Fast_dLLM_v2_7B / modeling.py
LbsTempest's picture
Fix: Correct hidden state return value in forward method
df25cfa verified
raw
history blame
35.7 kB
from typing import Callable, Optional, Union
from dataclasses import dataclass
import torch
from torch import nn
import torch.nn.functional as F
from functools import partial
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.integrations import use_kernel_forward_from_hub
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import auto_docstring, can_return_tuple, logging
from .configuration import Fast_dLLM_QwenConfig
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
from einops import rearrange, repeat
logger = logging.get_logger(__name__)
@dataclass
class CausalLMOutputWithPastAndBlockCache(CausalLMOutputWithPast):
block_past_key_values: Optional[Cache] = None
@dataclass
class BaseModelOutputWithPastAndBlockCache(BaseModelOutputWithPast):
block_past_key_values: Optional[Cache] = None
@torch.compile(fullgraph=True, mode="max-autotune-no-cudagraphs")
def fused_flex_attention(q, k, v, mask=None):
return flex_attention(q, k, v, block_mask=mask, enable_gqa=True)
def block_diff_mask(b, h, q_idx, kv_idx, block_size=None, n=None):
"""
Constructs the specialized block diffusion attention mask for training
composed of three masks:
- **Block Diagonal Mask (M_BD)**: Self-attention within noised blocks
- **Offset Block Causal Mask (M_OBC)**: Cross-attention for conditional context
- **Block Causal Mask (M_BC)**: Attention to update x0
Args:
b, h: Batch and head indices (ignored for mask logic).
q_idx, kv_idx: Query and Key indices.
seq_len: Total sequence length.
block_size: Defines the block structure.
Returns:
A boolean attention mask.
"""
# Indicate whether token belongs to xt or x0
x0_flag_q = (q_idx >= n)
x0_flag_kv = (kv_idx >= n)
# Compute block indices
block_q = torch.where(x0_flag_q == 1,
(q_idx - n) // block_size,
q_idx // block_size)
block_kv = torch.where(x0_flag_kv == 1,
(kv_idx - n) // block_size,
kv_idx // block_size)
# **1. Block Diagonal Mask (M_BD) **
block_diagonal = (block_q == block_kv) & (x0_flag_q == x0_flag_kv)
# **2. Offset Block-Causal Mask (M_OBC) **
offset_block_causal = (
(block_q > block_kv)
& (x0_flag_kv == 1)
& (x0_flag_q == 0)
)
# **3. Block-Causal Mask (M_BC) **
block_causal = (block_q >= block_kv) & (x0_flag_kv == 1) & (x0_flag_q == 1)
# **4. Combine Masks **
return block_diagonal | offset_block_causal | block_causal
def eval_block_diff_mask(q_idx, kv_idx, block_size=None):
# Compute block indices
block_q = q_idx // block_size
block_kv = kv_idx // block_size
return block_q >= block_kv
class Fast_dLLM_QwenMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class Fast_dLLM_QwenAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Fast_dLLM_QwenConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
update_past_key_values: Optional[bool] = False,
block_past_key_values: Optional[Cache] = None,
replace_position: Optional[int] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if self.training:
#split q into two parts
q_1 = query_states[:,:,:query_states.shape[2]//2]
q_2 = query_states[:,:,query_states.shape[2]//2:]
#split k into two parts
k_1 = key_states[:,:,:key_states.shape[2]//2]
k_2 = key_states[:,:,key_states.shape[2]//2:]
q_1, k_1 = apply_rotary_pos_emb(q_1, k_1, cos, sin)
q_2, k_2 = apply_rotary_pos_emb(q_2, k_2, cos, sin)
query_states = torch.cat((q_1, q_2), dim=-2)
key_states = torch.cat((k_1, k_2), dim=-2)
else:
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if block_past_key_values is not None:
if len(block_past_key_values) <= self.layer_idx:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = block_past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
else:
block_cache_key_states = block_past_key_values[self.layer_idx][0]
block_cache_value_states = block_past_key_values[self.layer_idx][1]
block_cache_key_states[:, :, replace_position:replace_position+key_states.shape[2]] = key_states
block_cache_value_states[:, :, replace_position:replace_position+value_states.shape[2]] = value_states
key_states = block_cache_key_states
value_states = block_cache_value_states
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
if update_past_key_values:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
elif len(past_key_value) > self.layer_idx:
key_states = torch.cat((past_key_value[self.layer_idx][0], key_states), dim=-2)
