| { | |
| "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20240725.json", | |
| "version": "0.6.2", | |
| "changelog": { | |
| "0.6.2": "enhance metadata with improved descriptions and task specification", | |
| "0.6.1": "update to huggingface hosting and fix missing dependencies", | |
| "0.6.0": "use monai 1.4 and update large files", | |
| "0.5.9": "update to use monai 1.3.1", | |
| "0.5.8": "add load_pretrain flag for infer", | |
| "0.5.7": "add checkpoint loader for infer", | |
| "0.5.6": "update to use monai 1.3.0", | |
| "0.5.5": "update AddChanneld with EnsureChannelFirstd and set image_only to False", | |
| "0.5.4": "fix the wrong GPU index issue of multi-node", | |
| "0.5.3": "remove error dollar symbol in readme", | |
| "0.5.2": "remove the CheckpointLoader from the train.json", | |
| "0.5.1": "add RAM warning", | |
| "0.5.0": "update TensorRT descriptions", | |
| "0.4.9": "update the model weights", | |
| "0.4.8": "update the TensorRT part in the README file", | |
| "0.4.7": "fix mgpu finalize issue", | |
| "0.4.6": "enable deterministic training", | |
| "0.4.5": "add the command of executing inference with TensorRT models", | |
| "0.4.4": "adapt to BundleWorkflow interface", | |
| "0.4.3": "update this bundle to support TensorRT convert", | |
| "0.4.2": "support monai 1.2 new FlexibleUNet", | |
| "0.4.1": "add name tag", | |
| "0.4.0": "add support for multi-GPU training and evaluation", | |
| "0.3.2": "restructure readme to match updated template", | |
| "0.3.1": "add figures of workflow and metrics, add invert transform", | |
| "0.3.0": "update dataset processing", | |
| "0.2.1": "update to use monai 1.0.1", | |
| "0.2.0": "update license files", | |
| "0.1.0": "complete the first version model package", | |
| "0.0.1": "initialize the model package structure" | |
| }, | |
| "monai_version": "1.4.0", | |
| "pytorch_version": "2.4.0", | |
| "numpy_version": "1.24.4", | |
| "required_packages_version": { | |
| "nibabel": "5.2.1", | |
| "pytorch-ignite": "0.4.11", | |
| "pillow": "10.4.0", | |
| "tensorboard": "2.17.0" | |
| }, | |
| "supported_apps": {}, | |
| "name": "Endoscopic Tool Segmentation", | |
| "task": "Binary Segmentation of Surgical Tools in Endoscopic Images", | |
| "description": "A 2D segmentation model that identifies and delineates surgical instruments in endoscopic video frames. The model processes 736x480 pixel RGB images and provides binary segmentation masks. Based on an EfficientNet-UNet architecture, the model supports real-time analysis of surgical procedures.", | |
| "authors": "MONAI team", | |
| "copyright": "Copyright (c) MONAI Consortium", | |
| "data_source": "private dataset", | |
| "data_type": "RGB", | |
| "image_classes": "three channel data, intensity [0-255]", | |
| "label_classes": "single channel data, 1/255 is tool, 0 is background", | |
| "pred_classes": "2 channels OneHot data, channel 1 is tool, channel 0 is background", | |
| "eval_metrics": { | |
| "mean_iou": 0.86 | |
| }, | |
| "references": [ | |
| "Tan, M. and Le, Q. V. Efficientnet: Rethinking model scaling for convolutional neural networks. ICML, 2019a. https://arxiv.org/pdf/1905.11946.pdf", | |
| "O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234\u2013241. Springer, 2015. https://arxiv.org/pdf/1505.04597.pdf" | |
| ], | |
| "network_data_format": { | |
| "inputs": { | |
| "image": { | |
| "type": "magnitude", | |
| "format": "RGB", | |
| "modality": "regular", | |
| "num_channels": 3, | |
| "spatial_shape": [ | |
| 736, | |
| 480 | |
| ], | |
| "dtype": "float32", | |
| "value_range": [ | |
| 0, | |
| 1 | |
| ], | |
| "is_patch_data": false, | |
| "channel_def": { | |
| "0": "R", | |
| "1": "G", | |
| "2": "B" | |
| } | |
| } | |
| }, | |
| "outputs": { | |
| "pred": { | |
| "type": "image", | |
| "format": "segmentation", | |
| "num_channels": 2, | |
| "spatial_shape": [ | |
| 736, | |
| 480 | |
| ], | |
| "dtype": "float32", | |
| "value_range": [ | |
| 0, | |
| 1 | |
| ], | |
| "is_patch_data": false, | |
| "channel_def": { | |
| "0": "background", | |
| "1": "tools" | |
| } | |
| } | |
| } | |
| } | |
| } | |