback, please open an issue on the GitHub repository.
## Published validation preview
Below is a compact thumbnail-based preview of a subset of the published validation images. Thumbnails link to the full-size images under `validation/images/`.
<!-- BEGIN VALIDATION GRID (generated) -->
| Modern | Painterly | Retro | Moe | Flat | Dark |
|---|---|---|---|---|---|
| <a href="validation/images/modern/modern_bookstore_chance_meeting.png"><img src="validation/images/modern/modern_bookstore_chance_meeting.png" alt="modern_bookstore_chance_meeting.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/painterly/painterly_bookstore_chance_meeting.png"><img src="validation/images/painterly/painterly_bookstore_chance_meeting.png" alt="painterly_bookstore_chance_meeting.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/retro/retro_bookstore_chance_meeting.png"><img src="validation/images/retro/retro_bookstore_chance_meeting.png" alt="retro_bookstore_chance_meeting.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/moe/moe_bookstore_chance_meeting.png"><img src="validation/images/moe/moe_bookstore_chance_meeting.png" alt="moe_bookstore_chance_meeting.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/flat/flat_bookstore_chance_meeting.png"><img src="validation/images/flat/flat_bookstore_chance_meeting.png" alt="flat_bookstore_chance_meeting.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/dark/dark_bookstore_chance_meeting.png"><img src="validation/images/dark/dark_bookstore_chance_meeting.png" alt="dark_bookstore_chance_meeting.png" style="width:150px;height:auto;margin:2px;"/></a> |
| <a href="validation/images/modern/modern_campus_courtyard_rain.png"><img src="validation/images/modern/modern_campus_courtyard_rain.png" alt="modern_campus_courtyard_rain.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/painterly/painterly_campus_courtyard_rain.png"><img src="validation/images/painterly/painterly_campus_courtyard_rain.png" alt="painterly_campus_courtyard_rain.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/retro/retro_campus_courtyard_rain.png"><img src="validation/images/retro/retro_campus_courtyard_rain.png" alt="retro_campus_courtyard_rain.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/moe/moe_campus_courtyard_rain.png"><img src="validation/images/moe/moe_campus_courtyard_rain.png" alt="moe_campus_courtyard_rain.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/flat/flat_campus_courtyard_rain.png"><img src="validation/images/flat/flat_campus_courtyard_rain.png" alt="flat_campus_courtyard_rain.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/dark/dark_campus_courtyard_rain.png"><img src="validation/images/dark/dark_campus_courtyard_rain.png" alt="dark_campus_courtyard_rain.png" style="width:150px;height:auto;margin:2px;"/></a> |
| <a href="validation/images/modern/modern_cloud_port_landing_pads.png"><img src="validation/images/modern/modern_cloud_port_landing_pads.png" alt="modern_cloud_port_landing_pads.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/painterly/painterly_cloud_port_landing_pads.png"><img src="validation/images/painterly/painterly_cloud_port_landing_pads.png" alt="painterly_cloud_port_landing_pads.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/retro/retro_cloud_port_landing_pads.png"><img src="validation/images/retro/retro_cloud_port_landing_pads.png" alt="retro_cloud_port_landing_pads.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/moe/moe_cloud_port_landing_pads.png"><img src="validation/images/moe/moe_cloud_port_landing_pads.png" alt="moe_cloud_port_landing_pads.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/flat/flat_cloud_port_landing_pads.png"><img src="validation/images/flat/flat_cloud_port_landing_pads.png" alt="flat_cloud_port_landing_pads.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/dark/dark_cloud_port_landing_pads.png"><img src="validation/images/dark/dark_cloud_port_landing_pads.png" alt="dark_cloud_port_landing_pads.png" style="width:150px;height:auto;margin:2px;"/></a> |
| <a href="validation/images/modern/modern_coral_archway_shore.png"><img src="validation/images/modern/modern_coral_archway_shore.png" alt="modern_coral_archway_shore.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/painterly/painterly_coral_archway_shore.png"><img src="validation/images/painterly/painterly_coral_archway_shore.png" alt="painterly_coral_archway_shore.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/retro/retro_coral_archway_shore.png"><img src="validation/images/retro/retro_coral_archway_shore.png" alt="retro_coral_archway_shore.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/moe/moe_coral_archway_shore.png"><img src="validation/images/moe/moe_coral_archway_shore.png" alt="moe_coral_archway_shore.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/flat/flat_coral_archway_shore.png"><img src="validation/images/flat/flat_coral_archway_shore.png" alt="flat_coral_archway_shore.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/dark/dark_coral_archway_shore.png"><img src="validation/images/dark/dark_coral_archway_shore.png" alt="dark_coral_archway_shore.png" style="width:150px;height:auto;margin:2px;"/></a> |