value_states = torch.cat((past_key_value[self.layer_idx][1], value_states), dim=-2)
if self.training:
attn_output = fused_flex_attention(query_states, key_states, value_states, mask=attention_mask)
attn_output = attn_output.transpose(1, 2).contiguous()
else:
attention_interface = ALL_ATTENTION_FUNCTIONS["sdpa"]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
is_causal=False,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=self.sliding_window, # main diff with Llama
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output
@use_kernel_forward_from_hub("RMSNorm")
class Fast_dLLM_QwenRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Fast_dLLM_QwenRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class Fast_dLLM_QwenDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: Fast_dLLM_QwenConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Fast_dLLM_QwenAttention(config=config, layer_idx=layer_idx)
self.mlp = Fast_dLLM_QwenMLP(config)
self.input_layernorm = Fast_dLLM_QwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Fast_dLLM_QwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.attention_type = config.layer_types[layer_idx]
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
update_past_key_values: Optional[bool] = False,
use_block_cache: Optional[bool] = False,
block_past_key_values: Optional[Cache] = None,
replace_position: Optional[int] = None,
**kwargs
) -> tuple[torch.Tensor]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
update_past_key_values=update_past_key_values,
use_block_cache=use_block_cache,
block_past_key_values=block_past_key_values,
replace_position=replace_position,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Fast_dLLM_QwenPreTrainedModel(PreTrainedModel):
config_class = Fast_dLLM_QwenConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Fast_dLLM_QwenDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
_can_record_outputs = {
"hidden_states": Fast_dLLM_QwenDecoderLayer,
"attentions": Fast_dLLM_QwenAttention,
}
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, Fast_dLLM_QwenRMSNorm):
module.weight.data.fill_(1.0)
class Fast_dLLM_QwenRotaryEmbedding(nn.Module):
def __init__(self, config: Fast_dLLM_QwenConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class Fast_dLLM_QwenModel(Fast_dLLM_QwenPreTrainedModel):
def __init__(self, config: Fast_dLLM_QwenConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.bd_size = config.bd_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Fast_dLLM_QwenDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Fast_dLLM_QwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Fast_dLLM_QwenRotaryEmbedding(config=config)
self.gradient_checkpointing = True
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def eval_mask(self, seqlen, block_size, cache_seq_len):
q_indices = torch.arange(seqlen) + cache_seq_len
k_indices = torch.arange(seqlen + cache_seq_len)
mask = eval_block_diff_mask(
q_idx=q_indices[:, None],
kv_idx=k_indices[None, :],
block_size=block_size
)
return mask
def gen_mask(self, seqlen, block_size, B, H):
mask = create_block_mask(
partial(block_diff_mask, block_size=block_size, n=seqlen),
B=B, H=H, Q_LEN=seqlen*2, KV_LEN=seqlen*2)
return mask
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
update_past_key_values: Optional[bool] = False,
block_size: Optional[int] = 32,
use_block_cache: Optional[bool] = False,
block_past_key_values: Optional[Cache] = None,
replace_position: Optional[int] = None,
**kwargs
) -> BaseModelOutputWithPast:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if use_block_cache and block_past_key_values is None:
block_past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
if self.training:
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1]//2, device=inputs_embeds.device
)
else:
if use_block_cache:
block_start_position = past_seen_tokens+replace_position if replace_position is not None else past_seen_tokens
cache_position = torch.arange(
block_start_position, block_start_position + inputs_embeds.shape[1], device=inputs_embeds.device
)
else:
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1] if not self.training else inputs_embeds.shape[1]//2, device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
if self.training:
attention_mask = self.gen_mask(labels.shape[1], self.bd_size, labels.shape[0], self.config.num_attention_heads).to(device=inputs_embeds.device)
