chaneg name
Browse files- pipeline.py +4 -14
pipeline.py
CHANGED
|
@@ -21,7 +21,7 @@ import random
|
|
| 21 |
import cv2
|
| 22 |
import numpy as np
|
| 23 |
from torchvision import transforms
|
| 24 |
-
from torchvision.transforms import functional as
|
| 25 |
from torchvision.transforms import InterpolationMode
|
| 26 |
|
| 27 |
from dataclasses import dataclass
|
|
@@ -6059,18 +6059,8 @@ class MaxLongEdgeMinShortEdgeResize(torch.nn.Module):
|
|
| 6059 |
if max(new_width, new_height) > self.max_size:
|
| 6060 |
scale = self.max_size / max(new_width, new_height)
|
| 6061 |
new_width, new_height = self._apply_scale(new_width, new_height, scale)
|
| 6062 |
-
|
| 6063 |
-
|
| 6064 |
-
# img = img.unsqueeze(0) # → [1,C,H,W]
|
| 6065 |
-
resized = F.interpolate(
|
| 6066 |
-
img,
|
| 6067 |
-
size=(new_height, new_width),
|
| 6068 |
-
mode=self.interpolation, # e.g. "bilinear"
|
| 6069 |
-
antialias=self.antialias, # if you need anti‑aliasing
|
| 6070 |
-
)
|
| 6071 |
-
# resized = resized.squeeze(0) # → [C,H,W]
|
| 6072 |
-
return resized
|
| 6073 |
-
# return F.resize(img, (new_height, new_width), self.interpolation, antialias=self.antialias)
|
| 6074 |
|
| 6075 |
|
| 6076 |
class ImageTransform:
|
|
@@ -6829,7 +6819,7 @@ class InterleaveInferencer:
|
|
| 6829 |
past_key_values = gen_context['past_key_values']
|
| 6830 |
kv_lens = gen_context['kv_lens']
|
| 6831 |
ropes = gen_context['ropes']
|
| 6832 |
-
|
| 6833 |
generation_input = self.model.prepare_start_tokens(kv_lens, ropes, self.new_token_ids)
|
| 6834 |
generation_input = self._to_device(generation_input, device)
|
| 6835 |
unpacked_latent = self.model.generate_text(
|
|
|
|
| 21 |
import cv2
|
| 22 |
import numpy as np
|
| 23 |
from torchvision import transforms
|
| 24 |
+
from torchvision.transforms import functional as TF
|
| 25 |
from torchvision.transforms import InterpolationMode
|
| 26 |
|
| 27 |
from dataclasses import dataclass
|
|
|
|
| 6059 |
if max(new_width, new_height) > self.max_size:
|
| 6060 |
scale = self.max_size / max(new_width, new_height)
|
| 6061 |
new_width, new_height = self._apply_scale(new_width, new_height, scale)
|
| 6062 |
+
|
| 6063 |
+
return TF.resize(img, (new_height, new_width), self.interpolation, antialias=self.antialias)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6064 |
|
| 6065 |
|
| 6066 |
class ImageTransform:
|
|
|
|
| 6819 |
past_key_values = gen_context['past_key_values']
|
| 6820 |
kv_lens = gen_context['kv_lens']
|
| 6821 |
ropes = gen_context['ropes']
|
| 6822 |
+
|
| 6823 |
generation_input = self.model.prepare_start_tokens(kv_lens, ropes, self.new_token_ids)
|
| 6824 |
generation_input = self._to_device(generation_input, device)
|
| 6825 |
unpacked_latent = self.model.generate_text(
|