| <a href="validation/images/modern/modern_fairy_ring_meadow.png"><img src="validation/images/modern/modern_fairy_ring_meadow.png" alt="modern_fairy_ring_meadow.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/painterly/painterly_fairy_ring_meadow.png"><img src="validation/images/painterly/painterly_fairy_ring_meadow.png" alt="painterly_fairy_ring_meadow.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/retro/retro_fairy_ring_meadow.png"><img src="validation/images/retro/retro_fairy_ring_meadow.png" alt="retro_fairy_ring_meadow.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/moe/moe_fairy_ring_meadow.png"><img src="validation/images/moe/moe_fairy_ring_meadow.png" alt="moe_fairy_ring_meadow.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/flat/flat_fairy_ring_meadow.png"><img src="validation/images/flat/flat_fairy_ring_meadow.png" alt="flat_fairy_ring_meadow.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/dark/dark_fairy_ring_meadow.png"><img src="validation/images/dark/dark_fairy_ring_meadow.png" alt="dark_fairy_ring_meadow.png" style="width:150px;height:auto;margin:2px;"/></a> |
| <a href="validation/images/modern/modern_fey_crossing_footbridge.png"><img src="validation/images/modern/modern_fey_crossing_footbridge.png" alt="modern_fey_crossing_footbridge.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/painterly/painterly_fey_crossing_footbridge.png"><img src="validation/images/painterly/painterly_fey_crossing_footbridge.png" alt="painterly_fey_crossing_footbridge.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/retro/retro_fey_crossing_footbridge.png"><img src="validation/images/retro/retro_fey_crossing_footbridge.png" alt="retro_fey_crossing_footbridge.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/moe/moe_fey_crossing_footbridge.png"><img src="validation/images/moe/moe_fey_crossing_footbridge.png" alt="moe_fey_crossing_footbridge.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/flat/flat_fey_crossing_footbridge.png"><img src="validation/images/flat/flat_fey_crossing_footbridge.png" alt="flat_fey_crossing_footbridge.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/dark/dark_fey_crossing_footbridge.png"><img src="validation/images/dark/dark_fey_crossing_footbridge.png" alt="dark_fey_crossing_footbridge.png" style="width:150px;height:auto;margin:2px;"/></a> |
| <a href="validation/images/modern/modern_holo_library_steps.png"><img src="validation/images/modern/modern_holo_library_steps.png" alt="modern_holo_library_steps.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/painterly/painterly_holo_library_steps.png"><img src="validation/images/painterly/painterly_holo_library_steps.png" alt="painterly_holo_library_steps.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/retro/retro_holo_library_steps.png"><img src="validation/images/retro/retro_holo_library_steps.png" alt="retro_holo_library_steps.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/moe/moe_holo_library_steps.png"><img src="validation/images/moe/moe_holo_library_steps.png" alt="moe_holo_library_steps.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/flat/flat_holo_library_steps.png"><img src="validation/images/flat/flat_holo_library_steps.png" alt="flat_holo_library_steps.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/dark/dark_holo_library_steps.png"><img src="validation/images/dark/dark_holo_library_steps.png" alt="dark_holo_library_steps.png" style="width:150px;height:auto;margin:2px;"/></a> |
| <a href="validation/images/modern/modern_lantern_catacombs.png"><img src="validation/images/modern/modern_lantern_catacombs.png" alt="modern_lantern_catacombs.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/painterly/painterly_lantern_catacombs.png"><img src="validation/images/painterly/painterly_lantern_catacombs.png" alt="painterly_lantern_catacombs.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/retro/retro_lantern_catacombs.png"><img src="validation/images/retro/retro_lantern_catacombs.png" alt="retro_lantern_catacombs.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/moe/moe_lantern_catacombs.png"><img src="validation/images/moe/moe_lantern_catacombs.png" alt="moe_lantern_catacombs.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/flat/flat_lantern_catacombs.png"><img src="validation/images/flat/flat_lantern_catacombs.png" alt="flat_lantern_catacombs.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/dark/dark_lantern_catacombs.png"><img src="validation/images/dark/dark_lantern_catacombs.png" alt="dark_lantern_catacombs.png" style="width:150px;height:auto;margin:2px;"/></a> |