else:
if use_block_cache and block_past_key_values.get_seq_length() != 0:
attention_mask = None
else:
attention_mask = self.eval_mask(input_ids.shape[1], block_size, past_key_values.get_seq_length() if past_key_values is not None else 0).to(device=inputs_embeds.device)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
hidden_states = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
update_past_key_values=update_past_key_values,
use_block_cache=use_block_cache,
block_past_key_values=block_past_key_values,
replace_position=replace_position,
**kwargs,
)
hidden_states = self.norm(hidden_states)
return BaseModelOutputWithPastAndBlockCache(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
block_past_key_values=block_past_key_values if use_block_cache else None,
)
class Fast_dLLM_QwenForCausalLM(Fast_dLLM_QwenPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = Fast_dLLM_QwenModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
update_past_key_values: Optional[bool] = False,
block_size: Optional[int] = 32,
use_block_cache: Optional[bool] = False,
block_past_key_values: Optional[Cache] = None,
replace_position: Optional[int] = None,
mask_id: Optional[int] = 151665,
**kwargs
) -> CausalLMOutputWithPastAndBlockCache:
if self.training:
original_labels = labels.clone()
original_input_ids = input_ids.clone()
noisy_input_ids = input_ids.clone()
input_ids = input_ids.reshape(input_ids.shape[0] * input_ids.shape[1] // self.model.bd_size, self.model.bd_size)
b, l = input_ids.shape
t = torch.rand((b,), device=input_ids.device)
eps=1e-3
p_mask = (1 - eps) * t + eps
p_mask = p_mask[:, None].repeat(1, l)
mask_indices = torch.rand((b, l), device=input_ids.device) < p_mask
x_t = torch.where(mask_indices, mask_id, input_ids).reshape(labels.shape)
noisy_input_ids[labels != -100] = x_t[labels != -100]
mask = (noisy_input_ids != mask_id)
labels[mask] = -100
input_ids = torch.cat([noisy_input_ids, input_ids.reshape(labels.shape)], dim=1)
complementary_noisy_input_ids = original_input_ids.clone()
complementary_labels = original_labels.clone()
complementary_input_ids = original_input_ids.reshape(original_input_ids.shape[0] * original_input_ids.shape[1] // self.model.bd_size, self.model.bd_size)
complementary_mask_indices = ~mask_indices
complementary_x_t = torch.where(complementary_mask_indices, mask_id, complementary_input_ids).reshape(labels.shape)
complementary_noisy_input_ids[complementary_labels != -100] = complementary_x_t[complementary_labels != -100]
complementary_mask = (complementary_noisy_input_ids != mask_id)
complementary_labels[complementary_mask] = -100
complementary_input_ids = torch.cat([complementary_noisy_input_ids, complementary_input_ids.reshape(complementary_labels.shape)], dim=1)
input_ids = torch.cat([input_ids, complementary_input_ids], dim=0)
labels = torch.cat([labels, complementary_labels], dim=0)
outputs: BaseModelOutputWithPastAndBlockCache = self.model(
input_ids=input_ids,
labels=labels,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
cache_position=cache_position,
update_past_key_values=update_past_key_values,
block_size=block_size,
use_block_cache=use_block_cache,
block_past_key_values=block_past_key_values,
replace_position=replace_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
if self.training:
hidden_states = hidden_states[:, :hidden_states.shape[1]//2, :]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPastAndBlockCache(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.last_hidden_state,
attentions=outputs.attentions,
block_past_key_values=outputs.block_past_key_values,
)
@torch.no_grad()
def generate(
self,
input_ids,
max_new_tokens,
mask_id=151665,
threshold=1,
small_block_size=8,
block_size=32,
stop_token=151645,
stopping_criteria=None,
top_p=0.95,
temperature=0,
use_block_cache=False,
**kwargs
):
num_blocks = max_new_tokens // block_size
original_input_length = input_ids.shape[1]
if input_ids.shape[1] > block_size:
output = self.forward(input_ids=input_ids[:, :(input_ids.shape[1] // block_size * block_size)], use_cache=True, update_past_key_values=True, block_size=block_size)
logits, past_key_values = output.logits, output.past_key_values
if input_ids.shape[1] % block_size == 0:
next_token = logits[:, -1:, :].argmax(dim=-1)
input_ids = torch.cat([input_ids, next_token], dim=1)
else:
