AfroLogicInsect commited on
Commit
46db3f3
·
verified ·
1 Parent(s): 879e8a4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -147
README.md CHANGED
@@ -1,199 +1,138 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
 
71
 
72
- Use the code below to get started with the model.
 
 
 
 
 
73
 
74
- [More Information Needed]
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
 
91
 
 
92
 
93
- #### Training Hyperparameters
 
 
 
 
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
 
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - topic
5
+ - multi-sentiment
6
+ license: mit
7
+ datasets:
8
+ - valurank/Topic_Classification
9
+ language:
10
+ - en
11
+ metrics:
12
+ - accuracy
13
+ - f1
14
+ - precision
15
+ - recall
16
+ base_model:
17
+ - distilbert/distilbert-base-uncased
18
  ---
19
 
20
+ # Model Card for Topic Classification Model
 
 
 
21
 
22
+ A fine-tuned DistilBERT model for multi-class topic classification. This model predicts the most relevant topic label from a predefined set based on input text. It was trained using 🤗 Transformers and PyTorch on a custom dataset derived from academic and news-style corpora.
23
 
24
  ## Model Details
25
 
26
  ### Model Description
27
 
28
+ This model was developed by Daniel (@AfroLogicInsect) to classify text into one of several predefined topics. It builds on the `distilbert-base-uncased` architecture and was fine-tuned for multi-class classification using a softmax output layer.
 
 
 
 
 
 
 
 
 
 
29
 
30
+ - **Developed by:** Daniel 🇳🇬 (@AfroLogicInsect)
31
+ - **Model type:** DistilBERT-based multi-class sequence classifier
32
+ - **Language(s):** English
33
+ - **License:** MIT
34
+ - **Finetuned from:** distilbert-base-uncased
35
 
36
+ ### Model Sources
37
 
38
+ - **Repository:** [AfroLogicInsect/topic-model-analysis-model](https://huggingface.co/AfroLogicInsect/topic-model-analysis-model)
39
+ - **Paper:** arXiv:1910.09700 (DistilBERT)
40
+ - **Demo:** [Coming soon]
41
 
42
  ## Uses
43
 
 
 
44
  ### Direct Use
45
 
46
+ - Classify academic or news-style text into topics such as AI, finance, sports, climate, etc.
47
+ - Embed in dashboards or content moderation tools for automatic tagging
 
 
 
48
 
49
+ ### Downstream Use
50
 
51
+ - Can be extended to hierarchical topic classification
52
+ - Useful for building recommendation engines or content filters
53
 
54
  ### Out-of-Scope Use
55
 
56
+ - Not suitable for sentiment or emotion classification
57
+ - May not generalize well to informal or slang-heavy text
 
58
 
59
  ## Bias, Risks, and Limitations
60
 
61
+ - Trained on curated corpora may reflect biases in source material
62
+ - Topics are predefined and static — emerging topics may be misclassified
63
+ - Confidence scores are probabilistic, not definitive
64
 
65
  ### Recommendations
66
 
67
+ - Use `top_k=5` with `return_all_scores=True` to retrieve multiple topic predictions
68
+ - Consider fine-tuning on domain-specific data for improved accuracy
69
 
70
+ ## How to Get Started
71
 
72
+ ```python
73
+ from transformers import pipeline
74
 
75
+ classifier = pipeline(
76
+ "text-classification",
77
+ model="AfroLogicInsect/topic-model-analysis-model",
78
+ tokenizer="AfroLogicInsect/topic-model-analysis-model",
79
+ return_all_scores=True
80
+ )
81
 
82
+ text = "New AI breakthrough in natural language processing"
83
+ results = classifier(text)
84
+ top_5 = sorted(results[0], key=lambda x: x['score'], reverse=True)[:5]
85
+ for i, res in enumerate(top_5):
86
+ print(f"Top {i+1}: {res['label']} ({res['score']:.3f})")
87
+ ```
88
 
89
  ## Training Details
90
 
91
+ ### Dataset
 
 
 
 
 
 
 
 
 
 
92
 
93
+ - Custom multi-class topic dataset based on arXiv abstracts and news articles
94
+ - Labels include domains like AI, finance, sports, climate, etc.
95
 
96
+ ### Hyperparameters
97
 
98
+ - Epochs: 3
99
+ - Batch size: 16
100
+ - Learning rate: 2e-5
101
+ - Evaluation every 200 steps
102
+ - Metric: F1 score
103
 
104
+ ### Trainer Setup
105
 
106
+ Used Hugging Face `Trainer` API with `TrainingArguments` configured for early stopping and best model selection.
 
 
 
 
107
 
108
  ## Evaluation
109
 
110
+ Model achieved strong performance across multiple topic categories. Evaluation metrics include:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
 
112
+ - **Accuracy:** ~90.8%
113
+ - **F1 Score:** ~0.91
114
+ - **Precision:** ~0.89
115
+ - **Recall:** ~0.93
 
 
 
 
 
116
 
117
  ## Environmental Impact
118
 
119
+ - **Hardware:** Google Colab (NVIDIA T4 GPU)
120
+ - **Training Time:** ~2.5 hours
121
+ - **Carbon Emitted:** ~0.3 kg CO₂eq (estimated via [ML Impact Calculator](https://mlco2.github.io/impact#compute))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
 
123
+ ## Citation
124
 
125
+ ```bibtex
126
+ @misc{afrologicinsect2025topicmodel,
127
+ title = {AfroLogicInsect Topic Classification Model},
128
+ author = {Akan Daniel},
129
+ year = {2025},
130
+ howpublished = {\url{https://huggingface.co/AfroLogicInsect/topic-model-analysis-model}},
131
+ }
132
+ ```
133
 
134
+ ## Contact
135
 
136
+ - Name: Daniel (@AfroLogicInsect)
137
+ - Location: Lagos, Nigeria
138
+ - Contact: GitHub / Hugging Face / email (danielamahtoday@gmail.com)