| <a href="validation/images/modern/modern_meteor_defense_bunker.png"><img src="validation/images/modern/modern_meteor_defense_bunker.png" alt="modern_meteor_defense_bunker.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/painterly/painterly_meteor_defense_bunker.png"><img src="validation/images/painterly/painterly_meteor_defense_bunker.png" alt="painterly_meteor_defense_bunker.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/retro/retro_meteor_defense_bunker.png"><img src="validation/images/retro/retro_meteor_defense_bunker.png" alt="retro_meteor_defense_bunker.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/moe/moe_meteor_defense_bunker.png"><img src="validation/images/moe/moe_meteor_defense_bunker.png" alt="moe_meteor_defense_bunker.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/flat/flat_meteor_defense_bunker.png"><img src="validation/images/flat/flat_meteor_defense_bunker.png" alt="flat_meteor_defense_bunker.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/dark/dark_meteor_defense_bunker.png"><img src="validation/images/dark/dark_meteor_defense_bunker.png" alt="dark_meteor_defense_bunker.png" style="width:150px;height:auto;margin:2px;"/></a> |
| <a href="validation/images/modern/modern_night_market_skewers.png"><img src="validation/images/modern/modern_night_market_skewers.png" alt="modern_night_market_skewers.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/painterly/painterly_night_market_skewers.png"><img src="validation/images/painterly/painterly_night_market_skewers.png" alt="painterly_night_market_skewers.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/retro/retro_night_market_skewers.png"><img src="validation/images/retro/retro_night_market_skewers.png" alt="retro_night_market_skewers.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/moe/moe_night_market_skewers.png"><img src="validation/images/moe/moe_night_market_skewers.png" alt="moe_night_market_skewers.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/flat/flat_night_market_skewers.png"><img src="validation/images/flat/flat_night_market_skewers.png" alt="flat_night_market_skewers.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/dark/dark_night_market_skewers.png"><img src="validation/images/dark/dark_night_market_skewers.png" alt="dark_night_market_skewers.png" style="width:150px;height:auto;margin:2px;"/></a> |
| <a href="validation/images/modern/modern_park_bench_shared_earbuds.png"><img src="validation/images/modern/modern_park_bench_shared_earbuds.png" alt="modern_park_bench_shared_earbuds.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/painterly/painterly_park_bench_shared_earbuds.png"><img src="validation/images/painterly/painterly_park_bench_shared_earbuds.png" alt="painterly_park_bench_shared_earbuds.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/retro/retro_park_bench_shared_earbuds.png"><img src="validation/images/retro/retro_park_bench_shared_earbuds.png" alt="retro_park_bench_shared_earbuds.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/moe/moe_park_bench_shared_earbuds.png"><img src="validation/images/moe/moe_park_bench_shared_earbuds.png" alt="moe_park_bench_shared_earbuds.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/flat/flat_park_bench_shared_earbuds.png"><img src="validation/images/flat/flat_park_bench_shared_earbuds.png" alt="flat_park_bench_shared_earbuds.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/dark/dark_park_bench_shared_earbuds.png"><img src="validation/images/dark/dark_park_bench_shared_earbuds.png" alt="dark_park_bench_shared_earbuds.png" style="width:150px;height:auto;margin:2px;"/></a> |
| <a href="validation/images/modern/modern_rain_on_train_crossing.png"><img src="validation/images/modern/modern_rain_on_train_crossing.png" alt="modern_rain_on_train_crossing.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/painterly/painterly_rain_on_train_crossing.png"><img src="validation/images/painterly/painterly_rain_on_train_crossing.png" alt="painterly_rain_on_train_crossing.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/retro/retro_rain_on_train_crossing.png"><img src="validation/images/retro/retro_rain_on_train_crossing.png" alt="retro_rain_on_train_crossing.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/moe/moe_rain_on_train_crossing.png"><img src="validation/images/moe/moe_rain_on_train_crossing.png" alt="moe_rain_on_train_crossing.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/flat/flat_rain_on_train_crossing.png"><img src="validation/images/flat/flat_rain_on_train_crossing.png" alt="flat_rain_on_train_crossing.png" style="width:150px;height:auto;margin:2px;"/></a> | <a href="validation/images/dark/dark_rain_on_train_crossing.png"><img src="validation/images/dark/dark_rain_on_train_crossing.png" alt="dark_rain_on_train_crossing.png" style="width:150px;height:auto;margin:2px;"/></a> |
### Note about thumbnails and deployment
Thumbnails are provided only for the convenience of the model README/gallery and are optional. When you publish the model to Hugging Face you may omit `validation/thumbs/` (it's listed in `.gitignore`) — the important artifacts for deployment are `model.safetensors` and `config.json` (and `inference.py` if you want a runnable CLI). Typical deployments will only fetch the model weights and config; README/gallery images are not required for inference and can be excluded from the model archive to keep downloads small.
|