past_key_values = None
num_small_blocks = block_size // small_block_size
for block_idx in range(num_blocks):
if stop_token in input_ids[:, original_input_length:]:
break
prompt_length = input_ids.shape[1]
# Initialize x_init with mask_id
x_init = mask_id * torch.ones((input_ids.shape[0], block_size-prompt_length%block_size), device=self.device, dtype=torch.long)
x_init = torch.cat([input_ids, x_init], dim=1)
x_t = x_init.clone()
block_past_key_values = None
while True:
if stop_token in x_t[:, prompt_length:]:
stop_token_idx = (x_t[:, prompt_length:] == stop_token).nonzero()[0][1]
if (x_t[:, prompt_length:prompt_length+stop_token_idx] == mask_id).sum() == 0:
break
mask_idx = (x_t[:, -block_size:] == mask_id)
# Decode a complete block, update cache, and generate the next token
if mask_idx.sum() == 0:
output = self.forward(input_ids=x_t[:, -block_size:], use_cache=True, past_key_values=past_key_values, update_past_key_values=True, block_size=block_size)
logits, past_key_values = output.logits, output.past_key_values
next_token = logits[:, -1:, :].argmax(dim=-1)
x_t = torch.cat([x_t, next_token], dim=1)
break
for small_block_idx in range(num_small_blocks):
small_block_start_idx = small_block_idx * small_block_size
small_block_end_idx = small_block_start_idx + small_block_size
start = -block_size + small_block_start_idx
end = None if block_size == small_block_end_idx else -block_size + small_block_end_idx
while True:
mask_idx = (x_t[:, -block_size:] == mask_id)
if mask_idx[:, start:end].sum() == 0:
break
if stop_token in x_t[:, prompt_length:]:
stop_token_idx = (x_t[:, prompt_length:] == stop_token).nonzero()[0][1]
if (x_t[:, prompt_length:prompt_length+stop_token_idx] == mask_id).sum() == 0:
break
if use_block_cache:
if block_past_key_values is None or (x_t[:, -block_size+small_block_start_idx] == mask_id).any():
output = self.forward(input_ids=x_t[:, -block_size:], use_cache=True, past_key_values=past_key_values, update_past_key_values=False, use_block_cache=True)
logits, block_past_key_values = output.logits, output.block_past_key_values
logits = torch.cat([logits[:, :1, :], logits[:, :-1, :]], dim=1)
logits = logits[:, start:end]
else:
logits = self.forward(input_ids=x_t[:,start:end], use_cache=True, past_key_values=past_key_values, update_past_key_values=False, use_block_cache=True, block_past_key_values=block_past_key_values, replace_position=small_block_start_idx).logits
logits = torch.cat([logits[:, :1, :], logits[:, :-1, :]], dim=1)
else:
logits = self.forward(input_ids=x_t[:, -block_size:], use_cache=True, past_key_values=past_key_values, update_past_key_values=False).logits
logits = torch.cat([logits[:, :1, :], logits[:, :-1, :]], dim=1)
logits = logits[:, start:end]
x_1, p_1t = self.sample_with_top_p(logits, top_p=top_p, temperature=temperature)
# Select tokens with probability greater than threshold from p_1t
x1_p = torch.squeeze(torch.gather(p_1t, dim=-1, index=torch.unsqueeze(x_1, -1)), -1)
x1_p = torch.where(mask_idx[:, start:end], x1_p, -torch.inf)
unmask_idx = (x1_p > threshold)
max_prob_idx = x1_p.argmax(dim=-1)
unmask_idx[torch.arange(x_1.shape[0]), max_prob_idx] = True
unmask_idx = unmask_idx & mask_idx[:, start:end]
x_t[:, start:end][unmask_idx] = x_1[unmask_idx]
input_ids = x_t
# Truncate stop_token
if stop_token in input_ids[:, original_input_length:]:
stop_token_idx = (input_ids[:, original_input_length:] == stop_token).nonzero()[0][1]
input_ids = input_ids[:, :stop_token_idx+original_input_length+1]
return input_ids
def sample_with_top_p(self, logits, top_p=0.95, temperature=1.0):
# Calculate probabilities
if temperature > 0:
scaled_logits = logits / temperature
else:
p_1t = torch.softmax(logits, dim=-1)
x_1 = p_1t.argmax(dim=-1)
return x_1, p_1t
probs = F.softmax(scaled_logits, dim=-1)
sorted_probs, sorted_indices = torch.sort(probs, descending=True)
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = torch.zeros_like(probs, dtype=torch.bool).scatter_(
dim=-1, index=sorted_indices, src=sorted_indices_to_remove
)
probs[indices_to_remove] = 0
# Renormalize so that the probabilities of remaining tokens sum to 1
# Add a small epsilon value to prevent division by zero
probs_sum = torch.sum(probs, dim=-1, keepdim=True)
normalized_probs = probs / probs_sum
p_1t = normalized_probs
x_1 = torch.multinomial(p_1t[0], num_samples=1).unsqueeze(0).squeeze(-1)
return x_1, p_1t